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These slides1 are based mainly on the textbooks:

J. W. Brown and R. V. Churchill, Complex Variables and
Applications, Sixth Edition, McGrawHill

S. L. Ross, Differential Equations, 3rd Edition, Wiley

Some old exam questions and their solutions are available on DYS.
You may prepare and bring an A4 size formula sheet to the exams.
You may bring a calculator to the exams.

1These slides are intended for educational use only; not for sale under any
circumstances.
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A fact: I always post the solution key on DYS in few minutes after
I announce the midterm grades.
FAQ Can I see my graded exam paper?
Ans. Yes, but not before the first lecture following the exam. In
that lecture I announce the times when you can see your exam
paper.
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Definition

A complex number z is an ordered pair z = (x , y) of real numbers
x and y with operations of addition and multiplication.

Identify the pairs (x , 0) with real numbers x .
∴ Complex numbers include the real numbers as a subset.

Complex numbers of the form (0, y) are called imaginary numbers.
In z = (x , y), x is known as the real part and y is known as the
imaginary part of z .

Related functions:

Re (z) = x , Im (z) = y
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Let z1 = (x1, y1) and z2 = (x2, y2). Define:

(x1, y1) + (x2, y2) = (x1 + x2 , y1 + y2)

(x1, y1)(x2, y2) = (x1x2 − y1y2 , y1x2 + x1y2)

Note that
(x , y) = (x , 0) + (0, 1)(y , 0) (1)

Let x denote (x , 0) and let i denote the pure imaginary number
(0, 1) we can rewrite (1) as

(x , y) = x + iy (2)
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Note that
i2 = (0, 1)(0, 1) = (−1, 0) = −1

In view of expression (2) addition and multiplication can be written
as

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(y1x2 + x1y2)

Note that
(x , y)(a, 0) = (ax , ay)

(a, 0)(x , y) = (ax , ay)

We therefore define
a(x , y) = (ax , ay)

(x , y)a = (ax , ay)
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Algebraic Properties

Commutative laws:

z1 + z2 = z2 + z1 , z1z2 = z2z1

Associative laws:

(z1 + z2) + z3 = z1 + (z2 + z3) , (z1z2)z3 = z1(z2z3)

Distributive law:

z1(z2 + z3) = z1z2 + z1z3

The additive identity 0 = (0, 0) and multiplicative identity
1 = (1, 0) satisfy

z + 0 = z and z · 1 = z

for each complex number z
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Additive inverse of z is (−z). That is z + (−z) = 0.
Multiplicative inverse z−1 of z can be computed as

zz−1 = 1

Let z = (x , y) and z−1 = (u, v); then

(x , y)(u, v) = 1

(xu − yv , yu + xv) = (1, 0)

→ (xu − yv) = 1 and (yu + xv) = 0

→ u =
x

x2 + y 2
, v =

−y

x2 + y 2

The multiplicative inverse of z = (x , y) is, then,

z−1 =

(
x

x2 + y 2
,
−y

x2 + y 2

)
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If a product z1z2 is zero, then so is at least one of the factors z1

and z2.

For the matrices A and B, the product AB = 0 does not imply
A = 0 or B = 0. For instance,[

0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
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Suppose that z1z2 = 0 and z1 6= 0. We will show that z2 = 0. The
inverse z−1

1 exists, and according to the definition of
multiplication, any complex number times zero is zero. Hence

z2 = 1 · z2 = (z−1
1 z1)z2 = z−1

1 (z1z2) = z−1
1 · 0 = 0
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Division by a nonzero complex number is defined as:

z1

z2
= z1z−1

2

If z1 = (x1, y1) and z2 = (x2, y2) then

z1

z2
=

(
x1x2 + y1y2

x2
2 + y 2

2

,
y1x2 − x1y2

x2
2 + y 2

2

)
, z2 6= 0

The quotient z1/z2 is not defined when z2 = 0
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Useful Identities

1

z1
= z−1

1

1

z1z2
=

1

z1

1

z2

z1 + z2

z3
=

z1

z3
+

z2

z3

z1z2

z3z4
=

(
z1

z3

)(
z2

z4

)
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Example (
1

2− 3i

)(
1

1 + i

)
=

1

5− i
=

1

5− i

(
5 + i

5 + i

)
=

5 + i

26
=

5

26
+ i

1

26
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Exercises

1) Verify that
a) (
√

2− i)− i(1−
√

2i) = −2i
b) (2,−3)(−2, 1) = (−1, 8)
2) Verify that each of the two numbers z = 1∓ i satisfies the
equation z2 − 2z + 2 = 0
3) Solve the equation z2 + z + 1 = 0 for z = (x , y) by writing

(x , y)(x , y) + (x , y) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equation in x and y .

Ans. z =
(
−1

2 ,∓
√

3
2

)
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Geometric Interpretation

View z = x + iy as a point whose cartesian coordinates (x , y).
Example: The number −2 + i is represented by the point (−2, 1).
The number z can also be thought of as a vector from the origin
to the point (x , y).
The xy plane may be called the complex plane, or the z plane.
The x axis is called the real axis, the y axis is called the imaginary
axis.
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u + v = (1 + 2i) + (3 + 2i) yields 4 + 4i ; and
v − u = (2 + 2i)− (1 + 3i) yields 1− i .
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The modulus or absolute value of a complex number z = x + iy is
defined as the nonnegative real number

√
x2 + y 2 and is denoted

by |z |; that is

|z | =
√

x2 + y 2

Geometrically the number |z | is the distance between the point

(x , y) and the origin.

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2 is the distance between z1

and z2.
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Example

|z1−z2| =
√

(x1 − x2)2 + (y1 − y2)2 =
√

(1− 3)2 + (4− 1)2 =
√

13
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Representing Circle in the Complex Plane

The points lying on the circle with center z0 and radius R satisfy
the equation |z − z0| = R.
Note that

|(x+iy)−(x0+iy0)| = |(x−x0)+i(y−y0)| =
√

(x − x0)2 + (y − y0)2 = R

Example

The points z satisfying equation |z − 1 + 3i | = 2 represents the
circle whose center is z0 = (1,−3) and whose radius R = 2. The
equation may be written as |z − (1− 3i)| = 2.

|(x + iy)−(1−3i)| = |x−1+ i(y +3)| =
√

(x − 1)2 + (y + 3)2 = 2
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Complex Conjugate

The complex conjugate of z = x + iy is the complex number
x − iy and is denoted by z̄ ; that is

z̄ = x − iy
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Useful Identities

z = z , z1 + z2 = z1 + z2 , z1z2 = z1 z2

z1

z2
=

(
z1

z2

)
, zz = |z |2

|z1z2| = |z1||z2| ,
∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

, Re z =
z + z

2

Im z =
z − z

2i
, Re z ≤ |z |
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Triangle Inequality

|z1 + z2| ≤ |z1|+ |z2| (3)

Proof

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + (z1z2 + z2z1) + z2z2

But z1z2 + z2z1 = z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1z2| =
2|z1||z2| = 2|z1||z2|

and so |z1 + z2|2 ≤ |z1|2 + 2|z1||z2|+ |z2|2

or |z1 + z2|2 ≤ (|z1|+ |z2|)2

Since moduli are nonnegative the inequality (3) follows.
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Generalization of the triangle inequality

|z1 + z2 + . . .+ zn| ≤ |z1|+ |z2|+ . . .+ |zn|
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Exercises

1. Show that (2 + i)2 = 3− 4i
2. Show that |(2z + 5)(

√
2− i)| =

√
3 |2z + 5|
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Polar Form

Let z = x + iy be a complex number. Its polar representation is:

z = r (cos θ + i sin θ),

where r is the modulus of z and θ is the argument of z . Modulus
is not allowed to be negative. The argument is always in radians!!!
We have

r =
√

x2 + y 2 ≥ 0

and θ is any angle such that

cos θ =
x√

x2 + y 2
=

x

r
& sin θ =

y√
x2 + y 2

=
y

r
(4)

The argument of z is not defined when z = 0; equivalently, when
r = 0.
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Figure: Polar form illustrations

r =
√

42 + 32 =
√

25 = 5
cos θ = 4

5 and sin θ = 3
5 ; → θ = 0.643 radians.

∴ r = 5 and arg z = {0.643 + 2kπ : k = 0,±1, . . .}
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Figure: Polar form illustrations

Notice that arg function generates radians, within the current
framework; you cannot say arg z = 36.86 degrees!!!
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Figure: Polar form illustrations

Re z = r cos θ , Im z = r sin θ , (4)

If θ satisfies (4) then so do θ + 2kπ (k = 0,∓1,∓2, . . .).
∴ (4) does not determine a unique value of argument z .

Note that r =
√

x2 + y 2 = |z | =
√

zz
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Arg z: Principal value of the argument

If θ is restricted to the interval −π < θ ≤ π, then there is a unique
value of θ that satisfies (4).
Called the principal value of the argument and denoted by Arg z.

If z = x + iy , then

−π < Arg z ≤ π , cos(Arg z) =
x

|z |
, sin(Arg z) =

y

|z |
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The set of all values of the argument will be denoted by

arg z = {θ + 2kπ : k = 0,∓1,∓2, . . .}

where θ is any angle that satisfies (4). In particular we have

arg z = {Arg z + 2kπ : k = 0,∓1,∓2, . . .}

Unlike Arg z , which is single valued, arg z is multivalued or set
valued.
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Example

Find the modulus, argument, principal value of the argument, and
polar form of the given number.
a) z1 = 5 b) z2 = −3i c) z3 =

√
3 + i
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Continued from the previous page

a) r = |z1| = 5 , an argument of z1 is 0. Thus

arg z1 = {2kπ : k = 0,∓1,∓2, . . .}

Since 0 is in interval (−π , π] , Arg z1 = 0. The polar
representation is

5 = 5(cos 0 + i sin 0)
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Continued from the previous page

b)
r = |z2| = | − 3i | = 3 ,

arg z2 = {3π

2
+ 2kπ : k = 0,∓1,∓2, . . .}

Arg z2 = −π
2 ; it is the element of arg z2 that lies in (−π , π].

−3i = 3

(
cos

3π

2
+ i sin

3π

2

)
= 3

(
cos

(
−π
2

)
+ i sin

(
−π
2

))
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Continued from the previous page

c)
r = |z3| = |

√
3 + i | =

√
3 + 1 = 2

cos θ =
x

r
=

√
3

2
and sin θ =

y

r
=

1

2
→ θ =

π

6

arg z3 = {π
6

+ 2kπ : k = 0,∓1,∓2, . . .}
√

3 + i = 2
(

cos
π

6
+ i sin

π

6

)
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Arithmetic in Polar Form

Let

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2)

z1z2 = r1(cos θ1 + i sin θ1) r2(cos θ2 + i sin θ2)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

Thus:

arg (z1z2) = θ1+θ2 = arg z1+arg z2 = {θ1+θ2+2kπ : k = 0,∓1,∓2, . . .}

|z1z2| = |z1||z2|
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When we multiply two complex numbers in polar form, we multiply
their moduli and add their arguments.

Inverse of z = r(cos θ + i sin θ) is

z−1 =
1

r
(cos(−θ) + i sin(−θ)) =

1

r
(cos θ − i sin θ)

Because it satisfies zz−1 = 1.

When z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2):

z1

z2
=

r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)]
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Example

Let z1 = 3
(

cos
π

4
+ i sin

π

4

)
and z2 = 2

(
cos

5π

6
+ i sin

5π

6

)

z1z2 = 2 · 3
[

cos

(
π

4
+

5π

6

)
+ i sin

(
π

4
+

5π

6

)]
= 6

[
cos

13π

12
+ i sin

13π

12

]
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Example

z1 = 5

[
cos

(
3π

4

)
+ i sin

(
3π

4

)]
, z2 = 2

[
cos
(π

2

)
+ i sin

(π
2

)]
z1

z2
=

5

2

[
cos

(
3π

4
− π

2

)
+ i sin

(
3π

4
− π

2

)]

=
5

2

(
cos

π

4
+ i sin

π

4

)
=

5

2

(√
2

2
+ i

√
2

2

)
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Exponential Form

e iθ = cos θ + i sin θ︸ ︷︷ ︸
Euler ′s formula

→ z = re iθ

Some identities:
z1z2 = r1r2 e i(θ1+θ2)

z−1 =
1

r
e i(−θ)

z1

z2
=

r1

r2
e i(θ1−θ2) , z2 6= 0

The circle |z − z0| = R, whose center is z0 and whose radius is R
has the parametric representation

z = z0 + R e iθ 0 ≤ θ ≤ 2π
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Example {
z = 3 + 2i + 2e iθ : 0 ≤ θ ≤ π

}
θ z
0 5.0000 + 2.0000i

0.1 4.9900 + 2.1997i
0.2 4.9601 + 2.3973i
0.3 4.9107 + 2.5910i
0.4 4.8421 + 2.7788i
0.5 4.7552 + 2.9589i
0.6 4.6507 + 3.1293i
0.7 4.5297 + 3.2884i
0.8 4.3934 + 3.4347i
0.9 4.2432 + 3.5667i
1.0 4.0806 + 3.6829i
1.1 3.9072 + 3.7824i
1.2 3.7247 + 3.8641i
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Continued from the previous page

θ z
0 5.0000 + 2.0000i

1.3 3.5350 + 3.9271i
1.4 3.3399 + 3.9709i

...
...

3.1 1.0017 + 2.0832i
3.2 1.0034 + 1.8833i
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Continued from the previous page

A. Karamancıoğlu Advanced Calculus



Powers and Roots

Integral powers of a nonzero complex number z = re iθ are given by

zn = rne inθ , n = 2, 3, . . .

De Moivre’s Formula

(e iθ)n = e inθ → (cos θ+i sin θ)n = cos(nθ)+isin(nθ) n = 2, 3, . . .
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Example

Let us solve the equation
z6 = 1

Write z = re iθ and look for values of r and θ such that

(re iθ)6 = 1

or
r 6e i6θ = 1e i(0+2kπ)

r 6 = 1 and 6θ = 0 + 2kπ , k = 0,±1, . . .

Consequently r = 1 and θ = 2kπ/6 and it follows that the complex
numbers

z = e i
2kπ

6 , k = 0,±1, . . .

are 6-th roots of unity.
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Continued from the previous page

Figure: Roots of z6 = 1

zn = 1 has n distinct roots.
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Example

Find all values of (−8i)
1
3 . Let z = (−8i)

1
3 It is equivalent to solving

z3 = −8i . Or (re iθ)3 = 8e i(
−π

2
+2kπ) , k = 0,±1, . . .. That is,

r 3e i3θ = 8e i(
−π

2
+2kπ), k = 0,±1, . . .

r 3 = 8 and 3θ =
−π
2

+ 2kπ, k = 0,±1, . . .

