CALCULUS II – EXERCISE SET – 2 – SOLUTIONS

Section 9.1 Sequences and Convergence (page 478)

- 1. $\left\{\frac{2n^2}{n^2+1}\right\} = \left\{2 \frac{2}{n^2+1}\right\} = \left\{1, \frac{8}{5}, \frac{9}{5}, \ldots\right\}$ is bounded, positive, increasing, and converges to 2.
- 2. $\left\{\frac{2n}{n^2+1}\right\} = \left\{1, \frac{4}{5}, \frac{3}{5}, \frac{8}{17}, \ldots\right\}$ is bounded, positive, decreasing, and converges to 0.
- 3. $\left\{4 \frac{(-1)^n}{n}\right\} = \left\{5, \frac{7}{2}, \frac{13}{3}, \ldots\right\}$ is bounded, positive, and converges to 4.
- 4. $\left\{ \sin \frac{1}{n} \right\} = \left\{ \sin 1, \sin \left(\frac{1}{2} \right), \sin \left(\frac{1}{3} \right), \ldots \right\}$ is bounded, positive, decreasing, and converges to 0.
- 5. $\left\{\frac{n^2-1}{n}\right\} = \left\{n-\frac{1}{n}\right\} = \left\{0, \frac{3}{2}, \frac{8}{3}, \frac{15}{4}, \dots\right\}$ is bounded below, positive, increasing, and diverges to infinity.
- 6. $\left\{\frac{e^n}{\pi^n}\right\} = \left\{\frac{e}{\pi}, \left(\frac{e}{\pi}\right)^2, \left(\frac{e}{\pi}\right)^3, \ldots\right\}$ is bounded, positive, decreasing, and converges to 0, since $e < \pi$.
- 7. $\left\{\frac{e^n}{\pi^{n/2}}\right\} = \left\{\left(\frac{e}{\sqrt{\pi}}\right)^n\right\}$. Since $e/\sqrt{\pi} > 1$, the sequence is bounded below, positive, increasing, and diverges to infinity.
- 8. $\left\{\frac{(-1)^n n}{e^n}\right\} = \left\{\frac{-1}{e}, \frac{2}{e^2}, \frac{-3}{e^3}, \ldots\right\}$ is bounded, alternating, and converges to 0.
- **9.** $\{2^n/n^n\}$ is bounded, positive, decreasing, and converges to 0.
- 10. $\frac{(n!)^2}{(2n)!} = \frac{1}{n+1} \frac{2}{n+2} \frac{3}{n+3} \cdots \frac{n}{2n} \le \left(\frac{1}{2}\right)^n.$ Also, $\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{(2n+2)(2n+1)} < \frac{1}{2}.$ Thus the sequence $\left\{\frac{(n!)^2}{(2n)!}\right\}$ is positive, decreasing, bounded, and convergent to 0.
- 11. $\{n\cos(n\pi/2)\} = \{0, -2, 0, 4, 0, -6, \ldots\}$ is divergent.
- 12. $\left\{\frac{\sin n}{n}\right\} = \left\{\sin 1, \frac{\sin 2}{2}, \frac{\sin 3}{3}, \ldots\right\}$ is bounded and converges to 0.
- **13.** $\{1, 1, -2, 3, 3, -4, 5, 5, -6, \ldots\}$ is divergent.

14.
$$\lim \frac{5-2n}{3n-7} = \lim \frac{n-2}{3-\frac{7}{n}} = -\frac{2}{3}.$$

15.
$$\lim \frac{n^2-4}{n+5} = \lim \frac{n-\frac{4}{n}}{1+\frac{5}{n}} = \infty.$$

