CALCULUS II – EXERCISE SET – 6 – SOLUTIONS

- 1. $f(x, y) = x^2 + 2y^2 4x + 4y$ $f_1(x, y) = 2x - 4 = 0$ if x = 2 $f_2(x, y) = 4y + 4 = 0$ if y = -1. Critical point is (2, -1). Since $f(x, y) \to \infty$ as $x^2 + y^2 \to \infty$, f has a local (and absolute) minimum value at that critical point.
- 2. f(x, y) = xy x + y, $f_1 = y 1$, $f_2 = x + 1$ $A = f_{11} = 0$, $B = f_{12} = 1$, $C = f_{22} = 0$. Critical point (-1, 1) is a saddle point since $B^2 - AC > 0$.
- 3. $f(x, y) = x^3 + y^3 3xy$ $f_1(x, y) = 3(x^2 - y),$ $f_2(x, y) = 3(y^2 - x).$ For critical points: $x^2 = y$ and $y^2 = x$. Thus $x^4 - x = 0$, that is, $x(x - 1)(x^2 + x + 1) = 0$. Thus x = 0 or x = 1. The critical points are (0, 0) and (1, 1). We have

$$A = f_{11}(x, y) = 6x,$$
 $B = f_{12}(x, y) = -3,$ $C = f_{22}(x, y) = 6y.$

At (0,0): A = C = 0, B = -3. Thus $AC < B^2$, and (0,0) is a saddle point of f. At (1,1): A = C = 6, B = -3, so $AC > B^2$. Thus f has a local minimum value at (1,1).

4. $f(x, y) = x^4 + y^4 - 4xy$, $f_1 = 4(x^3 - y)$, $f_2 = 4(y^3 - x)$

 $A = f_{11} = 12x^2$, $B = f_{12} = -4$, $C = f_{22} = 12y^2$. For critical points: $x^3 = y$ and $y^3 = x$. Thus $x^9 = x$, or $x(x^8 - 1) = 0$, and x = 0, 1, or -1. The critical points are (0, 0), (1, 1) and (-1, -1). At (0, 0), $B^2 - AC = 16 - 0 > 0$, so (0, 0) is a saddle

At (0,0), $B^2 - AC = 16 - 0 > 0$, so (0,0) is a saddle point.

At (1, 1) and (-1, -1), $B^2 - AC = 16 - 144 < 0$, A > 0, so f has local minima at these points.

5. $f(x, y) = \frac{x}{y} + \frac{8}{x} - y$ $f_1(x, y) = \frac{1}{y} - \frac{8}{x^2} = 0 \quad \text{if } 8y = x^2$ $f_2(x, y) = -\frac{x}{y^2} - 1 = 0 \quad \text{if } x = -y^2.$

For critical points: $8y = x^2 = y^4$, so y = 0 or y = 2. f(x, y) is not defined when y = 0, so the only critical point is (-4, 2). At (-4, 2) we have

$$A = f_{11} = \frac{16}{x^3} = -\frac{1}{4},$$
 $B = f_{12} = -\frac{1}{y^2} = -\frac{1}{4},$ $C = f_{22} = \frac{2x}{y^3} = -1.$

Thus $B^2 - AC = \frac{1}{16} - \frac{1}{4} < 0$, and (-4, 2) is a local maximum

- 6. $f(x, y) = \cos(x + y)$, $f_1 = -\sin(x + y) = f_2$. All points on the lines $x + y = n\pi$ (n is an integer) are critical points. If n is even, f = 1 at such points; if n is odd, f = -1 there. Since $-1 \le f(x, y) \le 1$ at all points in \mathbb{R}^2 , f must have local and absolute maximum values at points $x + y = n\pi$ with n even, and local and absolute minimum values at such points with n odd.
- 7. $f(x, y) = x \sin y$. For critical points we have

$$f_1 = \sin y = 0,$$
 $f_2 = x \cos y = 0.$

Since $\sin y$ and $\cos y$ cannot vanish at the same point, the only critical points correspond to x=0 and $\sin y=0$. They are $(0, n\pi)$, for all integers n. All are saddle points.

8. $f(x, y) = \cos x + \cos y$, $f_1 = -\sin x$, $f_2 = -\sin y$ $A = f_{11} = -\cos x$, $B = f_{12} = 0$, $C = f_{22} = -\cos y$. The critical points are points $(m\pi, n\pi)$, where m and n are integers.

Here $B^2 - AC = -\cos(m\pi)\cos(n\pi) = (-1)^{m+n+1}$ which is negative if m+n is even, and positive if m+n is odd. If m+n is odd then f has a saddle point at $(m\pi, n\pi)$. If m+n is even and m is odd then f has a local (and absolute) minimum value, -2, at $(m\pi, n\pi)$. If m+n is even and m is even then f has a local (and absolute) maximum value, 2, at $(m\pi, n\pi)$.

23. Let the length, width, and height of the box be x, y, and z, respectively. Then V = xyz. The total surface area of the bottom and sides is

$$S = xy + 2xz + 2yz = xy + 2(x+y)\frac{V}{xy}$$
$$= xy + \frac{2V}{x} + \frac{2V}{y},$$

where x > 0 and y > 0. Since $S \to \infty$ as $x \to 0+$ or $y \to 0+$ or $x^2+y^2 \to \infty$, S must have a minimum value at a critical point in the first quadrant. For CP:

$$0 = \frac{\partial S}{\partial x} = y - \frac{2V}{x^2}$$
$$0 = \frac{\partial S}{\partial y} = x - \frac{2V}{y^2}.$$

Thus $x^2y = 2V = xy^2$, so that $x = y = (2V)^{1/3}$ and $z = V/(2V)^{2/3} = 2^{-2/3}V^{1/3}$.

24. Let the length, width, and height of the box be x, y, and z, respectively. Then V = xyz. If the top and side walls cost \$k\$ per unit area, then the total cost of materials for the box is

$$C = 2kxy + kxy + 2kxz + 2kyz$$

$$= k \left[3xy + 2(x+y)\frac{V}{xy} \right] = k \left[3xy + \frac{2V}{x} + \frac{2V}{y} \right],$$

where x > 0 and y > 0. Since $C \to \infty$ as $x \to 0+$ or $y \to 0+$ or $x^2 + y^2 \to \infty$, C must have a minimum value at a critical point in the first quadrant. For CP:

$$0 = \frac{\partial C}{\partial x} = k \left(3y - \frac{2V}{x^2} \right)$$
$$0 = \frac{\partial C}{\partial y} = k \left(3x - \frac{2V}{y^2} \right).$$

Thus $3x^2y = 2V = 3xy^2$, so that $x = y = (2V/3)^{1/3}$ and $z = V/(2V/3)^{2/3} = (9V/4)^{1/3}$.