The roots are zk = 2e i(
−π

6
+ 2kπ

3
) , k = 0,±1, . . .
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Exercises

1) Find one value of arg z when

a) z =
−2

1 +
√

3i
b)

i

−2− 2i
c) (
√

3− i)6

2) By writing the individual factors on the left in exponential form,
performing the needed operations, and finally changing back to
cartesian coordinates, show that
a) i(1−

√
3i)(
√

3 + i) = 2(1 +
√

3i)
b) 5i/(2 + i) = 1 + 2i
c) (−1 + i)7 = −8(1 + i)
d) (1 +

√
3i)−10 = 2−11(−1 +

√
3i)
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3) In each case find all the roots in cartesian form, exhibit them
geometrically

a) (2i)1/2 b) (−1−
√

3i)1/2 c) (−16)1/4

4) Find the four roots of the equation z4 + 4 = 0 and use them to
factor z4 + 4 into quadratic factors with real coefficients.
Ans. (z2 + 2z + 2)(z2 − 2z + 2)
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Regions in the Complex Plane

ε neighborhood of a given point z0 is defined as the set of points
satisfying |z − z0| < ε. It consists of all points z lying inside but
not on a circle centered at z0 and with a specified radius ε.

A. Karamancıoğlu Advanced Calculus



A point z0 is said to be an interior point of a set S whenever
there is some neighborhood of z0 that contains only points of S ; it
is called an exterior point of S when there exists a neighborhood
of it containing no points of S . If z0 is neither of these, it is a
boundary point of S . A boundary point is therefore a point all of
whose neighborhoods contain points in S and points not in S . The
totality of all boundary points is called the boundary of S .
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A set is open if it contains none of its boundary points.
Consequently a set is open iff each of its points is an interior point.
A set is closed if it contains all its boundary points; and the
closure S of S is the closed set consisting of all points in S
together with the boundary of S .
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Example

|z | < 1 open set

|z | ≤ 1 closed set

0 < |z | ≤ 1 neither open nor closed set
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Connected set

An open set S is connected if each pair of points z1 and z2 in it
can be joined by a polygonal path, consisting of a finite number of
line segments joined end to end, that lies entirely in S .
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Example

The annulus 1 < |z | < 2 is open and connected.
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An open set that is connected is called a domain. A domain
together with some, none, or all of its boundary points is referred
to as a region.
A set S is bounded if every point of S lies inside some circle
|z | = R,
otherwise it is unbounded.

Example

{x + iy : 1 ≤ x ≤ 2, 0 ≤ y ≤ 3} is bounded
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Example

{1 + i , 2 + 2i , 3 + 3i , . . .} is unbounded

Unbounded; because no circle can contain the set above.
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A point z0 is said to be an accumulation point of a set S if each
neighborhood of z0 contains at least one point of S distinct from
z0. It follows that if a set S is closed, then it contains each of its
accumulation points. Converse is also true.
Informally, accumulation points of a set (or sequence) are points
where there are infinitely many other points of the set (or
sequence) ”nearby.”
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Example

If you take any interval (a,b) of real (or rational) numbers, EVERY
point in [a,b] is an accumulation point. If you take the integers as
a subset of the real (or rational) numbers, NO point is an
accumulation point.

If you take the set S = {J − 1
n : J ∈ Z , n ∈ N}, then the

accumulation points are exactly the integers.

The sequence { 1
n : n ∈ N} has one accumulation point, namely 0.
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Exercises

1) Sketch the following sets and determine which are both open
and connected (and therefore domains):

a) |z − 2 + i | ≤ 1 b) |2z + 3| > 4 c) Im z > 1

d) Im z = 1 e) 0 ≤ arg z ≤ π/4 (z 6= 0) f) |z−4| ≥ |z |

g) 0 < |z−z0| < δ where z0 is a fixed point and δ is a positive number.

Ans. b) c) & g) are domains.
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2) Which set in Exercise 1 is neither open nor closed?
Ans. e)
3) Which sets in Exercise 1 are bounded? Ans. a) and g)
4) Determine the accumulation points of each of the following sets.
a) zn = in , n = 1, 2, . . .
b) zn = in/n , n = 1, 2, . . .
c)0 ≤ arg z ≤ π/2 , z 6= 0
d) zn = (−1)n(1 + i)(n − 1)/n , n = 1, 2, . . .
Ans. a) none b) 0 d)±(1 + i)
5) Sketch a) |z | > 0, b) |z | <∞, c) 0 < |z | <∞ d)1 < |z | < 2

A. Karamancıoğlu Advanced Calculus



Plotting Complex Functions

Lets plot the function y = x2.
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We never do this way because in the past, Descartes thought about
placing the y axis vertically, and plotting as we already know:

A. Karamancıoğlu Advanced Calculus



There is no method comparable to Descartes’s procedure for
plotting complex functions. Instead, plotting in this case is done
analogously to the way we plotted y = x2 using two horizontal
axes and pieces of string to show the correspondence.
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Let w = z2, where z = x + iy and w = u + iv .

→ u + iv = (x + iy)2 = x2 − y 2 + i2xy

The component functions are: u = x2 − y 2, v = 2xy .
Example: z = 2− i → w = 3− 4i
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Image of (2,−1) under the mapping/transformation/function
w = z2 is (3,−4).
w = z2 transforms/maps (2,−1) to (3,−4).
For the input (2,−1) the function w = z2 outputs (3,−4).
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Terminology

Function, mapping, transformation, image, input, output
f (x) = x2: real-valued function of a real variable
f (x) = x + i6x : complex-valued function of a real variable
f (z) = x + ix : complex-valued function of a complex variable
f (z) = x2 + y 2: real-valued function of a complex variable
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Example
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Example

Let us show that, under the transformation

w = z +
1

z
(5)

the image of the shaded region on the left is the shaded upper half
plane shown on the right.

A. Karamancıoğlu Advanced Calculus



Boundary in the z plane maps to boundary in the w plane
Image of x + i0 when x > 1: w = x + 1

x , it is positive and
increasing, starts from 2 and goes to ∞.
when x < −1: w = x + 1

x , negative and decreases as x decreases,
starts from −2 and goes to −∞.
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Image of the upper half of the circle |z | = 1 (or
z = e iθ , 0 ≤ θ < π)

w = e iθ +
1

e iθ
= e iθ + e−iθ = 2 cos θ , it is real

Recall that
e iθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ → e iθ + e−iθ = 2 cos θ
As θ varies from 0 to π, the image varies from 2 to −2.
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Let’s check images of larger semicircles (i.e. , z = re iθ with r > 1
and 0 ≤ θ ≤ π)

w = re iθ +
1

re iθ
= re iθ +

1

r
e−iθ

= r(cos θ + i sin θ) +
1

r
(cos θ − i sin θ) = a cos θ + ib sin θ

where a = r +
1

r
; b = r − 1

r
Real and imaginary components of w are
u = a cos θ ; v = b sin θ.(u

a

)2
+
(v

b

)2
= 1

This represents an ellipse with foci at the points

±
√

a2 − b2 = ±
√

(r +
1

r
)2 − (r − 1

r
)2 = ±2.

Definition: Ellipse is the set of all points for which the sum of the
distance to two fixed points (called foci) is constant.
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We can repeat this for all possible upper semicircles with radius
> 1. Their images will cover the upper w-plane.
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Limits of Complex Valued Functions

Preliminaries (Two variable real valued function’s limit) Let f be
defined on the interior of a circle centered at the point (a, b)
except possibly at (a, b) itself.

Function f is defined in the shaded region (neighborhood of
(a, b)); its values are real.
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If (x , y) gets closer to (a, b), what happens to the values of
f (x , y)?

Does it approach some fixed L value.

If the answer is yes then we say that ”limit of f as (x , y)
approaches (a, b) is L.

Formal definition is as follows:
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We say that
lim

(x ,y)→(a,b)
f (x , y) = L

if for every ε > 0 there exists δ > 0 such that |f (x , y)− L| < ε
whenever 0 <

√
(x − a)2 + (y − b)2 < δ
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An Interpretation

Recall the right limit and left limit of the real calculus.

If approaching t0 from right and left gives the same limit value,
then we say that the real function has a limit at t0.

In two variable functions we have more than two directions to
approach. Approaching from all possible directions must give the
same limit value.

Particularly, approaching from two specific directions, from the
right and from the top, must give the same limit value.

This can be implemented by first setting y = b and taking the
limit wrt x , then setting x = a and taking the limit wrt y .
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Example

lim
(x ,y)→(1,0)

y

x + y − 1

First consider the vertical line path along the line x = 1 we have

lim
(1,y)→(1,0)

y

1 + y − 1
= lim

y→0
1 = 1

Consider the horizontal line y = 0 and compute the limit as x
approaches 1.

lim
(x ,0)→(1,0)

0

x + 0− 1
= lim

x→1
0 = 0

Since approaching from two different directions results in two
different values; there is no limit.

End of the Preliminaries
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Complex functions’ limit

lim
z→z0

f (z) = L or f (z)→ L as z → z0

if given any ε > 0, there exists a δ > 0 such that

|f (z)− L| < ε whenever 0 < |z − z0| < δ (6)

If the limit of a function exists at a point, then it is unique.
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Note that, |f (z)− L| is the distance between f (z) and L.

If the distance between f (z) and L tends to zero as z tends to z0,
then we say the function f has limit L as z → z0.

Thus

lim
z→z0

f (z) = L if and only if lim
z→z0

|f (z)− L| = 0

Note that the value of f at z0 is immaterial, and need not even be
defined at z0.

Recall the deleted neighborhood concept in the real calculus. We
check the right limit and the left limit, but we don’t check
functions value at t0.
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Numerical verification of a limit value

If all the f (z) values in a sufficiently small deleted neighborhood
are not close to each other, then the function does not have limit
at z0.

If the limit exists at z0 and if we take two points very close to z0

then at these points the function’s values must be very close to
each other.
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Example

lim
z→1

iz

2
=

i

2

|f (z)− L| =

∣∣∣∣ iz2 − i

2

∣∣∣∣ =

∣∣∣∣ i(z − 1)

2

∣∣∣∣ = |i | |z − 1|
2

=
|z − 1|

2

Hence

∣∣∣∣f (z)− i

2

∣∣∣∣ < ε whenever 0 < |z − 1| < 2ε
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Theorem

Given a complex-valued function f (z) = u(x , y) + i v(x , y) and
complex numbers L = a + ib , z0 = x0 + iy0, then

lim
z→z0

f (z) = L ⇐⇒

lim
(x ,y)→(x0,y0)

u(x , y) = a and lim
(x ,y)→(x0,y0)

v(x , y) = b
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Theorem

Suppose limz→z0 f (z) and limz→z0 g(z) both exist and c1, c2 are
complex constants. Then:

lim
z→z0

[c1 f (z) + c2 g(z)] = c1 lim
z→z0

f (z) + c2 lim
z→z0

g(z)

lim
z→z0

[f (z)g(z)] = lim
z→z0

f (z) · lim
z→z0

g(z)

lim
z→z0

f (z)

g(z)
=

limz→z0 f (z)

limz→z0 g(z)
, provided lim

z→z0

g(z) 6= 0
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Theorem

(i) Suppose that f (z)→ 0 as z → z0 and |g(z)| ≤ |f (z)| in a
deleted neighborhood of z0. Then g(z)→ 0 as z → z0.
(ii) Suppose that f (z)→ 0 as z → z0 and g(z) is bounded in a
deleted neighborhood of z0. Then f (z)g(z)→ 0 as z → z0.
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Example

Evaluate limz→0 ye
i
|z| . Let f (z) = y and g(z) = e

i
|z| . As

z → 0, f (z)→ 0. Also, for z 6= 0, since 1
|z| is a purely real number,

|e
i
|z| | = 1. Thus we can apply Theorem 3-ii and conclude that

lim
z→0

ye
i
|z| = 0

Recall that for a real x :

|e ix | = | cos x + i sin x | =
√

cos2 x + sin2 x = 1
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Example

limz→0z = 0; limz→0z = 0; limz→0x = 0; limz→0y = 0

Example

Suppose that limz→i f (z) = 2 + i and limz→i g(z) = 3− i . Find

L = lim
z→i

[
(f (z))2 +

(3 + i) g(z)

z

]
Solution:

L = lim
z→i

(f (z))2 + lim
z→i

(3 + i)
g(z)

z

=

(
lim
z→i

f (z)

)2

+ (3 + i)
limz→i g(z)

limz→i z

= (2 + i)2 + (3 + i)
3− i

i

= 3− 6i
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Continuous Functions

Suppose f is defined in a neighborhood of z0. We say that f is
continuous at the point z0 if limz→z0 f (z) exists and equals f (z0).
We say f is continuous on a set S if it is continuous at every point
in S
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Properties of Continuous Functions

If f and g are continuous at z0, and c1, c2 are complex constants,
then the following functions are continuous at z0.

c1f + c2g , f · g ,
f

g
provided g(z0) 6= 0

If g is continuous at z0 and f is continuous at g(z0), then the
composition h = f (g) is continuous at z0.
The function f = u + iv is continuous at z0 = x0 + iy0 if and only
if u and v are continuous at (x0, y0).
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Removable discontinuities

Example

lim
z→i

z − i

z2 + 1
= lim

z→i

z − i

(z − i)(z + i)
= lim

z→i

1

z + i
=

1

2i
= −1

2
i

We can make the function continuous by redefining the function
f (z) = z−i

z2+1
at i . f (i) = −i/2 makes the function continuous at i .

Originally the function f was discontinuous at i , however we made
it continuous by redefining the function at this point. The newly
defined function is:

f (z) =

{ z−i
z2+1

for z 6= i

−i/2 for z = i

The function above is continuous. In the formation of this, we
removed the discontinuity at z = i . This discontinuity is called a
removable discontinuity.
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The Nonremovable Discontinuities of Arg z

Example

The principal branch of the argu-
ment Arg z takes the value of the
argument z that is in the interval
−π < Arg z ≤ π. It is not defined
at z = 0 and hence Arg z is not con-
tinuous at z = 0. We will show that
z = 0 is not a removable disconti-
nuity by showing that limz→0 Arg z
does not exist. Indeed if z = x > 0
then Arg z = 0 so limz=x↓0 Arg z =
0, where the down-arrow denotes
the limit from the right. However, if
z = x < 0, then Arg z = π and so
limz=x↑0 Arg z = π. By the unique-
ness of the limit, we conclude that
limz→0 Arg z does not exist.

A. Karamancıoğlu Advanced Calculus



Derivatives of Complex Functions-Definition

Let f be defined on a neighborhood of z0. If

lim
z→z0

f (z)− f (z0)

z − z0

exists, then f is said to be differentiable at the point z0, and the
number

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

is called derivative of f at z0.
We can also define the derivative as

f ′(z0) = lim
∆z→0

f (z0 + ∆z)− f (z0)

∆z
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Example

Suppose that f (z) = z2. At any point z0

f ′(z0) = lim
∆z→0

(z0 + ∆z)2 − z0
2

∆z
= lim

∆z→0
(2z0 + ∆z) = 2z0

A numerical verification
Notice that when z0 = 2 + i we have:
(z0+∆z)2−z0

2

∆z

∣∣∣
∆z=0.0001

= 4.0001 + 2.0000i

(z0+∆z)2−z0
2

∆z

∣∣∣
∆z=0.0001i

= 4.0000 + 2.0001i

These results are very close to 2z0 = 2(2 + i) = 4 + 2i .

