CALCULUS II – EXERCISE SET – 7 – SOLUTIONS

1. First we observe that $f(x, y) = x^3y^5$ must have a maximum value on the line x + y = 8 because if $x \to -\infty$ then $y \to \infty$ and if $x \to \infty$ then $y \to -\infty$. In either case $f(x, y) \to -\infty$. Let $L = x^3y^5 + \lambda(x + y - 8)$. For CPs of L:

$$0 = \frac{\partial L}{\partial x} = 3x^2y^5 + \lambda$$
$$0 = \frac{\partial L}{\partial y} = 5x^3y^4 + \lambda$$
$$0 = \frac{\partial L}{\partial \lambda} = x + y - 8.$$

The first two equations give $3x^2y^5 = 5x^3y^4$, so that either x = 0 or y = 0 or 3y = 5x. If x = 0 or y = 0 then f(x, y) = 0. If 3y = 5x, then $x + \frac{5}{3}x = 8$, so 8x = 24and x = 3. Then y = 5, and $f(x, y) = 3^35^5 = 84,375$. This is the maximum value of f on the line.

4. Let f(x, y, z) = x + y - z, and define the Lagrangian

$$L = x + y - z + \lambda(x^2 + y^2 + z^2 - 1).$$

Solutions to the constrained problem will be found among the critical points of L. To find these we have

$$0 = \frac{\partial L}{\partial x} = 1 + 2\lambda x,$$

$$0 = \frac{\partial L}{\partial y} = 1 + 2\lambda y,$$

$$0 = \frac{\partial L}{\partial z} = -1 + 2\lambda z,$$

$$0 = \frac{\partial L}{\partial z} = x^2 + y^2 + z^2 - 1.$$

Therefore $2\lambda x = 2\lambda y = -2\lambda z$. Either $\lambda = 0$ or x = y = -z. $\lambda = 0$ is not possible. (It implies 0 = 1from the first equation.) From x = y = -z we obtain from the first equation.) From x = y = -z we obtain $1 = x^2 + y^2 + z^2 = 3x^2$, so $x = \pm \frac{1}{\sqrt{3}}$. L has critical points at $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ and $\left(\frac{1}{-\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$. At the first $f = \sqrt{3}$, which is the maximum value of f on the sphere; at the second $f = -\sqrt{3}$, which is the minimum value.

5. The distance D from (2, 1, -2) to (x, y, z) is given by

$$D^2 = (x-2)^2 + (y-1)^2 + (z+2)^2$$
.

We can extremize D by extremizing D^2 . If (x, y, z) lies on the sphere $x^2 + y^2 + z^2 = 1$, we should look for critical points of the Lagrangian

$$L = (x-2)^2 + (y-1)^2 + (z+2)^2 + \lambda(x^2 + y^2 + z^2 - 1).$$

Thus

$$0 = \frac{\partial L}{\partial x} = 2(x - 2) + 2\lambda x \quad \Leftrightarrow \quad x = \frac{2}{1 + \lambda}$$

$$0 = \frac{\partial L}{\partial y} = 2(y - 1) + 2\lambda y \quad \Leftrightarrow \quad y = \frac{1}{1 + \lambda}$$

$$0 = \frac{\partial L}{\partial z} = 2(z + 2) + 2\lambda z \quad \Leftrightarrow \quad z = \frac{-2}{1 + \lambda}$$

$$0 = \frac{\partial L}{\partial \lambda} = x^2 + y^2 + z^2 - 1.$$

Substituting the solutions of the first three equations into the fourth, we obtain

$$\frac{1}{(1+\lambda)^2}(4+1+4) = 1$$
$$(1+\lambda)^2 = 9$$
$$1+\lambda = \pm 3.$$

Thus we must consider the two points $P=\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right)$, and $Q=\left(-\frac{2}{3},-\frac{1}{3},\frac{2}{3}\right)$ for giving extreme values for D. At $P,\,D=2$. At $Q,\,D=4$. Thus the greatest and least distances from (2,1,-2) to the sphere $x^2+y^2+z^2=1$ are 4 units and 2 units respectively.

6. Let $L = x^2 + y^2 + z^2 + \lambda(xyz^2 - 2)$. For critical points:

$$0 = \frac{\partial L}{\partial x} = 2x + \lambda yz^{2} \quad \Leftrightarrow \quad -\lambda xyz^{2} = 2x^{2}$$

$$0 = \frac{\partial L}{\partial y} = 2y + \lambda xz^{2} \quad \Leftrightarrow \quad -\lambda xyz^{2} = 2y^{2}$$

$$0 = \frac{\partial L}{\partial z} = 2z + 2\lambda xyz \quad \Leftrightarrow \quad -\lambda xyz^{2} = z^{2}$$

$$0 = \frac{\partial L}{\partial z} = xyz^{2} - 2.$$

From the first three equations, $x^2 = y^2$ and $z^2 = 2x^2$. The fourth equation then gives $x^2y^24z^4 = 4$, or $x^8 = 1$. Thus $x^2 = y^2 = 1$ and $z^2 = 2$.