16.
$$\lim \frac{n^2}{n^3+1} = \lim \frac{\frac{1}{n}}{1+\frac{1}{n^3}} = 0.$$

5

17.
$$\lim_{n \to \infty} (-1)^n \frac{n}{n^3 + 1} = 0.$$

18.
$$\lim \frac{n^2 - 2\sqrt{n} + 1}{1 - n - 3n^2} = \lim \frac{1 - \frac{2}{n\sqrt{n}} + \frac{1}{n^2}}{\frac{1}{n^2} - \frac{1}{n} - 3} = -\frac{1}{3}$$

19.
$$\lim \frac{e^n - e^{-n}}{e^n + e^{-n}} = \lim \frac{1 - e^{-2n}}{1 + e^{-2n}} = 1.$$

20.
$$\lim n \sin \frac{1}{n} = \lim_{x \to 0+} \frac{\sin x}{x} = \lim_{x \to 0+} \frac{\cos x}{1} = 1.$$

21. $\lim_{n \to \infty} \left(\frac{n-3}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{-3}{n}\right)^n = e^{-3}$ by l'Hôpital's Rule.

22.
$$\lim \frac{n}{\ln(n+1)} = \lim_{x \to \infty} \frac{x}{\ln(x+1)}$$
$$= \lim_{x \to \infty} \frac{1}{\left(\frac{1}{x+1}\right)} = \lim_{x \to \infty} x+1 = \infty.$$

23.
$$\lim(\sqrt{n+1} - \sqrt{n}) = \lim \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = 0$$

24.
$$\lim \left(n - \sqrt{n^2 - 4n} \right) = \lim \frac{n^2 - (n^2 - 4n)}{n + \sqrt{n^2 - 4n}}$$
$$= \lim \frac{4n}{n + \sqrt{n^2 - 4n}} = \lim \frac{4}{1 + \sqrt{1 - \frac{4}{n}}} = 2.$$

25.
$$\lim(\sqrt{n^2 + n} - \sqrt{n^2 - 1})$$

$$= \lim \frac{n^2 + n - (n^2 - 1)}{\sqrt{n^2 + n} + \sqrt{n^2 - 1}}$$

$$= \lim \frac{n + 1}{n\left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n^2}}\right)}$$

$$= \lim \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n^2}}} = \frac{1}{2}$$

26. If
$$a_n = \left(\frac{n-1}{n+1}\right)^n$$
, then

$$\lim a_n = \lim \left(\frac{n-1}{n}\right)^n \left(\frac{n}{n+1}\right)^n$$

$$= \lim \left(1 - \frac{1}{n}\right)^n / \lim \left(1 + \frac{1}{n}\right)^n$$

$$= \frac{e^{-1}}{e} = e^{-2} \quad \text{(by Theorem 6 of Section 3.4).}$$

27.
$$a_n = \frac{(n!)^2}{(2n)!} = \frac{(1 \cdot 2 \cdot 3 \cdots n)(1 \cdot 2 \cdot 3 \cdots n)}{1 \cdot 2 \cdot 3 \cdots n \cdot (n+1) \cdot (n+2) \cdots 2n} = \frac{1}{n+1} \cdot \frac{2}{n+2} \cdot \frac{3}{n+3} \cdots \frac{n}{n+n} \le \left(\frac{1}{2}\right)^n.$$

Thus $\lim a_n = 0.$

28. We have $\lim_{n \to \infty} \frac{n^2}{2^n} = 0$ since 2^n grows much faster than n^2 and $\lim_{n \to \infty} \frac{4^n}{n!} = 0$ by Theorem 3(b). Hence,

$$\lim \frac{n^2 2^n}{n!} = \lim \frac{n^2}{2^n} \cdot \frac{2^{2n}}{n!} = \left(\lim \frac{n^2}{2^n}\right) \left(\lim \frac{4^n}{n!}\right) = 0.$$

29.
$$a_n = \frac{\pi^n}{1+2^{2n}} \Rightarrow 0 < a_n < (\pi/4)^n$$
. Since $\pi/4 < 1$, therefore $(\pi/4)^n \to 0$ as $n \to \infty$. Thus $\lim a_n = 0$.