A. Karamancıoğlu Advanced Calculus



Example

f (z) = |z |2 → f ′(z0) = lim
∆z→0

|z0 + ∆z |2 − |z0|2

∆z

= lim
∆z→0

(z0 + ∆z)(z0 + ∆z)− z0z0

∆z

= lim
∆z→0

z0 + ∆z + z0
∆z

∆z
(7)
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Continued from the previous page

At z0 = 2 + i we have

z0 + ∆z + z0
∆z

∆z

∣∣∣∣
0.0001

= 4.0001

z0 + ∆z + z0
∆z

∆z

∣∣∣∣
0.0001i

= −2.0001i

In the neighborhood of z0 = 2 + i we obtained two nonmatching
results. This shows that there is no derivative at z0 = 2 + i . Below,
we will show analytically that there is no derivative when z0 6= 0.
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Continued from the previous page

f ′(z0) = lim
∆z→0

z0 + ∆z + z0
∆z

∆z

At z0 = 0, (7) reduces to f ′(0) = lim∆z→0 ∆z = 0. So, the
derivative exists at z0 = 0, and it is equal to 0.
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Continued from the previous page

f ′(z0) = lim
∆z→0

z0 + ∆z + z0
∆z

∆z

If the limit exists when z0 6= 0 that limit may be found by letting
the variable ∆z = ∆x + i∆y approach 0 in any manner. In
particular, when ∆z approaches 0 through real values
∆z = ∆x + i0 we may write ∆z = ∆z . Hence if the limit exists
its value must be z0 + z0. However when ∆z approaches 0 through
the pure imaginary values ∆z = 0 + i∆y so that ∆z = −∆z , the
limit is found to be z0 − z0. Since a limit is unique, it follows that
z0 + z0 = z0 − z0 or z0 = 0. So the derivative exists only at z0 = 0.
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This example shows that a function can be differentiable at a
certain point but nowhere else.

Note that f (z) = |z |2 = x2+y 2 → u(x , y) = x2+y 2 ; v(x , y) = 0

The function f (z) = |z |2 is continuous at each point in the plane
since its components are continuous at each point. So the
continuity of a function at a point does not imply the existence of
a derivative there. It is however true that the existence of the
derivative of a function at a point implies the continuity of the
function at that point.
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Let c be a complex constant, and let f be a function whose
derivative exists at a point z .

d

dz
c = 0 ,

d

dz
z = 1 ,

d

dz
[cf ] = cf ′

If the derivatives of two functions f and F exist at a point z0, then

d

dz
(f + F ) = f ′ + F ′

d

dz
(f · F ) = f ′ · F + F ′ · f

and when F (z0) 6= 0

d

dz

(
f

F

)
=

F · f ′ − f · F ′

F 2
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If n is a positive integer d
dz zn = n zn−1

This formula remains valid when n is a negative integer, provided
z 6= 0.
There is also a chain rule for differentiating composite functions.
Suppose that f has a derivative at z0 and g has a derivative at
point f (z0). Then the function F = g(f ) has a derivative at z0,
and

F ′(z0) = g ′[f (z0)]f ′(z0)
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Exercises

Use the results of the section above to find f ′(z) when
a) f (z) = 3z2 − 2z + 4
b) f (z) = (1− 4z2)3

c) f (z) = z−1
2z+1 , z 6= −1

2

d) f (z) = (1+z2)4

z2 , z 6= 0
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Cauchy-Riemann Equations

Suppose that the derivative

f ′(z0) = lim
∆z→0

f (z0 + ∆z)− f (z0)

∆z

exists.
Writing z0 = x0 + iy0 and ∆z = ∆x + i∆y , by the first theorem on
limits we have

Re[f ′(z0)] = lim
(∆x ,∆y)→(0,0)

Re

[
f (z0 + ∆z)− f (z0)

∆z

]
(8)

Im[f ′(z0)] = lim
(∆x ,∆y)→(0,0)

Im

[
f (z0 + ∆z)− f (z0)

∆z

]
(9)

where
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f (z0 + ∆z)− f (z0)

∆z

=
u(x0 + ∆x , y0 + ∆y)− u(x0, y0) + i [v(x0 + ∆x , y0 + ∆y)− v(x0, y0)]

∆x + i∆y
(10)

It is important to keep in mind that expressions (8) and (9) are
valid as (∆x ,∆y) tends to (0, 0) in any manner that we may
choose. In particular, let (∆x ,∆y) tend to (0, 0) horizontally
through the points (∆x , 0) as indicated in the figure below.

Re[f ′(z0)] = lim
∆x→0

u(x0 + ∆x , y0)− u(x0, y0)

∆x
=: ux(x0, y0)

Im[f ′(z0)] = lim
∆x→0

v(x0 + ∆x , y0)− v(x0, y0)

∆x
=: vx(x0, y0)
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That is,
f ′(z0) = ux(x0, y0) + ivx(x0, y0) (11)

where ux(x0, y0) and vx(x0, y0) denote the 1st order partial
derivatives with respect to x of the functions u and v at (x0, y0).
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We might have let (∆x ,∆y) tend to zero vertically through the
points (0,∆y). In that case ∆x = 0 in equation (10); and we
obtain the expression

f ′(z0) = vy (x0, y0)− iuy (x0, y0) (12)

which can also be written

f ′(z0) = −i(uy (x0, y0) + ivy (x0, y0))

Recall
f ′(z0) = ux(x0, y0) + ivx(x0, y0) (11)

Equate (11) and (12) to obtain

ux(x0, y0) = vy (x0, y0) and uy (x0, y0) = −vx(x0, y0) (13)
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Theorem

Suppose that
f (z) = u(x , y) + iv(x , y)

and f ′ exist at a point z0 = x0 + iy0. Then the 1st order partial
derivatives of u and v with respect to x and y must exist at
(x0, y0) and they must satisfy the Cauchy-Riemann equations (13)
at that point. Also f ′(z0) is given in terms of these partial
derivatives by either equation (11) or (12).

Recall the Caucy-Riemann Equations:

ux(x0, y0) = vy (x0, y0) and uy (x0, y0) = −vx(x0, y0) (13)

Also recall:
f ′(z0) = ux(x0, y0) + ivx(x0, y0) (11)

f ′(z0) = vy (x0, y0)− iuy (x0, y0) (12)
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Example

Consider the function

f (z) = z2 = x2 − y 2 + i2xy

Note here that u(x , y) = x2 − y 2 and v(x , y) = 2xy . Thus

ux(x , y) = 2x = vy (x , y) ; uy (x , y) = −2y = −vx(x , y)

→ f ′(z) = 2x + i2y = 2(x + iy) = 2z

The same result as before.
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Example

Let f (z) = |z |2

→ u(x , y) = x2 + y 2 and v(x , y) = 0

→ ux(x , y) = 2x and vy (x , y) = 0

vx(x , y) = 0 and uy (x , y) = 2y

Cauchy-Riemann equations are satisfied only at (x , y) = (0, 0)

Caucy-Riemann Equations:

ux(x0, y0) = vy (x0, y0) and uy (x0, y0) = −vx(x0, y0) (13)
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Derivative of f at z0 exists −→ Cauchy-Riemann equations hold at
z0. The converse does not necessarily hold.

LOGIC’s RULE: A→ B and B ′ → A′ are the same.

DEFINE: A:Derivative of f at z0 exists.
B:Cauchy-Riemann equations hold at z0.

A CONSEQUENCE: B ′ → A′ means ”If Cauchy-Riemann
equations do not hold at z0 then derivative of f at z0 does not
exist.

A. Karamancıoğlu Advanced Calculus



Theorem

Let the function
f (z) = u(x , y) + iv(x , y)

be defined throughout some ε neighborhood of a point
z0 = x0 + iy0. Suppose that the 1st order partial derivatives of the
functions u and v with respect to x and y exist everywhere in that
neighborhood and that they are continuous at (x0, y0). Then if
those partial derivatives satisfy the Cauchy-Riemann equations

ux = vy ; uy = −vx

at (x0, y0), then the derivative f ′(z0) exists. �

This is called a sufficiency theorem for existence of the derivative.
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Cauchy-Riemann equations hold at z0, and ux , uy , vx , and vy are
continuous at z0 −→ Derivative of f at z0 exists.
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Example

Suppose that f (z) = ex(cos y + i sin y) where y is to be taken in
radians when cos y and sin y are evaluated. Then

u(x , y) = ex cos y and v(x , y) = ex sin y

Since ux = vy and uy = −vx everywhere and since those
derivatives are everywhere continuous, the conditions in the
theorem are satisfied at all points in the complex plane.

→ f ′(z) = ux(x , y) + ivx(x , y) = ex(cos y + i sin y)
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Theorem

Let the function
f (z) = u(r , θ) + iv(r , θ)

be defined throughout some ε neighborhood of a nonzero point

z0 = r0(cos θ0 + i sin θ0)

Suppose that the 1st order partial derivatives of the functions u
and v with respect to r and θ exist everywhere in that
neighborhood and that they are continuous at z0. Then if those
partial derivatives satisfy the polar form

ur =
1

r
vθ ,

1

r
uθ = −vr (14)

of the Cauchy-Riemann equations at (r0, θ0), then the derivative
f ′(z0) exists and equals e−iθ[ur + ivr ] �

This is called a sufficiency theorem for existence of the derivative
in polar coordinates.
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An Illustration of the Proof

The relationship between polar and cartesian coordinates:

(x , y)↔ (r cos θ, r sin θ)

u(x , y)↔ u(r cos θ, r sin θ) , v(x , y)↔ v(r cos θ, r sin θ)

The following partial derivatives will be useful later on:

ur = ∂u
∂r = ∂u

∂x
∂x
∂r + ∂u

∂y
∂y
∂r = cos θ ∂u∂x + sin θ ∂u∂y

uθ = ∂u
∂θ = ∂u

∂x
∂x
∂θ + ∂u

∂y
∂y
∂θ = −r sin θ ∂u∂x + r cos θ ∂u∂y

}
(i)

vr = ∂v
∂r = ∂v

∂x
∂x
∂r + ∂v

∂y
∂y
∂r = cos θ ∂v∂x + sin θ ∂v∂y

vθ = ∂v
∂θ = ∂v

∂x
∂x
∂θ + ∂v

∂y
∂y
∂θ = −r sin θ ∂v∂x + r cos θ ∂v∂y

}
(ii)
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(i)→
[

cos θ sin θ
−r sin θ r cos θ

] [
ux

uy

]
=

[
ur

uθ

]
→

ux = cos θur − 1
r sin θuθ

uy = sin θur + 1
r cos θuθ

}
(iii)

(ii)→
[

cos θ sin θ
−r sin θ r cos θ

] [
vx
vy

]
=

[
vr
vθ

]
→

vx = cos θvr − 1
r sin θvθ

vy = sin θvr + 1
r cos θvθ

}
(iv)
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C-R in cartesian coordinates
ux = vy

uy = −vx

(iii)&(iv)→
cos θur − 1

r sin θuθ = sin θvr + 1
r cos θvθ

sin θur + 1
r cos θuθ = − cos θvr + 1

r sin θvθ

}

→ −1
r uθ = vr ; ur = 1

r vθ C-R in polar coordinates.
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f ′(z) = ux + ivx = cos θur −
1

r
sin θuθ + i cos θvr − i

1

r
sin θvθ

= cos θur + sin θvr + i cos θvr − i sin θur

= (cos θ − i sin θ)ur + (i cos θ + sin θ)vr

= e−iθ[ur + ivr ]
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Exercises

1) Use Theorem 4 on C-R to show that f ′ does not exist at any
point if f is
a) z b) z − z c) 2x + ixy 2

2) Use the sufficiency theorem to show that f ′ and its derivative
f ′′ exist everywhere and find f ′ and f ′′ when
a f (z) = iz + 2 b f (z) = e−xe−iy c f (z) = z3

d) f (z) = cos x cosh y − i sin x sinh y
Ans. b) f ′(z) = −f (z) , f ′′(z) = f (z) d) f ′′(z) = −f (z)
3) Find f ′ when
a) f (z) = 1/z b) f (z) = x2 + iy 2 c) f (z) = z Im z
Ans. a) f ′(z) = 1/z2 , (z 6= 0) b) f ′(x + ix) = 2x
c) f ′(0) = 0
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Analytic Functions

A function f of the complex variable z is analytic at a point z0 if
its derivative exists at z0 and exists also at each point z in some
neighborhood of z0.
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Example

f (z) = z2 is analytic everywhere. But the function f (z) = |z |2 is
not analytic at any point since its derivative exists only at z = 0
and not throughout any neighborhood.

An entire function is a function that is analytic at each point in
the entire xy plane.

Example

Since the derivative of a polynomial exists everywhere, it follows
that every polynomial is an entire function.
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Definition

If a function f is not analytic at a point z0 and if it is analytic at
some point in every neighborhood of z0, then z0 is called a
singular point of f .
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Example

The function f (z) = 1/z(z 6= 0) whose derivative is
f ′(z) = −1/z2. It is analytic at every point except for z = 0,
where it is not even defined. The point z = 0 is therefore a
singular point.
If two functions are analytic in a domain D, their sum and their
product are both analytic in D. Similarly, their quotient is analytic
in D provided the function in the denominator does not vanish at
any point in D.
Composition of two analytic function is analytic.
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Elementary Functions

The Exponential Function
ez = ex(cos y + i sin y)
Some Properties
d
dz ez = ez

e iθ = cos θ + i sin θ
ez1ez2 = ez1+z2

ez1/ez2 = ez1−z2

(ez)n = enz
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Example

ez = −1 can be written as
exe iy = 1e i(π(2n+1)) , n = 0,±1,±2, . . . → x = ln 1
→ x = 0 ; y = (2n + 1)π → z = i(2n + 1)π , w = ez is a
many to one mapping.
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Trigonometric Functions

From the equations

e ix = cos x + i sin x and e−ix = cos x − i sin x

it follows that

sin x =
e ix − e−ix

2i
and cos x =

e ix + e−ix

2

for every real number x . Sine and cosine functions may be defined
for complex variables:

sin z =
e iz − e−iz

2i
and cos z =

e iz + e−iz

2
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The sine and cosine functions are entire since they are linear
combinations of the entire functions e iz and e−iz . Knowing the
derivatives of those exponential functions, we obtain

d

dz
sin z = cos z ;

d

dz
cos z = − sin z

Note that,

d

dz
sin z =

d

dz

(
e iz − e−iz

2i

)
=

1

2i

(
d

dz
e iz − d

dz
e−iz

)

=
1

2i

(
ie iz − (−ie−iz)

)
=

e iz + e−iz

2
= cos z
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Other Properties

sin(−z) = − sin z ; cos(−z) = cos z
sin2 z + cos2 z = 1
sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

sin 2z = 2 sin z cos z ; cos 2z = cos2 z − sin2 z
sin(z + π/2) = cos z
Note that,

sin(−z) =
e i(−z) − e−i(−z)

2i
=

e−iz − e iz

2i
= −e iz − e−iz

2i
= − sin z
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Trigonometric functions may be expressed in terms of the
components of z . For instance

sin z =
e iz − e−iz

2i
=

e i(x+iy) − e−i(x+iy)

2i

= (cos x + i sin x)
e−y

2i
− (cos x − i sin x)

ey

2i

= sin x

(
ey + e−y

2

)
+ i cos x

(
ey − e−y

2

)
sin z = sin x cosh y + i cos x sinh y (15)
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sin z = sin x cosh y + i cos x sinh y (15)

Likewise
cos z = cos x cosh y − i sin x sinh y (16)

Equations (15) and (16) imply

sin(iy) = i sinh y , cos(iy) = cosh y

Example

sin(3 + 2i) = sin 3 cosh 2︸ ︷︷ ︸
0.1411×3.7622

+i cos 3 sinh 2︸ ︷︷ ︸
−0.9900×3.6269

= 0.5309− 3.5906i

We have evaluated sin and cos in radians!!!
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sin z and cos z are complex conjugates of sin z and cos z .