The shortest distance from the origin to the surface $xyz^2 = 2$ is

$$\sqrt{1+1+2} = 2$$
 units.

7. We want to minimize $V = \frac{4\pi abc}{3}$ subject to the constraint $\frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} = 1$. Note that abc cannot be zero. Let $L = \frac{4\pi abc}{3} + \lambda \left(\frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - 1\right).$

For critical points of L:

$$\begin{split} 0 &= \frac{\partial L}{\partial a} = \frac{4\pi\,bc}{3} - \frac{2\lambda}{a^3} \quad \Leftrightarrow \quad \frac{2\pi\,abc}{3} = \frac{\lambda}{a^2} \\ 0 &= \frac{\partial L}{\partial b} = \frac{4\pi\,ac}{3} - \frac{8\lambda}{b^3} \quad \Leftrightarrow \quad \frac{2\pi\,abc}{3} = \frac{4\lambda}{b^2} \\ 0 &= \frac{\partial L}{\partial c} = \frac{4\pi\,ab}{3} - \frac{2\lambda}{c^3} \quad \Leftrightarrow \quad \frac{2\pi\,abc}{3} = \frac{\lambda}{c^2} \\ 0 &= \frac{\partial L}{\partial \lambda} = \frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - 1. \end{split}$$

 $abc \neq 0$ implies $\lambda \neq 0$, and so we must have

$$\frac{1}{a^2} = \frac{4}{b^2} = \frac{1}{c^2} = \frac{1}{3},$$

so $a = \pm \sqrt{3}$, $b = \pm 2\sqrt{3}$, and $c = \pm \sqrt{3}$.

8. Let $L = x^2 + y^2 + \lambda(3x^2 + 2xy + 3y^2 - 16)$. We have

$$0 = \frac{\partial L}{\partial x} = 2x + 6\lambda x + 2\lambda y \tag{A}$$

$$0 = \frac{\partial L}{\partial y} = 2y + 6\lambda y + 2\lambda x. \tag{B}$$

Multiplying (A) by y and (B) by x and subtracting we get

$$2\lambda(y^2 - x^2) = 0.$$

Thus, either $\lambda=0$, or y=x, or y=-x. $\lambda=0$ is not possible, since it implies x=0 and y=0, and the point (0,0) does not lie on the given ellipse. If y=x, then $8x^2=16$, so $x=y=\pm\sqrt{2}$. If y=-x, then $4x^2=16$, so $x=-y=\pm2$. The points on the ellipse nearest the origin are $(\sqrt{2},\sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$. The points farthest from the origin are (2,-2) and (-2,2). The major axis of the ellipse lies along y=-x and has length $4\sqrt{2}$. The minor axis lies along y=x and has length 4.

9. Let $L = xyz + \lambda(x^2 + y^2 + z^2 - 12)$. For CPs of L:

$$0 = \frac{\partial L}{\partial x} = yz + 2\lambda x \tag{A}$$

$$0 = \frac{\partial \hat{L}}{\partial y} = xz + 2\lambda y \tag{B}$$

$$0 = \frac{\partial \dot{L}}{\partial z} = xy + 2\lambda z \tag{C}$$

$$0 = \frac{\partial L}{\partial \lambda} = x^2 + y^2 + z^2 - 12. \tag{D}$$

Multiplying equations (A), (B), and (C) by x, y, and z, respectively, and subtracting in pairs, we conclude that $\lambda x^2 = \lambda y^2 = \lambda z^2$, so that either $\lambda = 0$ or $x^2 = y^2 = z^2$. If $\lambda = 0$, then (A) implies that yz = 0, so xyz = 0. If $x^2 = y^2 = z^2$, then (D) gives $3x^2 = 12$, so $x^2 = 4$. We obtain eight points (x, y, z) where each coordinate is either 2 or -2. At four of these points xyz = 8, which is the maximum value of xyz on the sphere. At the other four xyz = -8, which is the minimum value.

10. Let $L = x + 2y - 3z + \lambda(x^2 + 4y^2 + 9z^2 - 108)$. For CPs of L:

$$0 = \frac{\partial L}{\partial x} = 1 + 2\lambda x \tag{A}$$

$$0 = \frac{\partial L}{\partial x} = 1 + 2\lambda x \tag{A}$$

$$0 = \frac{\partial L}{\partial y} = 2 + 8\lambda y \tag{B}$$

$$0 = \frac{\partial L}{\partial z} = -3 + 18\lambda z \tag{C}$$

$$0 = \frac{\partial L}{\partial \lambda} = x^2 + 4y^2 + 9z^2 - 108. \tag{D}$$

From (A), (B), and (C),

$$\lambda = -\frac{1}{2x} = -\frac{2}{8y} = \frac{3}{18z},$$

so x = 2y = -3z. From (D):

$$x^2 + 4\left(\frac{x^2}{4}\right) + 9\left(\frac{x^2}{9}\right) = 108,$$

so $x^2=36$, and $x=\pm 6$. There are two CPs: (6,3,-2) and (-6,-3,2). At the first, x+2y-3z=18, the maximum value, and at the second, x+2y-3z=-18, the minimum value.