Example

sin 3 + 2i = sin(3 + 2i)

Note that sin(z + 2π) = sin z sin(z + π) = − sin z
cos(z + 2π) = cos z cos(z + π) = − cos z

One may use (15) and (16) to show that

| sin z |2 = sin2 x + sinh2 y

| cos z |2 = cos2 x + sinh2 y

Show that,

| sin z |2 = (sin x cosh y + i cos x sinh y)(sin x cosh y − i cos x sinh y)

= sin2 x + sinh2 y
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Some definitions:

tan z =
sin z

cos z
cot z =

cos z

sin z

sec z =
1

cos z
csc z =

1

sin z

d

dz
tan z = sec2 z

d

dz
cot z = − csc2 z

d

dz
sec z = sec z tan z

d

dz
csc z = − csc z cot z
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Exercises

1) Show that
exp(2± 3πi) = −e2 ; e(2+πi)/4 =

√
e/2 (1 + i)

2) State why 2z2 − 3− zez + e−z is entire.
3) Prove that the function exp(z) is not analytic anywhere.
4) Prove that 1 + tan z = sec z
5) Find all the roots of cos z = 2.
Ans. 2nπ − i cosh−1 2 ; that is 2nπ ± i ln(2 +

√
3) , n ∈ Z

A. Karamancıoğlu Advanced Calculus



Hyperbolic Functions-Definition

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2

→ d

dz
sinh z = cosh z ,

d

dz
cosh z = sinh z
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Some Identities

−i sinh(iz) = sin z , −i sin(iz) = sinh z

cosh(iz) = cos z , cos(iz) = cosh z

sinh(−z) = − sinh z , cosh(−z) = cosh(z)

cosh2 z − sinh2 z = 1

sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2

cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2

sinh z = sinh x cos y + i cosh x sin y

cosh z = cosh x cos y + i sinh x sin y

| sinh z |2 = sinh2 x + sin2 y

| cosh z |2 = sinh2 x + cos2 y
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Logarithmic Functions

For nonzero point z = re iΘ , (−π < Θ ≤ π), the logarithmic
function is defined by

log z = ln r + i(Θ + 2nπ) , n = 0,∓1,∓2, . . .

or
log z = ln |z |+ i arg z
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log z is a multivalued function.
Its principal value Log z is a single valued function and it is defined
as

Log z = ln r + iΘ , r > 0 , −π < Θ ≤ π
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Example

log 1 = log 1e i0 = ln 1 + i(0 + 2nπ) = 2nπi , n = 0,∓1,∓2, . . .

log(−1) = log 1e iπ = ln 1 + i(π + 2nπ) = (2n + 1)πi n = 0,∓1, . . .

log(i) = log 1e i
π
2 = ln 1 + i(π2 + 2nπ) = (2n + 1

2 )πi n = 0,∓1, . . .

log(2 + 3i) = ln
√

13 + i(0.98 + 2nπ) = 1.28 + i(0.98 + 2nπ),
n = 0,∓1,∓2, . . .

Log 1 = 0

Log (−1) = πi

Log(i) = Log1e i
π
2 = ln 1 + i π2 = i 1

2π

Log(2 + 3i) = ln
√

13 + i0.98 = 1.28 + i0.98
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Log z = ln r + iΘ , r > 0 , −π < Θ ≤ π

The single valued function Log z , whose component functions are
u(r ,Θ) = ln r and v(r ,Θ) = Θ, is not continuous, and therefore
not analytic throughout its domain of definition
r > 0 , −π < Θ ≤ π.
Because when z is on the negative real axis, we can find a
neighbouring point z∗, so that the points Log z and Log z∗ are
distant. The following example illustrates this.
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Example
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Example

• Close points must have close images if the function is continuous
there.
Image of z1 under Log(·).

Log(−3) = 1.098612289 + i3.141592654

Image of z2 under Log(·).

Log(−3− 0.001i) = 1.098612344− i3.14125932

These two close points have distant images.
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The function Log z is not continuous at z1. Indeed it is not
continuous on the negative real axis.
However, for the domain of definition r > 0 , −π < Θ < π, the
partial derivatives

ur =
1

r
, uΘ = 0 , vr = 0 , vΘ = 1

are continuous in the domain and satisfy the polar form of the C-R
equations:

ur =
1

r
vΘ ,

1

r
uΘ = −vr

In this domain d
dz Log z = 1

z .
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Example

A branch of a multivalued function f is any single valued function
F , which takes one of the values of f . Branch is required to be
analytic in its domain.

log z , (|z | > 0 ,
π

6
< arg z <

π

6
+ 2π)

is a branch of the log function. Notice that z = 0 and arg z = π
6

line are not included in the branch.

d

dz
log z =

1

z
, (|z | > 0 ,

π

6
< arg z <

π

6
+ 2π)︸ ︷︷ ︸

domain of the branch
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Why?

Why did we define log z by

log z = ln r + i(Θ + 2nπ) , n = 0,∓1,∓2, . . .

Because, this definition of log z solves

e log z = z

We verify this in the next slide.

A. Karamancıoğlu Advanced Calculus



Properties of Logarithms - An identity

e log z = z (17)

Reasoning

e log z = e ln r+i(Θ+2kπ) = e ln re i(Θ+2kπ)

= r(cos(Θ + 2kπ) + i sin(Θ + 2kπ))

= r(cos Θ + i sin Θ) = z
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However
log(ez) 6= z

because:

log(ez) = ln |ez |+ i arg ez = ln |ex+iy |+ i arg ex+iy

= ln |ex ||e iy |+ i(y + 2nπ)

= ln |ex |+i(y+2nπ) = x+i(y+2nπ) = z+i2nπ , n = 0,∓1,∓2, . . .

For the principal value of the logarithm, we have:

Log ez = z
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More Identities

log(z1z2) = log z1 + log z2 (18)

arg(z1z2) = arg z1 + arg z2

log(
z1

z2
) = log z1 − log z2 (19)
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Example

Calculate log − 6i directly and by Identity (18):

log(−2) = log(2e iπ) = ln 2 + i(π + 2nπ), n = 0,∓1,∓2, . . .

log(3i) = log(3e i
π
2 ) = ln 3 + i(

π

2
+ 2mπ), m = 0,∓1,∓2, . . .

Compute log(−6i) :
Direct computation:

log(−6i) = log(6e−i
π
2 ) = ln 6 + i(−π

2
+ 2kπ), k = 0,∓1,∓2, . . .

A. Karamancıoğlu Advanced Calculus



Continued from the previous page

By (18):

log(−6i) = log(−2× 3i) = log(−2) + log(3i)

= ln 2 + ln 3 + i(π + 2nπ) + i(
π

2
+ 2mπ)

= ln(2 · 3) + i(
3π

2
+ 2nπ + 2mπ) = ln(6) + i(−π

2
+ 2kπ)
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Example

Compute log(−3i
2 ) :

Direct computation:

log(−3i

2
) = ln(

3

2
) + i(−π

2
+ 2kπ), k = 0,∓1,∓2, . . .

By (19):

log(−3i

2
) = log(3i)−log(−2) = ln 3+i(

π

2
+2mπ)−ln 2−i(π+2nπ)

= ln(
3

2
) + i(−π

2
+ 2mπ − 2nπ) = ln(

3

2
) + i(−π

2
+ 2kπ)
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Generalization of z = e log z :

zn = e log zn or zn = en log z , n = 0,∓1,∓2, . . .

When z 6= 0 , z1/n = e
1
n

log z , n = ±1,±2, . . .

Exercises
1) Show that when n ∈ Z
log(−1 +

√
3i) = ln 2 + 2(n + 1

3 )πi
2) Find all the roots of the equation log z = i π2 .
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Complex Exponents

When z 6= 0, and the exponent c is any complex number, the
identity z = e log z can be generalized as:

zc = e log zc or zc = ec log z (20)

Example
i−2i = exp(−2i log i) = exp(−2i(2n + 1

2 )πi) = exp((4n + 1)π),
n = 0,∓1,∓2, . . .
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Inverse Functions

Given z , we want to evaluate sin−1 z . Let us denote the result by
w .

sin−1 z = w (21)

→ z = sin w =
e iw − e−iw

2i

→ e iw − e−iw = 2iz

→ (e iw )2 − 2ize iw − 1 = 0

This is a quadratic polynomial in e iw . Its solution is:

e iw = iz ∓
√

1− z2

log(e iw ) = log(iz ∓
√

1− z2)
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i(w + 2nπ) = log(iz ∓
√

1− z2)

w = −i log(iz ∓
√

1− z2)− 2nπ

By (21) w = sin−1 z , hence

sin−1 z = −i log(iz ∓
√

1− z2)− 2nπ

The righthand side term −2nπ does not have contribution to the
overall righthand side, because, the same term is generated by the
preceding term.

sin−1 z = −i log(iz ∓
√

1− z2)

sin−1 z is a multivalued function.
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sin−1 z = −i log(iz ∓
√

1− z2)

Example

sin−1(−i) = −i log(1∓
√

2)

= −i log(1 +
√

2) ∪ −i log(1−
√

2)

−i [ln(1+
√

2)+2nπi ]∪−i [ln(
√

2−1)+(2m+1)πi ], n,m = 0,±1,±2, . . .

Likewise cos−1 z = −i log[z ∓ i
√

1− z2] , tan−1 z = i
2 log i+z

i−z
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Derivatives of sin−1 z & cos−1 z are defined for specific
(appropriate) branches.

d

dz
sin−1 z =

1

(1− z2)1/2
,

d

dz
cos−1 z =

−1

(1− z2)1/2

Inverse hyperbolic functions may be treated likewise

sinh−1 z = log[z + (z2 + 1)1/2]

cosh−1 z = log[z + (z2 − 1)1/2]

tanh−1 z =
1

2
log

1 + z

1− z
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Contours in the Complex Plane

y =
√

1− x2 , −1 ≤ x ≤ 1
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Alternatively, this curve can be expressed as a function of one
parameter:
γ(t) = cos(t) + i sin(t), 0 ≤ t ≤ π
Each value of t determines a point γ(t which traces a curve as t
varies.
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Example

γ(t) = e it = cos t + i sin t , 0 ≤ t ≤ 2π
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Example

γ(t) = z0 + Re it , 0 ≤ t ≤ 2π
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Example

Hypotrochoid
x(t) = a cos t + b cos at

2
y(t) = a sin t − b sin at

2
0 ≤ t ≤ 2π
a = 8 , b = 5 case
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Complex Functions of a Real Variable

Given a complex-valued function of a real variable f = u + iv , we
define the derivative of f in the usual way by

f ′(t) =
d

dt
f (t) = lim

h→0

f (t + h)− f (t)

h

= lim
h→0

u(t + h) + iv(t + h)− (u(t) + iv(t))

h

= lim
h→0

u(t + h)− u(t)

h
+ i lim

h→0

v(t + h)− v(t)

h

→ f ′(t) = u′(t) + iv ′(t)
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Some properties

If f and g are complex-valued differentiable functions, α and β are
complex numbers, then

[αf (t) + βg(t)]′ = αf ′(t) + βg ′(t)

[f (t)g(t)]′ = f ′(t)g(t) + g ′(t)f (t)[
f (t)

g(t)

]′
=

f ′(t)g(t)− g ′(t)f (t)

[g(t)]2
, g(t) 6= 0

[f (g(t))]′ = f ′(g(t)) · g ′(t)
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Example

Given α = a + ib evaluate d
dt eαt .

d

dt
eαt =

d

dt
eate ibt =

d

dt

[
eat(cos bt + i sin bt)

]
=

d

dt
(eat cos bt) + i

d

dt
(eat sin bt)

= (aeat cos bt − beat sin bt) + i(aeat sin bt + beat cos bt)

= (a + ib)(eat cos bt + ieat sin bt)

= αeαt
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Definition

A complex-valued function of a real variable f is said to be
piecewise continuous on [a, b] if the following hold:
(i) f exists and is continuous for all but finitely many points in
(a, b).
(ii) At any point c in (a, b) where f fails to be continuous both
the left limit limt↑c f (t) and the right limit limt↓c f (t) exist and are
finite.
(iii) At the end points, the right limit limt↓a f (t) and the left limit
limt↑b f (t) exist and are finite.
The function f is said to be piecewise smooth on [a, b] if f and
f ′ are both piecewise continuous on [a, b].
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Definition

Consider the set of points z(t) = x(t) + iy(t), a ≤ t ≤ b. If z(t) is
continuous and z ′(t) is piecewise continuous, then we call this set
of points a contour (or a path).
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Example

z(t) =

{
t + it when 0 ≤ t ≤ 1
t + i when 1 ≤ t ≤ 2

is a contour, because (1) its compo-
nent functions are continous so are
t + it and t + i , and their ends have
the same value for t = 1, and (2)its
derivative

z(t) =

{
1 + i1 when 0 ≤ t ≤ 1
1 + i0 when 1 ≤ t ≤ 2

is piecewise continuous
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Definition

If a contour crosses itself at its endpoints, then it is called a
closed contour. If a contour crosses itself only at its endpoints,
then it is called a simple closed contour.
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Parametrization of a straight line

(1− t)z1 + tz2; 0 ≤ t ≤ 1

(1− 5t)z1 + 5tz2; 0 ≤ t ≤ 1

5

(1− (t − 3))z1 + (t − 3)z2; 3 ≤ t ≤ 4
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Example

γ1(t) = (1 + i)t , 0 ≤ t ≤ 1
γ2(t) = (1− t)(1 + i) + t(−1 + i) = (1 + i)− 2t , 0 ≤ t ≤ 1
γ3(t) = (1− t)(−1 + i) , 0 ≤ t ≤ 1
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We can use the expressions above to parametrize γ over different
intervals, say, γ1 over [0, 1/3], γ2 over [1/3, 2/3], γ3 over [2/3, 1].
For γ1 it suffices to change t by 3t:

γ1(t) = 3t(1 + i) , 0 ≤ t ≤ 1/3
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For γ2 over [1/3, 2/3] we first scale it by changing t to 3t:

γ2(t) = (1 + i)− 6t , 0 ≤ t ≤ 1/3

then we shift to the right by 1/3 units:

γ2(t) = (1 + i)− 6(t − 1/3) = 3 + i − 6t , 1/3 ≤ t ≤ 2/3

For γ3 we first scale it by a factor of 1/3:

γ3(t) = (1− 3t)(−1 + i) , 0 ≤ t ≤ 1/3

then we shift to the right by 2/3 units:

γ3(t) = 1− 3(t − 2/3)(−1 + i) = (−1 + i)(3− 3t) , 2/3 ≤ t ≤ 1
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Paste them:

γ(t) =

{ 3t(1 + i) , 0 ≤ t ≤ 1/3
3 + i − 6t , 1/3 ≤ t ≤ 2/3
(−1 + i)(3− 3t) , 2/3 ≤ t ≤ 1
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Real Integration

Suppose f is a real valued continuous function on [a, b]. Let P be
a partition of [a, b] s.t. a = x0 < x1 < . . . < xm = b. Let
∆xk , xk − xk−1. The Riemann sum corresponding to P

m∑
k=1

f (x∗k )(xk − xk−1)

where x∗k is a point in [xk−1, xk ].
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When the largest interval length approaches zero, this sum is called
definite integral of f and denoted by

∫ b
a f (x)dx . If F is any

antiderivative of f , then∫ b

a
f (x)dx = F (b)− F (a)
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Riemann Integral of Complex Functions

Suppose f (x) = u(x) + iv(x) on [a, b].
P , a = x0 < x1 < . . . < xm = b.

m∑
k=1

f (x∗k )(xk−xk−1) =
m∑

k=1

u(x∗k )(xk−xk−1)+i
m∑

k=1

v(x∗k )(xk−xk−1)

→
∫ b

a
f (x)dx =

∫ b

a
(u(x) + iv(x))dx =

∫ b

a
u(x)dx + i

∫ b

a
v(x)dx
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If f is a piecewise continuous complex valued function on [a, b],
then its integral over [a, b] may be written as summation of its
integrals over adjacent closed subintervals
[a0, a1], [a1, a2], . . . , [am−1, am] such that f is continuous on each
subinterval:∫ b

a
f (x)dx =

m∑
j=1

∫ aj

aj−1

u(x)dx + i
m∑
j=1

∫ aj

aj−1

v(x)dx
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Contour Integrals

Suppose γ(t) , a ≤ t ≤ b, is the path. Suppose that f is a
continuous complex valued function on the graph γ. That is

t → f (γ(t))

is continuous function from [a, b] into C. We want to integrate f
over γ.
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Let us form a Riemann-like sum:

m∑
k=1

f (γ(t∗k )) · (γ(tk)− γ(tk−1))

where a = t0 < t1 < . . . < tm = b. Noting that
γ(t) = x(t) + iy(t) this becomes

m∑
k=1

f (γ(t∗k )) · (x(tk)− x(tk−1)) + i
m∑

k=1

f (γ(t∗k )) · (y(tk)− y(tk−1))
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By mean value theorem it becomes

m∑
k=1

f (γ(t∗k )) ·x ′(αk) ·(tk− tk−1)+ i
m∑

k=1

f (γ(t∗k )) ·y ′(βk) ·(tk− tk−1)

where tk−1 < αk , βk < tk . As the partition gets finer, this sum
converges to∫ b

a
f (γ(t)) · x ′(t)dt + i

∫ b

a
f (γ(t)) · y ′(t)dt =

∫ b

a
f (γ(t)) · γ′(t)dt
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Definition

Suppose that γ is a path over a closed interval [a, b], and that f is
a continuous complex valued function defined on the graph of γ.
The path or contour integral of f on γ is given by∫

γ
f (z)dz =

∫ b

a
f (γ(t)) · γ′(t)dt (22)
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Example

∫
γ

1

z − z0
dz =?

On the path: γ(t) = z0 + Re it , 0 ≤ t ≤ 2π
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γ(t) = z0 + Re it → γ′(t) = iRe it

Recall the definition of the contour integral∫
γ

f (z)dz =

∫ b

a
f (γ(t)) · γ′(t)dt (22)

Using the definition of contour integral∫
γ

1

z − z0
dz =

∫ 2π

0

1

z0 + Re it − z0
iRe itdt

=

∫ 2π

0

1

Re it
iRe itdt = i

∫ 2π

0
dt = 2πi
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∫
γ

(z − z0)ndz =

∫
γ

1

z − z0
dz when n = −1

is already evaluated. Now, when n 6= −1, evaluate∫
γ

(z − z0)ndz

∫
γ

(z − z0)ndz =

∫ 2π

0
(Re it)n · iRe itdt = iRn+1

∫ 2π

0
e i(n+1)tdt

=
Rn+1

n + 1
e i(n+1)t

∣∣∣2π
0

=
Rn+1

n + 1
(e2π(n+1)i − e0) = 0
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Length of a contour

γ(t) , a ≤ t ≤ b,

L =

∫ b

a
|γ′(t)|dt

Example

γ(t) = t + it , 0 ≤ t ≤ 3

L =

∫ 3

0
|1 + i |dt =

∫ 3

0

√
12 + 12dt = 3

√
2
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Recall the following from the Calculus course:
Theorem For the curve defined parametrically by x = g(t),
y = h(t), a ≤ t ≤ b, if g , g ′, h and h′ are continuous on [a, b]
and the curve does not intersect itself (except possibly at a finite
number of points), then the arc length s of the curve is given by

s =

∫ b

a

√
[g ′(t)]2 + [h′(t)]2dt =

∫ b

a

√
(

dx

dt
)2 + (

dy

dt
)2dt

Exercise Find the arc length of the curve
x = g(t) = 2 cos t + sin 2t, y = h(t) = 2 sin t + cos 2t for
0 ≤ t ≤ 2π. Ans. ≈ 16
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Associated with the contour C is the contour −C , consisting of
the same set of points but with the order reversed so that the new
contour extends from the point z2 to the point z1.
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Given the parametrization of C as

C : z(t), a ≤ t ≤ b

then the contour −C has the following parametric representation

−C : z(−t) (−b ≤ t ≤ −a)

Example

Given C : t + 3t2, 1 ≤ t ≤ 3, find −C .

−C : −t + 3(−t)2, −3 ≤ t ≤ −1
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A property: ∫
−C

f (z)dz = −
∫
C

f (z)dz

Suppose that the contour C consists of C1 from z1 to z2 followed
by a contour C2 from z2 to z3, then∫

C
f (z)dz =

∫
C1

f (z)dz +

∫
C2

f (z)dz
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Some Properties

•
∫
C z0f (z)dz = z0

∫
C f (z)dz for any complex constant z0.

•
∫
C [f (z) + g(z)]dz =

∫
C f (z)dz +

∫
C g(z)dz

•
∣∣∣ ∫C f (z)dz

∣∣∣ =
∣∣∣ ∫ b

a f [z(t)]z ′(t)dt
∣∣∣ ≤ ∫ b

a |f [z(t)]z ′(t)|dt

Estimation Lemma
For any nonnegative constant satisfying |f (z)| ≤ M , ∀z on C∣∣∣ ∫

C
f (z)dz

∣∣∣ ≤ M

∫ b

a
|z ′(t)|dt︸ ︷︷ ︸
L

= ML
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Proof of an Integral Inequality

Let f be a complex valued function of a real variable t. Assume
that ∫ b

a
f (t)dt

exists and equals the complex number re iθ. Thus

re iθ =

∫ b

a
f (t)dt

We have

r =
∫ b
a e−iθf (t)dt

=
∫ b
a Re

(
e−iθf (t)

)
dt + i

∫ b
a Im

(
e−iθf (t)

)
dt

We know that r is real, therefore,∫ b

a
Im
(

e−iθf (t)
)

dt = Im(r) = 0
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r =
∫ b
a Re

(
e−iθf (t)

)
dt

≤
∫ b
a

∣∣Re
(
e−iθf (t)

)∣∣ dt

≤
∫ b
a

∣∣e−iθf (t)
∣∣ dt

=
∫ b
a

∣∣e−iθ∣∣ |f (t)| dt

=
∫ b
a |f (t)| dt

∴ r ≤
∫ b

a
|f (t)| dt

Considering that

re iθ =

∫ b

a
f (t)dt →

∣∣∣re iθ∣∣∣ = r =

∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣
We have ∣∣∣∣∫ b

a
f (t)dt

∣∣∣∣ ≤ ∫ b

a
|f (t)| dt
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Example

Find an upper bound for ∣∣∣∣∫
Γ

1

(z2 + 1)2
dz

∣∣∣∣
where Γ is the upper half circle with |z | = a with radius a > 1
traversed once in the counterclockwise direction.
First observe that the length of the path of integration is half the
circumference of a circle with radius a, hence

L(Γ) =
1

2
(2πa) = πa.

Next we seek an upper bound M for the integrand when |z | = a.
By the triangle inequality we see that

|z |2 = |z2| = |z2 + 1− 1| = |(z2 + 1) + (−1)| ≤ |z2 + 1|+ 1,

therefore ...
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Continued from the previous page

|z |2 = |z2| = |z2 + 1− 1| = |(z2 + 1) + (−1)| ≤ |z2 + 1|+ 1,

therefore
|z2 + 1| ≥ |z |2 − 1 = a2 − 1 > 0

because |z | = a > 1 on Γ. Hence∣∣∣∣ 1

(z2 + 1)2

∣∣∣∣ ≤ 1

(a2 − 1)2
.

Therefore we apply the estimation lemma with M = 1/(a2 − 1)2.
The resulting bound is∣∣∣ ∫

C
f (z)dz

∣∣∣ ≤ ML→
∣∣∣∣∫

Γ

1

(z2 + 1)2
dz

∣∣∣∣ ≤ πa

(a2 − 1)2
.
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Example

Let us compute I1 =
∫
C1

z2dz .

C1 is the line segment from z = 0 to z = 2 + i .
It can be parametrized as z = 2y + iy ; 0 ≤ y ≤ 1.
Derivative of the contour is z ′ = 2 + i
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For C1, z = 2y + iy , 0 ≤ y ≤ 1 and z ′ = 2 + i , I1 =
∫
C1

z2dz
Integral formula: ∫

γ
f (z)dz =

∫ b

a
f (γ(t)) · γ′(t)dt (22)

→ I1 =

∫ 1

0
(2y + iy)2(2 + i)dy

=

∫ 1

0
(2y 2 + i11y 2)dy

=
2

3
+ i

11

3
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Example

Consider the example above. Let the contour start from 2 + i and
go to 0 + i0 along the points of C1.
C1, z = 2y + iy , 0 ≤ y ≤ 1
To get −C1 we use the formula −C1 = z(−y) , −b ≤ y ≤ −a

z = −2y − iy , −1 ≤ y ≤ 0
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Continued from the previous page

−C1 = −2y − iy , −1 ≤ y ≤ 0
Contour’s derivative: −2− i

I =

∫
−C1

z2dz =

∫ 0

−1
(−2y − iy)2(−2− i)dy

=

∫ 0

−1
(−2y 2 − i11y 2)dy = −2

3
− i

11

3

= −
∫
C1

z2dz as stated before.
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Example

I2 =

∫
C2

z2dz =

∫
OA

z2dz +

∫
AB

z2dz

Parametrize OA as x + i0 ; 0 ≤ x ≤ 2
AB as 2 + iy ; 0 ≤ y ≤ 1

I2 =

∫ 2

0
x2dx +

∫ 1

0
(2 + iy)2idy

=
8

3
+ i

[ ∫ 1

0
(4− y 2)dy + 4i

∫ 1

0
ydy

]
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Continued from the previous page

I2 =

∫ 2

0
x2dx +

∫ 1

0
(2 + iy)2idy

=
8

3
+ i

[ ∫ 1

0
(4− y 2)dy + 4i

∫ 1

0
ydy

]
=

2

3
+ i

11

3

Alternative parametrization of C2: t ; 0 ≤ t ≤ 2
2 + i(t − 2) ; 2 ≤ t ≤ 3
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Example

∫
C1

f (z)dz =

∫
OA

f (z)dz +

∫
AB

f (z)dz

where f (z) = y − x − i3x2.
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Continued from the previous page

C1 = OA + AB; f (z) = y − x − i3x2

OA : z = 0 + iy , 0 ≤ y ≤ 1

→
∫
OA

f (z)dz =

∫ 1

0
yidy = i

∫ 1

0
ydy =

i

2
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Continued from the previous page

C1 = OA + AB; f (z) = y − x − i3x2

AB : z = x + i , 0 ≤ x ≤ 1

→
∫
AB

f (z)dz =

∫ 1

0
(1− x − i3x2) · 1 · dx

=

∫ 1

0
(1− x)dx − 3i

∫ 1

0
x2dx =

1

2
− i
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Example

∫
C1

f (z)dz =

∫
OA

f (z)dz︸ ︷︷ ︸
i
2

+

∫
AB

f (z)dz︸ ︷︷ ︸
1
2
−i

=
1− i

2
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Continued from the previous page

f (z) = y − x − i3x2

C2 : x + ix , 0 ≤ x ≤ 1∫
C2

f (z)dz =

∫ 1

0
−i3x2(1 + i)dx = 3(1− i)

∫ 1

0
x2dx = 1− i

The integrals along the two paths C1 and C2 have different values
even though those paths have the same initial and the same final
values.
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Example

C3 : e−iθ , −π ≤ θ ≤ 0

I3 =

∫
C3

zdz ;
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Continued from the previous page

C3 : e−iθ , −π ≤ θ ≤ 0

Let us use the identity

I3 = −
∫
−C3

zdz

where −C3 : e iθ ; 0 ≤ θ ≤ π

I3 = −
∫ π

0
e−iθie iθdθ = −iπ
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Example

C4 : e iθ , π ≤ θ ≤ 2π

I4 =

∫
C4

zdz =

∫ 2π

π
e−iθie iθdθ = iπ

Note that I3 6= I4.
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Continued from the previous page

Define C0 = C4 − C3

I0 =
∫
C0

zdz = I4 − I3 = 2πi
When z is on the unit circle

|z | = 1→ |z |2 = 12 → zz = 1 ; z =
1

z

→ I0 =

∫
C0

1

z
dz = 2πi
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Consider the function w = z
1
2 . This is a multivalued function.

This function maps z = re iθ to two points: r
1
2 e i

θ
2 and −r

1
2 e i

θ
2

Example
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Example

The function w = z
1
2 has two branches. The branch

f (z) =
√

re iθ/2 ; r > 0 ; 0 < θ < 2π
is analytic. The positive real axis with 0 is excluded from the
domain in order to avoid discontinuities on it.

If we consider the following function and its domain

f (z) =
√

re iθ/2 ; r > 0 ; 0 ≤ θ < 2π

then, for instance, the neighbouring points of z = 3e i0 won’t have
neighbouring images under the function given above. Thus, it

wouldn’t be a branch of w = z
1
2 .
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Example

Consider f (z) = z1/2. A branch of this multivalued function is
f (z) =

√
re iθ/2 ; r > 0 ; 0 < θ < 2π

Consider the semicircular path C defined by z = 3e iθ ; 0 ≤ θ ≤ π
The function is not defined at the point 3 + i0, but this does not
harm the existence of the integral. Integral is defined for piecewise
continuous functions. Nonetheless, we may make it continuous by
defining f (3 + i0) =

√
3.
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Continued from the previous page

Noting C : 3e iθ ; 0 ≤ θ ≤ π, let us compute I =
∫
C z1/2dz for

the branch of z1/2 described.

I =

∫ π

0

√
3e iθ/23ie iθdθ = 3

√
3i

∫ π

0
e i3θ/2dθ

= 3
√

3i

{
−2

3i
(1 + i)

}
= −2

√
3(1 + i)
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Example

Let the contour C be as in the previous example. Also let us use
the same branch of z1/2 as in the preceding example.
We show that ∣∣∣∣ ∫

C

z1/2

z2 + 1
dz

∣∣∣∣ ≤ 3
√

3π

8

Recall and use
∣∣∣ ∫C f (z)dz

∣∣∣ ≤ ML.

Clearly, |z | = 3 on C , therefore |z1/2| =
√

3
Also |z2 + 1| ≥ ||z |2 − 1| = 8. Because |z1 + z2| ≥ ||z1| − |z2||,
pp.10 Churchill

→
∣∣∣∣ z1/2

z2 + 1

∣∣∣∣ ≤ √3

8

Since the length of the contour is L = 3π. The conclusion follows.
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Cauchy-Goursat Theorem

Theorem

If a function f is analytic at all points interior to and on a simple
closed contour C , then ∫

C
f (z)dz = 0
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Definition

A simply connected domain D is a domain such that every
simple closed contour within it encloses only points of D.
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Alternative statement of the theorem

If a function f is analytic throughout a simply connected domain
D, then ∫

C
f (z)dz = 0

for every simple closed contour C lying in D.
The simple closed contour here can be replaced by an arbitrary
closed contour C which is not necessarily simple. If C intersects
itself a finite number of times, it consists of a finite number of
simple closed contours. By applying the C-G theorem to each of
those simple closed contours, we obtain the desired result for C .
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∫
C

f (z)dz :=

∫
C1

f (z)dz +

∫
C2

f (z)dz +

∫
C3

f (z)dz

+

∫
C4

f (z)dz +

∫
C5

f (z)dz

=

∫
C1

f (z)dz +

∫
C5

f (z)dz︸ ︷︷ ︸
=0 by C−G

+

∫
C4

f (z)dz +

∫
C2

f (z)dz︸ ︷︷ ︸
=0 by C−G

+

∫
C3

f (z)dz︸ ︷︷ ︸
=0 by C−G
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Generalizing the C-G Theorem to Multiply Connected
Domains

Theorem

Let C be a simple closed contour and let Cj (j = 1, . . . , n) be a
finite number of simple closed contours inside C such that the
regions interior to each Cj have no points in common.
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Continued from the previous page

Let R be the closed region consisting of all points within and on C
except for points interior to each Cj . Let B denote the entire
oriented boundary of R consisting of C and all the contours Cj ,
described in a direction such that the interior points of R lie to the
left of B. Then if f is analytic throughout R∫

B
f (z)dz = 0
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Proof

Continued from the previous page∫
B
. . . :=

∫
C
. . .+

∫
C1

. . .+

∫
C2

. . .

=

∫
Γ1

. . .+

∫
L1

. . .+

∫
C1t

. . .+

∫
L2

. . .+

∫
C2t

. . .+

∫
L3

. . .︸ ︷︷ ︸
=0 by C−G

+

∫
Γ2

. . .+

∫
−L3

. . .+

∫
C2b

. . .+

∫
−L2

. . .+

∫
C1b

. . .+

∫
−L1

. . .︸ ︷︷ ︸
=0 by C−G
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Continued from the previous page

Because hypothesis says that f is analytic throughout R including
its boundaries, f is analytic on and inside the contour above.
Thus, Cauchy-Goursat Theorem results in∫

Γ1

. . .+

∫
L1

. . .+

∫
C1t

. . .+

∫
L2

. . .+

∫
C2t

. . .+

∫
L3

. . . = 0
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Continued from the previous page

Likewise, because hypothesis says that f is analytic throughout R
including its boundaries, f is analytic on and inside the contour
above. Thus, Cauchy-Goursat Theorem results in∫

Γ2

. . .+

∫
−L3

. . .+

∫
C2b

. . .+

∫
−L2

. . .+

∫
C1b

. . .+

∫
−L1

. . . = 0
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Continued from the previous page

Notice that we used the facts:∫
Li

. . .+

∫
−Li

. . . = 0

∫
Ci

. . . =

∫
Cit

. . .+

∫
Cib

. . .

and ∫
C
. . . =

∫
Γ1

. . .+

∫
Γ2

. . .
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Example ∫
B

dz

z2(z2 + 9)
= 0

Generalization of the C-G theorem to multiply connected domains
is applicable here. The hypotheses of the theorem are satisfied:
The integrand is analytic except at the points z = 0 and z = ∓3i ,
all of which lie outside the annular region with boundary B.
Therefore, along the oriented boundary the integral equals zero.
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Antiderivatives

There are certain functions whose integrals from z1 to z2 are
independent of the path.

Definition

The function F is said to be an antiderivative of f in a domain D
if: F ′(z) = f (z) for all z in D.

Example

f (z) = z has an antiderivative F (z) = z2

2 . Another antiderivative

of f (z) is F (z) = z2

2 + 3.
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Theorem

Suppose that a function f is continuous in a domain D. TFAE:
a) f has an antiderivative F in D.
b) The integrals of f along contours lying entirely in D and
extending from any fixed point z1 to any fixed point z2 all have the
same value.
c) The integrals of f around closed contours lying entirely in D all
have value zero.
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Example

The continuous function f (z) = z2 has an antiderivative
F (z) = z3/3 throughout C.∫ 1+i

0
z2dz =

z3

3

∣∣∣∣1+i

0

=
2

3
(−1 + i)

holds true for every contour from z = 0 to z = 1 + i .
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Example

The function 1/z2, which is continuous everywhere, except at the
origin, has an antiderivative −1/z in the domain |z | > 0.
Consequently∫ z2

z1

1

z2
dz = −1

z

∣∣∣∣z2

z1

=
1

z1
− 1

z2
(z1 6= 0 , z2 6= 0)

for any contour from z1 to z2 that does not pass through the
origin. In particular

∫
C (1/z2)dz = 0 when C is the circle

z = 2e iθ , −π ≤ θ ≤ π
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Example

D : |z | > 0 , −π < Argz < π (i.e. negative real axis is excluded)∫ 2i

−2i

dz

z
= Log z

∣∣∣∣2i
−2i

= Log (2i)− Log (−2i)

=
(

ln 2 + i
π

2

)
−
(

ln 2− i
π

2

)
= πi

when the path of the integration does not cross the negative real
axis.
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Example ∫ π/2

i
cos zdz = sin z

∣∣∣∣π/2

i

= sin
π

2
− sin i = 1− i sinh 1 = 1− i1.1752
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Cauchy Integral Formula

Theorem

Let f be analytic everywhere within and on a simple closed contour
C , taken in the positive sense. If z0 is any interior point of C , then

f (z0) =
1

2πi

∫
C

f (z)dz

z − z0
Cauchy integral formula

This can be written also as

2πif (z0) =

∫
C

f (z)dz

z − z0
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f (z0) =
1

2πi

∫
C

f (z)dz

z − z0
Cauchy integral formula

2πif (z0) =

∫
C

f (z)dz

z − z0
Cauchy integral formula

Example

Let C be the positively oriented circle |z | = 2.∫
C

zdz

(9− z2)(z + i)
=

∫
C

z/(9− z2)

z − (−i)
dz = 2πi

(−i

10

)
=
π

5

Note that the function f (z) = z
9−z2 is analytic within and on C

and the point z0 = −i is interior to C .
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Example

Integrate z2+1
z2−1

in the ccw sense around a circle of radius 1 with
center at the point a) z = 1 b) z = −1 c) z = i
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Continued from the previous page

(a)

∫
C

z2 + 1

z2 − 1
dz =

∫
C

z2+1
z+1

z − 1
dz

The expression on the right has z0 = 1 and f (z) = z2+1
z+1

The point z0 = 1 lies inside the circle C under consideration, and
f (z) is analytic inside and on C . The point z = −1 where f (z) is
not analytic, lies outside C . Hence by Cauchy integral formula∫

C

z2 + 1

z2 − 1
dz =

∫
C

z2+1
z+1

z − 1
dz = 2πi

[z2 + 1

z + 1

]
z=1

= 2πi
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Continued from the previous page

(b)

∫
C

z2 + 1

z2 − 1
dz =

∫
C

z2+1
z−1

z + 1
dz =

∫
C

z2+1
z−1

z − (−1)
dz

Now f (z) = z2+1
z−1 is analytic within and on C and z0 = −1 is an

interior point of C . Therefore∫
C

z2 + 1

z2 − 1
dz =

∫
C

z2+1
z−1

z − (−1)
dz = 2πi

[z2 + 1

z − 1

]
z=−1

= −2πi
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Continued from the previous page

c) The given function is analytic everywhere on and inside the
circle. Hence by the Cauchy-Goursat theorem, the integral∫

C

z2 + 1

z2 − 1
dz

has the value zero.
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Exercises

Integrate z2/(z2 + 1) in the ccw sense around the circle
1) |z + i | = 1 2) |z − i | = 1/2 3) |z | = 2 4) |z | = 1/2
Integrate z2/(z4 − 1) in the ccw sense around the circle
5) |z − 1| = 1 6) |z + i | = 1 7) |z − i | = 1/2 8) |z | = 2
Answers
1) π 3) 0 5) iπ/2 7) π/2
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9) Let C denote the boundary of the square whose sides lie along
the lines x = ±2 and y = ±2 where C is described in positive
sense. Evaluate each of these integrals
a)
∫
C

e−zdz
z−(iπ/2) Ans. 2π

b)
∫
C

cos zdz
z(z2+8)

Ans. i π4
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Cauchy Integral Formula

Theorem

Let f be analytic everywhere within and on a simple closed contour
C , taken in the positive sense. If z0 is any interior point of C , then

f (z0) =
1

2πi

∫
C

f (z)dz

z − z0
Cauchy integral formula

This can be written also as

2πif (z0) =

∫
C

f (z)dz

z − z0

A. Karamancıoğlu Advanced Calculus



Proof of the Cauchy Integral Formula

Since f is analytic everywhere within C , automatically it is
continuous everywhere within C , specifically at z0. At z0, for a
given ε there exist δ such that

|f (z)− f (z0)| < ε whenever |z − z0| < δ

Select ρ less than δ such that

|f (z)− f (z0)| < ε whenever |z − z0| = ρ
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Consider f (z)
z−z0

. Numerator is analytic in R; the denominator equals

zero nowhere in R. Thus f (z)
z−z0

is analytic at all points on C and C0

and at all points in between them, we can use the generalized C-G
theorem: ∫

C

f (z)

z − z0
dz−

∫
C0

f (z)

z − z0
dz = 0

Note that the direction of C0 is not as in the Generalized C-G
theorem for the multiply connected domains, this caused us to use
”-” instead of ”+” in the expression above.
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∫
C

f (z)

z − z0
dz −

∫
C0

f (z)

z − z0
dz = 0

This is equivalent to ∫
C

f (z)dz

z − z0
=

∫
C0

f (z)dz

z − z0

Subtract
∫
C0

f (z0)dz
z−z0

from both sides of equality to obtain∫
C

f (z)dz

z − z0
−
∫
C0

f (z0)dz

z − z0
=

∫
C0

f (z)

z − z0
dz −

∫
C0

f (z0)

z − z0
dz∫

C

f (z)dz

z − z0
− f (z0)

∫
C0

dz

z − z0
=

∫
C0

f (z)− f (z0)

z − z0
dz

By a previous example: ∫
C0

dz

z − z0
= 2πi

→
∫
C

f (z)dz

z − z0
− 2πif (z0) =

∫
C0

f (z)− f (z0)

z − z0
dz
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→
∫
C

f (z)dz

z − z0
− 2πif (z0) =

∫
C0

f (z)− f (z0)

z − z0
dz

Since the length of C0 is 2πρ, using the modulus inequality on
integrals ∣∣∣∣∫

C0

f (z)− f (z0)

z − z0
dz

∣∣∣∣ < ε

ρ︸︷︷︸
M

2πρ︸︷︷︸
L

= 2πε

→
∣∣∣∣ ∫

C

f (z)dz

z − z0
− 2πif (z0)

∣∣∣∣ < 2πε

Since the lefthand side is constant and righthand side is arbitrarily
small (because we can select ε arbitrarily small) the lefthand side
must be 0. Consequently∫

C

f (z)dz

z − z0
= 2πif (z0) Q.E.D.
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Derivatives of Analytic Functions

Theorem

If a function is analytic at a point, then its derivatives of all orders
are also analytic functions at that point.

Example

f (z) = 1
z is analytic at z0 = 1 + i . Each of the functions

f ′, f ′′, f ′′′, f (4), f (5), . . . is analytic at z0 = 1 + i .
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Corollary

If a function f (z) = u(x , y) + iv(x , y) is analytic at a point
z = x + iy , then the component functions u and v have
continuous partial derivatives of all orders at that point.

Note that if f is analytic at z , then its component functions satisfy
the Cauchy Riemann equations at z . This shows the existence of
ux , uy , vx , vy at z . The derivative is then

f ′(z) = ux + ivx or equivalently f ′(z) = vy − iuy

By the theorem, f ′ is also analytic at z . Therefore, the real and
imaginary components of f ′ must satisfy the C-R equations at z .
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f ′(z) = ux + ivx or equivalently f ′(z) = vy − iuy

By the theorem, f ′ is also analytic at z . Therefore, the real and
imaginary components of f ′ must satisfy the C-R equations at z .
That is,

uxx = vxy , uxy = −vxx

vyx = −uyy , vyy = uyx

This shows existence of all the 2nd order partial derivatives at z .
Continuing this process shows that u and v have continuous partial
derivatives of all orders at z .
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A Generalization of Cauchy integral formula

f (n)(z0) =
n!

2πi

∫
C

f (z)dz

(z − z0)n+1
, n = 0, 1, 2, . . .

Under the same hypotheses as in Cauchy integral formula.
Alternatively:

2πi

n!
f (n)(z0) =

∫
C

f (z)dz

(z − z0)n+1
, n = 0, 1, 2, . . .

Example

Let C be |z | = 10, positively oriented and let f (z) = 1. Then∫
C

dz

(z − 2)5
=

2πi

4!
f (4)(2) = 0
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2πi

n!
f (n)(z0) =

∫
C

f (z)dz

(z − z0)n+1
, n = 0, 1, 2, . . .

Example

Evaluate ∫
C

e5z

(z − i)3
dz

where C = {z : |z | = 2} oriented ccw.
Solution Noting f (z) = e5z is entire, and z0 = i is is an interior
point of C , we have∫

C

e5z

(z − i)3
dz =

2πi

2!
f ′′(i) = 25πie5i
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Theorem

(Morera’s Theorem) If a function f is continuous throughout a
domain D and if

∫
C f (z)dz = 0 for every closed contour C lying in

D, then f is analytic throughout D.
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Series

Definition

We say that a sequence {an} converges to a complex number L, or
has limit L, as n tends to infinity and write

lim
n→∞

an = L

if given any ε > 0 there is an integer N such that

|an − L| < ε for all n ≥ N

If the sequence {an} does not converge, then we say that it
diverges.
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Example

Consider the sequence{
e in

π
4

}
=

√
2

2
+ i

√
2

2
, i , −

√
2

2
+ i

√
2

2
, −1,

−
√

2

2
− i

√
2

2
, −i ,

√
2

2
− i

√
2

2
, 1, . . .

The sequence is not converging since its terms will cycle over the
first eight terms indefinitely.
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Example {
e in(π/4)

n

}
Let us show that it converges to L = 0. Given ε > 0 we have

|an − L| =

∣∣∣∣e in(π/4)

n
− 0

∣∣∣∣ =

∣∣e in(π/4)
∣∣

n
=

1

n
< ε

for all n > 1
ε , and so the sequence converges to L = 0.
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Theorem

Suppose that {an} is a sequence of complex numbers and write
an = xn + iyn, where xn = Re an and yn = Im an. Then

lim
n→∞

an = L = α + iβ ⇔ lim
n→∞

xn = α and lim
n→∞

yn = β
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Definition

An infinite series of complex numbers
∑∞

n=1 an = a1 + a2 + . . .
converges to a number S , called the sum of the series, if the
sequence

SN =
N∑

n=1

an = a1 + a2 + . . .+ aN ; (N = 1, 2, . . .)

of partial sums converges to S .

Define a sequence S1 := a1, S2 := a1 + a2, S3 := a1 + a2 + a3, . . ..
If the sequence S1, S2,S3, . . . converges, then it converges to the
sum of the series above.
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Theorem

Suppose that an = xn + iyn (n = 1, 2, . . .) then

∞∑
n=1

an = S = X + iY ⇔
∞∑
n=1

xn = X and
∞∑
n=1

yn = Y
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Theorem

Let f be analytic everywhere inside a circle C with center at z0 and
radius R. Then at each point inside C

f (z) = f (z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)

2!
(z − z0)2 + . . . (23)

that is, the power series here converges to f (z) when |z − z0| < R.
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(23) is called the expansion of f into a Taylor series about the
point z0. Taylor expansion for z0 = 0 is called Maclaurin expansion:

f (z) = f (0) +
f ′(0)

1!
(z) +

f ′′(0)

2!
(z)2 + . . .
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Maclaurin expansion:

f (z) = f (0) +
f ′(0)

1!
(z) +

f ′′(0)

2!
(z)2 + . . .

Example

Since the function ez is entire, it has a Maclaurin series
representation which is valid for all z . Noting that

dn

dzn
ez
∣∣∣∣
z=0

= 1

we have

ez = 1 + z +
z2

2!
+

z3

3!
+ . . .
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Example

f (z) = sin z →
{

f (2n)(0) = 0

f (2n+1)(0) = (−1)n

}
n = 0, 1, . . .

sin z = z − z3

3!
+

z5

5!
− z7

7!
. . .

Similarly

cos z = 1− z2

2!
+

z4

4!
− z6

6!
. . .

A. Karamancıoğlu Advanced Calculus



Example

Note that sinh z = −i sin(iz). In order to compute the Taylor
series of sinh z , we only need to replace z by iz in the Taylor series
expansion of sin z , and multiply the result by −i .

z − z3

3!
+

z5

5!
− z7

7!
. . .︸ ︷︷ ︸

sin z

→ −i

[
iz − (iz)3

3!
+

(iz)5

5!
− (iz)7

7!
. . .

]
︸ ︷︷ ︸

sinh z
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Example

1
1−z is analytic in |z | < 1. Its Maclaurin series is

1

1− z
= 1 + z + z2 + z3 + . . . =

∞∑
n=0

zn, |z | < 1 (24)
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Example

To find power series representation of 1
1+z we may utilize that of

1
1−z given in (24). In (24) we substitute −z for z . That is,

1

1− z
= 1 + z + z2 + z3 + . . . =

∞∑
n=0

zn, |z | < 1 (24)

becomes

1

1 + z
= 1− z + z2 − z3 + . . . =

∞∑
n=0

(−1)nzn , |z | < 1

Note that |z | < 1 ↔ | − z | < 1.
Similarly

1

1− z2
= 1 + z2 + z4 + z6 + . . . =

∞∑
n=0

z2n , |z | < 1
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1

1− z
= 1 + z + z2 + z3 + . . . =

∞∑
n=0

zn, |z | < 1 (24)

Example

Develop 1
c−bz in powers of (z − a) where c − ab 6= 0 and b 6= 0.

1

c − bz
=

1

c − ab − b(z − a)
=

1

(c − ab)
[
1− b(z−a)

c−ab

]
=

1

(c − ab)
× 1[

1− b(z−a)
c−ab

] =
1

c − ab

∞∑
0

[b(z − a)

c − ab

]n
This series is convergent for

∣∣b(z−a)
c−ab

∣∣ < 1, that is

|z − a| <
∣∣ c−ab

b

∣∣ =
∣∣ c
b − a

∣∣.
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Example

Find Maclaurin series of f (z) = tan z .

tan z =
sin z

cos z

tan has singularities at the zeros of cos, i.e., at
π
2 + nπ, n = 0, 1, . . .. Thus, for the tan function, the region of
convergence around the origin is |z | < π

2 .
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Continued from the previous page

f (0) = tan(0) = 0

f ′(z) = sec2 z = 1 + tan2 z = 1 + f 2(z) and f ′(0) = 1

f ′(z) = 1 + f 2(z) → f ′′ = 2ff ′ and f ′′(0) = 0

f ′′′ = 2(f ′)2 + 2ff ′′ and f ′′′(0) = 2→ f ′′′(0)/3! = 1/3

f (4) = 6f ′f ′′ + 2ff ′′′ and f (4)(0) = 0

f (5) = 6(f ′′)2 + 8f ′f ′′′ + 2ff (4)

and
f (5)(0) = 16 ,

(
f (5)(0)

)
/5! = 2/15

tan z = z +
1

3
z3 +

2

15
z5 + . . . |z | < π

2

A. Karamancıoğlu Advanced Calculus



Laurent Series

Theorem

Let C0 and C1 denote two positively oriented circles centered at a
point z0 where C0 is smaller than C1. If a function is analytic on C0

and C1 and throughout the annular domain between them, then at
each point z in that domain f (z) is represented by the expansion

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
1

(z − z0)n
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Continued from the previous page

In the Laurent expansion we have

an =
1

2πi

∫
C

f (z)dz

(z − z0)n+1
; n = 0, 1, 2, . . .

bn =
1

2πi

∫
C

f (z)dz

(z − z0)−n+1
; n = 1, 2, . . .

and C is any positively oriented simple closed contour in the
annular domain encircling C0.
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The series here is called Laurent Series.
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Alternative style of expression for the Laurent series
formula

f (z) =
∞∑

n=−∞
dn(z − z0)n

where

dn =
1

2πi

∫
C

f (z)dz

(z − z0)n+1

A. Karamancıoğlu Advanced Calculus



a background for the next example

Example∫
C (z − z0)mdz

where C is the positively oriented circle |z − z0| = R with R > 0.
Path parametrization: z(θ) = z0 + Re iθ , 0 ≤ θ ≤ 2π
z ′(θ) = iRe iθ

→
∫
C (z − z0)mdz =

∫ 2π
0 Rme imθ iRe iθdθ = iRm+1

∫ 2π
0 e i(m+1)θdθ

when m = −1, it is iR−1+1
∫ 2π

0 e i(−1+1)θdθ = i
∫ 2π

0 dθ = 2πi
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Continued from the previous page

When m 6= −1 it is iRm+1 e i(m+1)θ

i(m+1)

∣∣∣2π
0

= 0

∴
∫
C

(z − z0)mdz =

{
2πi when m = −1
0 when m 6= −1

∴
1

2πi

∫
C

(z − z0)mdz =

{
1 when m = −1
0 when m 6= −1

(25)

Summary: C is a positively oriented circle that encircles z0.
Results above are valid for any radius R > 0.
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Example

Consider f (z) = 1
(z−1)2 , 0 < |z − 1| <∞

We want to find Laurent series expansion of f (z) about z = 1.
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f (z) = 1
(z−1)2 , 0 < |z − 1| <∞

Continued from the previous page

Use the formula for the coefficients dn with a simple closed
contour containing the inner circle, for instance, |z − 1| = 0.5.
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Continued from the previous page

Let us find the coefficients dn:

dn =
1

2πi

∫
C

f (z)dz

(z − z0)n+1
=

1

2πi

∫
C

1/(z − 1)2

(z − 1)n+1
dz

=
1

2πi

∫
C

1

(z − 1)n+3
dz

=
1

2πi

∫
C

(z − 1)−(n+3)dz

Use the result of the preceding example:

=

{
1 when − (n + 3) = −1 (i .e. , n = −2)
0 else

d−2 = 1 , dn = 0 when n 6= −2.
The Laurent series of f (z) is itself: d−2

(z−1)2 = 1
(z−1)2
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Example

The Laurent series expansion of z2e1/z with center at 0 is

z2
(

1 +
1

1!z
+

1

2!z2
+ . . .

)
= z2 + z +

1

2!
+

1

3!z
+ . . . 0 < |z | <∞
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Example

1 + 2z

z2 + z3
=

1

z2

1 + 2z

1 + z
=

1

z2

(
2− 1

1 + z

)
=

1

z2
(2−1+z−z2+z3−z4+. . .)

=
1

z2
+

1

z
− 1 + z − z2 + z3 − . . . 0 < |z | < 1
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Example

ez

1 + z
= (1 + z +

z2

2!
+

z3

3!
+ . . .)(1− z + z2 − z3 + . . .)

= 1 +
1

2
z2 − 1

3
z3 . . . |z | < 1
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Example

1

1 + z2
= 1− z2 + z4 − z6 + . . . |z | < 1

Integrate both sides:

tan−1 z = z − z3

3
+

z5

5
− . . . |z | < 1
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Example

1

z
=
∞∑
n=0

(−1)n(z − 1)n , |z − 1| < 1

Note that

1

z
=

1

1− 1 + z
=

1

1 + (z − 1)︸ ︷︷ ︸ = · · · , |z − 1| < 1

Differentiate each side:

− 1

z2
=
∞∑
n=1

(−1)nn(z − 1)n−1 , |z − 1| < 1

1

z2
=
∞∑
n=0

(−1)n(n + 1)(z − 1)n
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Example

Find the Laurent series expansion of f (z) = 1
1−z for |z | > 1.

1

1− z
=

1

z

1
1
z − 1

= −1

z

1

1− 1
z

= −1

z

∞∑
n=0

(1

z

)n
=
∞∑
n=0

−1

zn+1
, |z | > 1

∴
1

1− z
=
∞∑
n=1

−1

zn
= −1

z
− 1

z2
− 1

z3
− . . . |z | > 1
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Recall: z0 is called a singular point of a function f if f fails to be
analytic at z0 but is analytic at some point in every neighborhood
of z0. That is, f is not analytic at the singular point z0, and in
every neighborhood of z0 we are able find a point such that f is
analytic there. A singular point z0 is said to be isolated if, in
addition, there is some neighborhood of z0 throughout which f is
analytic except at the point itself. That is, if z0 is an isolated
singular point of f , we can find a neighborhood of z0 such that z0

is the only singular point in that neighborhood.
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Example

1
z has isolated singular point at z = 0

z+1
z3(z2+1)

has three isolated singular
points at z = 0, z = i , z = −i .

1
sin(π/z) has singular points at z = 0

and z = 1/n, n = ±1,±2, . . .. Each
singular point except z = 0 is iso-
lated.
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When z0 is an isolated singular point of a function f , there is a
positive number R such that f is analytic at each point z for which
0 < |z − z0| < R. Consequently the function is represented by a
Laurent series

f (z) =
∞∑
0

an(z−z0)n +
b1

z − z0
+

b2

(z − z0)2
+ . . .+

bn

(z − z0)n
+ . . .

(26)
valid in 0 < |z − z0| < R.

A. Karamancıoğlu Advanced Calculus



Recall that

bn =
1

2πi

∫
C

f (z)dz

(z − z0)−n+1
; n = 1, 2, . . .

where C is any positively oriented simple closed contour around z0

and lying in the domain 0 < |z − z0| < R. When n=1, this
expression for bn can be written∫

C
f (z)dz = 2πib1 (27)

The complex number b1, which is the coefficient of 1/(z − z0) in
expansion (26) is called the residue of f at the isolated singular
point z0. Residues are useful in evaluating certain integrals around
simple closed contours.
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Recap

Hypotheses
z0 is an isolated singular point of f . (Then we can find R such
that f is analytic in 0 < |z − z0| < R).
C is in 0 < |z − z0| < R and encloses z0.
Conclusion ∫

C
f (z)dz = 2πib1

where b1 is the coefficient of 1/(z − z0) in Laurent series of f
written for 0 < |z − z0| < R.
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Example

Consider
∫
C

e−z

(z−1)2 dz where C is the

circle |z | = 2 described in the posi-
tive sense. Let us check whether the
hypotheses of previous recap page are
satisfied: The integrand f has an iso-
lated singular point at z = 1. R is∞,
that is, f is analytic in 0 < |z − 1| <
∞. The contour C is in the annu-
lar domain 0 < |z − z0| < ∞ and
encloses z0 = 1. ¨̂ Hypotheses are
satisfied.
To evaluate the integral we determine
the residue b1 at z = 1 and use∫
C

e−z

(z−1)2 dz = 2πib1.
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Continued from the previous page

The formula ez =
∑∞

0
zn

n! is useful below:

e−z

(z − 1)2
=

e−1e−(z−1)

(z − 1)2
=

e−1

(z − 1)2

∞∑
n=0

(−1)n

n!
(z − 1)n

= e−1
∞∑
n=0

(−1)n

n!
(z−1)n−2 =

e−1

(z − 1)2
− e−1

z − 1
+

e−1

2
−e−1

6
(z−1)+· · · , 0 < |z−1| <∞

The coefficient of 1/(z − 1) is −1/e. In other words, residue of f
at z = 1 is −1/e. Hence∫

C

e−z

(z − 1)2
dz = 2πi

−1

e
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Example

Evaluate
∫
C e(1/z2)dz for the same C as

in the previous example.
Let us check whether the hypotheses for
the residue formula are satisfied: The in-
tegrand f has an isolated singular point
at z = 0. R is ∞, that is, f is analytic
in 0 < |z − 0| < ∞. The contour C is
in the annular domain 0 < |z − 0| < ∞
and encloses z0 = 0. ¨̂ Hypotheses are
satisfied.
To evaluate the integral we determine
the residue b1 of f at z = 0 and use∫
C e(1/z2)dz = 2πib1.

e1/z2
= 1 +

1

1!z2
+

1

2!z4
+

1

3!z6
+ . . . , 0 < |z | <∞

Since the residue of f at z = 0 is 0 (i.e., b1 = 0) the integral is 0.
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Theorem

Let C be a positively oriented simple
closed contour within and on which
a function f is analytic except for a
finite number of singular points
z1, z2, . . . , zn interior to C . If
B1,B2, . . . ,Bn denote the residues of
f at those respective points, then∫
C

f (z)dz = 2πi(B1 + B2 + . . .+ Bn)
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Proof

Let the singular points z1, . . . , zn be
centers of positively oriented circles
C1, . . . ,Cn which are interior to C
and are so small that no two of the
circles have points in common. The
circles Cj together with the simple
closed contour C form the boundary
of a closed region throughout which
f is analytic and whose interior is a
multiply connected domain. Accord-
ing to C-G theorem∫

C
f (z)dz −

∫
C1

f (z)dz︸ ︷︷ ︸
2πiB1 by(27)

−
∫
C2

f (z)dz︸ ︷︷ ︸
2πiB2 by(27)

− . . .−
∫
Cn

f (z)dz︸ ︷︷ ︸
2πiBn by(27)

= 0 ,

→
∫
C

f (z)dz = 2πi(B1 + B2 + . . .+ Bn)
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Example∫
C

5z−2
z(z−1) dz where C is the circle

|z | = 2, described counterclockwise.
Singular points in the contour are
z = 0 and z = 1.
B1: residue at z = 0

5z − 2

z(z − 1)
=
(5z − 2

z

)( −1

1− z

)
=
(

5− 2

z

)
(−1− z − z2 − . . .)

=
2

z
− 3− 3z − . . . 0 < |z | < 1

→ B1 = 2
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Continued from the previous page

B2: residue at z = 1

5z − 2

z(z − 1)

=
(5(z − 1) + 3

z − 1

)( 1

1 + (z − 1)

)
=
(

5+
3

z − 1

)(
1−(z−1)+(z−1)2−. . .

)
= . . .+

B2

z − 1
+ . . .

0 < |z − 1| < 1

→ B2 = 3∫
C

5z − 2

z(z − 1)
dz = 2πi(2 + 3) = 10πi
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Example∫
C

sin z
z4 dz where C is the unit circle ori-

ented counterclockwise.
The integrand has an isolated singular
point at the origin. So we can write the
Laurent series for the integrand that is valid
for 0 < |z | < ∞. The integration path is
a simple contour that lies in the domain of
the Laurent series and it encloses the in-
ner circle of the domain. So, the residue
theorem is applicable to this problem:

sin z

z4
=

1

z3
− 1

3!z
+

z

5!
− z3

7!
. . .

Residue at z = 0 is −1/3! = −1/6

→
∫
C

sin z

z4
dz = 2πi(

−1

6
) =
−πi

3
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Principal Part of a Function

Consider the Laurent series of f centered at z0

f (z) =
∞∑
n=0

an(z−z0)n+
b1

z − z0
+

b2

(z − z0)2
+. . . , 0 < |z−z0| < R

for some positive R. The portion of the series involving the
negative powers of z − z0 is called the principal part of f at z0.
Let the principal part contain finite number of terms, that is,

f (z) =
∞∑
0

an(z − z0)n +
b1

z − z0
+

b2

(z − z0)2
+ . . .+

bm

(z − z0)m

0 < |z − z0| < R

where bm 6= 0. In this case the isolated singular point z0 is called a
pole of order m. A pole of order m = 1 is called a simple pole.
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Example

z2 − 2z + 3

z − 2
= z +

3

z − 2
= 2 + (z−2) +

3

z − 2
, 0 < |z−2| <∞

The function above has a simple pole at z = 2. Its residue is 3.

Example

sinh z

z4
=

1

z4
(z +

z3

3!
+

z5

5!
+

z7

7!
+ . . .)

=
1

z3
+

1

3!z
+

1

5!
z +

1

7!
z3 + . . . 0 < |z | <∞

This has a pole of order 3 at z = 0, with residue 1/6.

When the principal part of f at z0 has an infinite number of terms,
that point is called an essential singular point.
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Theorem

(Picard’s Theorem) In each neighborhood of an essential singular
point a function assumes every finite value, with one possible
exception, an infinite number of times.

Example

e1/z =
∞∑
n=0

1

n!

1

zn
, 0 < |z | <∞

This has an essential singular point at z = 0. Therefore, in the
neighborhood of the essential singular point, say |z | < 0.1, the
function e1/z can take every finite value, say 45. Thus, according
to the theorem, there are infinitely many z values in the
neighborhood |z | < 0.1 satisfying e1/z = 45.
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Example

e1/z =
∞∑
n=0

1

n!

1

zn
, 0 < |z | <∞

This has an essential singular point at z = 0. Its residue at z = 0
is 1.
We can show that e

1
z has the value −1 an infinite number of times

in each neighborhood of the origin. Recall that: ez = −1 when

z = (2n + 1)πi , n = 0,±1, . . . This means that e
1
z = −1 when

z = 1
(2n+1)πi

i
i = −i

(2n+1)π , n = 0,±1, . . .. In a set notation,
solutions are:

{−0.1061i ,−0.0637i ,−0.0455i ,−0.0354i ,−0.0289i ,−0.0245i , . . .}

Clearly, infinite number of these points lie in any given
neighborhood of the origin.
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Residues at poles

Let

f (z) :=
φ(z)

z − z0
(28)

with φ analytic at z0 and φ(z0) 6= 0. The Taylor series

φ(z) = φ(z0) +
φ′(z0)

1!
(z − z0) +

φ′′(z0)

2!
(z − z0)2 + · · · (29)

is valid in |z − z0| < R for some R. Substitute this in (28):

f (z) =
φ(z0)

z − z0
+
φ′(z0)

1!
+
φ′′(z0)

2!
(z−z0)+

φ′′′(z0)

3!
(z−z0)2 · · · (30)

Residue of f at z0 is the coefficient of 1
z−z0

, that is, φ(z0).
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Example

Example Consider f (z) = z+1
z2+9

. f has isolated singular points at

3i and −3i . Find the residue at 3i . We can write f (z) = φ(z)
z−3i with

φ(z) = z+1
z+3i . Note that φ is analytic at 3i and φ(3i) 6= 0. Thus 3i

is a simple pole of f . The residue at 3i is φ(3i) = 3−i
6 .
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Consider the function

f (z) :=
φ(z)

(z − z0)m
, m = 2, 3, . . . (31)

with φ analytic at z0 and φ(z0) 6= 0. Use (29)

φ(z) = φ(z0) +
φ′(z0)

1!
(z − z0) +

φ′′(z0)

2!
(z − z0)2 + · · · (29)

in (31):

f (z) =
φ(z0)

(z − z0)m
+

φ′(z0)
1!

(z − z0)m−1
+

φ′′(z0)
2!

(z − z0)m−2
+· · ·+

φ(m−1)(z0)
(m−1)!

z − z0
+· · ·

f has a pole of order m at z0 with residue

b1 =
φ(m−1)(z0)

(m − 1)!
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Example

f (z) =
z3 + 2z

(z − i)3

can be written as

f (z) =
φ(z)

(z − i)3

where φ(z) = z3 + 2z . The function φ is entire and φ(i) 6= 0.
Hence f has a pole of order 3 at z = i . The residue is

b1 =
φ′′(i)

2!
= 3i
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Zeros and poles of order m

When two functions p and q are analytic at a point z0 and
p(z0) 6= 0, the quotient p(z)

q(z) has a pole of order m at z0 if and only
if q has a zero of order m there.

Example

If f (z) = (z − 7)4, then f (7) = f ′(7) = f ′′(7) = f ′′′(7) = 0 and
f (iv)(7) 6= 0. Thus f has a zero of order 4 at z0 = 7.

Example

p(z)

q(z)
=

z

(z − 7)4

p is analytic at z0 = 7. And q has a zero of order 4 at z0 = 7. So,
the quotient p

q has a pole of order 4 at z0 = 7.
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Example

Let
p(z)

q(z)
=

1

z(ez − 1)
.

Notice that p(z) and q(z) are entire functions.
q(0) = 0, q′(0) = [(ez − 1) + (ez − 1)z ]z=0 = 0, q′′(0) =

[2ez + zez ]z=0 = 2 6= 0, thus, q has a zero of order 2. Hence p(z)
q(z)

has a pole of order 2 at z = 0.

We find the residue of f at 0 in the next slide.
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Continued from the previous page

f (z) =
p(z)

q(z)
=

1

z [(1 + z
1! + z2

2! + z3

3! + · · · )− 1]

= 1

z( z
1!

+ z2

2!
+ z3

3!
+··· )

= 1

z2(1+ z
2!

+ z2

3!
+··· )

=

1

(1+ z
2!

+ z2
3!

+··· )

z2 = φ(z)
z2

We have a second order pole at 0. Also φ(0) 6= 0. Thus

φ′(z)|z=0 =
−( 1

2! + 2z
3! + · · · )

(1 + z
2! + z2

3! + · · · )2
= −1

2
= b1

For instance, given C be |z | = 2 described ccw∫
C

1

z(ez − 1)
dz = 2πi(−1

2
) = −πi
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A special case

If two functions p and q are analytic at a point z0 and p(z0) 6= 0,

q(z0) = 0, q′(z0) 6= 0, then z0 is a simple pole of the quotient p(z)
q(z)

and the residue there is b1 = p(z0)
q′(z0)

Example

p(z)

q(z)
=

z

z2 + 3z + 2

At z0 = −1, p(−1) 6= 0, q(−1) = 0, q′(−1) = [2z + 3]z=−1 6= 0
So, the residue at z = −1 is

b1 =
p(−1)

q′(−1)
=

[
z

2z + 3

]
z=−1

= −1

Digression If f (z0) = 0 then f (z) = (z − z0)g(z) for some g .
Furthermore, if f ′(z0) 6= 0 then g(z0) 6= 0. EOD
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Reasoning for the special case

Since q(z0) = 0 and q′(z0) 6= 0; z0 is a zero of order 1 of q. That
is, q(z) = (z − z0)g(z) for some g . g is analytic at z0 and nonzero
at z0. Thus

p(z)

q(z)
=

p(z)

(z − z0)g(z)

p(z)

q(z)
=

p(z)/g(z)

z − z0

Evidently, the residue of p(z)
q(z) at z0 is p(z0)

g(z0) . Noticing that

q′(z0) = g(z0), the residue is p(z0)
q′(z0)
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Example

Let f (z) = cos z
sin z . Isolated singular points are at nπ, n = 0,±1, . . .,

p(nπ) 6= 0, q(nπ) = 0, q′(nπ) = (−1)n 6= 0, therefore, each

singular point z = nπ is a simple pole with residue b1 = p(nπ)
q′(nπ) = 1

Example

Let f (z) = z
z4+4

. Let us find the residue at the isolated singular

point z0 =
√

2e i
π
4 = 1 + i . Observe that

p(z0) 6= 0, q(z0) = 0, q′(z0) 6= 0. Therefore f has a simple pole at
z0. The residue is

b1 =
p(z0)

q′(z0)
=

z0

4z3
0

=
1

4z2
0

=
1

8i
=
−i

8

A. Karamancıoğlu Advanced Calculus



Evaluation of Improper Integrals

Definition Let f be continuous. Then∫ ∞
0

f (x)dx := lim
R→∞

∫ R

0
f (x)dx (32)

∫ ∞
−∞

f (x)dx := lim
R1→∞

∫ 0

−R1

f (x)dx + lim
R2→∞

∫ R2

0
f (x)dx (33)
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Cauchy Principal Value of
∫∞
−∞ f (x)dx is defined by

PV

∫ ∞
−∞

f (x)dx = lim
R→∞

∫ R

−R
f (x)dx (34)

If integral (33) converges, it converges to Cauchy principal value.
Recall that∫ ∞

−∞
f (x)dx := lim

R1→∞

∫ 0

−R1

f (x)dx + lim
R2→∞

∫ R2

0
f (x)dx (33)

But existence of CPV does not imply existence of the limits in (33).
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If f is an even function (i.e., f (x) = f (−x)) then existence of (34)
implies convergence of (33). Also for even f , if either of the
integrals (32) or (33)i.e.,∫ ∞

0
f (x)dx or

∫ ∞
−∞

f (x)dx

converges, then ∫ ∞
0

f (x)dx =
1

2

∫ ∞
−∞

f (x)dx
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Note that when f (x) = x , CPV equals zero however (33) does not
converge.

lim
R→∞

∫ R

−R
f (x)dx 6= lim

R1→∞

∫ 0

−R1

f (x)dx + lim
R2→∞

∫ R2

0
f (x)dx
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Example

Evaluate ∫ ∞
0

2x2 − 1

x4 + 5x2 + 4
dx

Note that f is even above. Equality below holds if the integrals
converge. ∫ ∞

0

2x2 − 1

x4 + 5x2 + 4
dx =

1

2

∫ ∞
−∞

2x2 − 1

x4 + 5x2 + 4
dx

Let us define

f (z) =
2z2 − 1

z4 + 5z2 + 4
=

2z2 − 1

(z2 + 1)(z2 + 4)

f has isolated singularities at z = ±i and z = ±2i .
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Continued from the previous page

Consider the semicircular path CR depicted in the figure.

Noting that B1 and B2 are the residues of f at i and 2i
respectively, we have∫ R

−R
f (x)dx +

∫
CR

f (z)dz = 2πi(B1 + B2) (35)
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Continued from the previous page

f (z) =
2z2 − 1

(z − i)(z + i)(z2 + 4)

Define f (z) = φ(z)
z−i with φ(z) = 2z2−1

(z+i)(z2+4)
. Noting that φ is

analytic at z0 = i , and φ(i) 6= 0 we may use the residue formula for
the functions having a simple pole. This yields B1 = φ(i) = −1

2i .
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Continued from the previous page

f (z) =
2z2 − 1

(z2 + 1)(z + 2i)(z − 2i)

Also defining f (z) = φ(z)
z−2i with φ(z) = 2z2−1

(z2+1)(z+2i)
and noting

that φ is analytic at z0 = 2i , and φ(2i) 6= 0 we have
B2 = φ(2i) = 3

4i . Now we can use the residue formula∫ R

−R
f (x)dx +

∫
CR

f (z)dz = 2πi(B1 + B2) = 2πi(
−1

2i
+

3

4i
) =

π

2

→
∫ R

−R
f (x)dx =

π

2
−
∫
CR

f (z)dz

We will show that
∫
CR

f (z)dz equals zero. This will make the
result π

2 .
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Continued from the previous page∫ R

−R
f (x)dx =

π

2
−
∫
CR

f (z)dz

We will show that
∫
CR

f (z)dz equals zero. This will make the
result π

2 . Recall that:
For any nonnegative constant satisfying |f (z)| ≤ M , ∀z on C∣∣∣ ∫

C
f (z)dz

∣∣∣ ≤ ML

where L is length of C .
In the present problem, length is πR, that is, the length of CR .
Next we find an upper bound M for |f | on C .
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Continued from the previous page

Noting that

f (z) =
2z2 − 1

(z2 + 1)(z2 + 4)

we find upper bound for the numerator |2z2 − 1| and a lower
bound for the denominator |(z2 + 1)(z2 + 4)|. Using these, we
obtain an upper bound for |f | on CR .

|2z2 − 1| ≤ 2|z |2 + 1 = 2R2 + 1

and

|z4+5z2+4| = |z2+1||z2+4| ≥ ||z |2−1|||z |2−4| = (R2−1)(R2−4)

→
∣∣∣∣∫

CR

2z2 − 1

z4 + 5z2 + 4
dz

∣∣∣∣ ≤ 2R2 + 1

(R2 − 1)(R2 − 4)︸ ︷︷ ︸
M

× πR︸︷︷︸
L
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Continued from the previous page

→
∣∣∣∣∫

CR

2z2 − 1

z4 + 5z2 + 4
dz

∣∣∣∣ ≤ 2R2 + 1

(R2 − 1)(R2 − 4)︸ ︷︷ ︸
M

× πR︸︷︷︸
L

→
∣∣∣∣∫

CR

2z2 − 1

z4 + 5z2 + 4
dz

∣∣∣∣ ≤ (2R2 + 1)πR

(R2 − 1)(R2 − 4)

The RHS above goes to zero as R →∞, so is
∫
CR

f (z)dz .

→
∫ R

−R
f (x)dx =

π

2
−
∫
CR

f (z)dz

lim
R→∞

∫ R

−R
f (x)dx =

π

2
− lim

R→∞

∫
CR

f (z)dz︸ ︷︷ ︸
0

→ lim
R→∞

∫ R

−R

2x2 − 1

x4 + 5x2 + 4
dx =

π

2
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Continued from the previous page

lim
R→∞

∫ R

−R

2x2 − 1

x4 + 5x2 + 4
dx =

π

2

Because the function f is even, we have∫ ∞
−∞

2x2 − 1

x4 + 5x2 + 4
dx =

π

2

→
∫ ∞

0

2x2 − 1

x4 + 5x2 + 4
dx =

π

4
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