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. x . I .

x = e . first derivative of x with respect to t
d2
=2 : second derivative of x with respect to t

x(" = chit” . n-th derivative of x with respect to t
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Let f be a function of v and v.

of

fy . partial derivative of f with respect to u

" ou
of . I .

f, = 9 . partial derivative of f with respect to v
v

df
F(xX)=x3+2x = — =3x*+2
(x) = x>+ 2x I 3x° +

f is the dependent variable, and x is the independent variable.
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Definitions and classifications

Definition

An equation involving derivatives of one or more dependent
variables with respect to one or more independent variables is
called a differential equation.

A differential equation involving ordinary derivatives of one or more
dependent variables with respect to a single independent variable is
called an ordinary differential equation.

A differential equation involving partial derivatives of one or more
dependent variables with respect to a more than one independent
variable is called a partial differential equation.
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d2y dy
d4 d2
s —i—5dt2 +3x = sint (2)
dv  Ov
3 T =V (3)

0u n 0%u n 0%u
ox2 ~ Oy? = 0z2
The first and second differential equations are ordinary, the third
and fourth differential equations are partial differential equations.

V.
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Definition

The order of the highest ordered derivative involved in a
differential equation is called the order of the differential equation.

d2y dy
d4 d2
s +5——= i +3x = sint (6)
dv  Ov
-2 7
os "ot )

0%u n 0%u n 0%u
ox2  Oy?  0z2
In the example the first is second order, the second is fourth order,

the third is first order, the fourth is second order differential
equations.
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Definition

A linear ordinary differential equation of order n, in the dependent
variable y and the independent variable x, is an equation that is in,
or can be expressed in, the form

n n1 d2

d d d
20(x) T2 +a1(X) g+ Han2(X) T +an1(x) o

dx

+an(x)y = B(x)

where ag is not identically zero.

Functions of x: x2,sin(x),x +1,5,0

Not functions of x: y, 3y, y?, % (di) X+ y,xy

Definition

A nonlinear ordinary differential equation is an ordinary differential
equation that is not linear.
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‘:;)2()2/+5Z§+6y = 0... Linear (9)
Z:j + XQC:X}; + f‘% = xe*... Linear (10)
;!’)232/ + 5% +6y> = 0... Nonlinear (11)
Zi)z/ + 5% +6yy = 0... Nonlinear
Cc];>2<)2/ + 5(%)3 +6y = 0... Nonlinear (12)
d)z(}; 5(%)2%4-6 = 0... Nonlinear
Zi}z/ + 5y% +6y = 0... Nonlinear (13)
Zi{+5y3§+6y = 0...Nonlinear
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Normal Form

The normal form of a system of n differential equations in n
unknown functions xi, X2, ..., Xp, is in the following form:

d

G = flx, X, ... Xn, t)

d

%:7(2(X17X27"‘7Xn7t) (14)

dxn __ .

t;(t — fn(X17X27 -5 Xn, t)

X1 = x1+ 3X1X22 + x1t
X = xg + sin xq + t2
X3 = X1Xo + X2X32
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Normal Form of a Linear System

The normal form, in the general case of a linear system of n

differential equations in n unknown functions xi, x2, ..., X,, is in
the following form:

% = all(t)XI + alZ(t)XQ + ..o+ aln(t)Xn 4 Fl(t)
% = aQ]_(t)Xl I azz(t)x2 + -+ aZn(t)Xn + FQ(t)

(15)

‘ilxtn = an]_(t)X1 —+ an2(t)X2 + -+ ann(t)Xn 4 Fn(t)

x1 = 2txi + 3% + 4x3 + t2
X2 = x1+6x3+1
3 = 32+ 4+t + (t+t2)xs
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A single n-th order linear differential equation can be converted
into this form. Consider

A S L
den A gt AN s
d?x dx
+an— 2(t) + an—1(t)— + an(t)x = F(t)

dt? dt
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d"x dnflx n—2
i + a1(t) v +ay(t) v +--
Xn Xp—1
o a() & van(t) = F(1)
Fan-2(t) e 1(t) G Fan g
X3 X2 *
Notice that
Xi:X;+1 nzl,...,n—l
and

Xp + al(t)x,, + az(t)X,,,l +...4+ a,,,l(t)Xz + a,,(t)xl = F(t)

X = —ap(t)x1—an-1(t)xa—. . .—a3(t)xn—2—an(t)xn—1—a1(t)x,+F(t)
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d"x d"1x d"2x

den +a1( ) g1 +a2( )W—i_
~—— N——
Xn Xp—1
d?x dx ; Rt
+an72( ) dt2 +an— 1( ) E +an( ), X = ( )
~~ x1
X3 X2

Using these definitions, the normal form equivalent of (11) is

dxy

dxn — —a,,(t)x1 _ an—l(t)XZ .= 32(t)xn_1 — al(t)Xn + F(t)
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Solution of a differential equation

Consider the n-th order ordinary differential equation

dy d’  d%
dx’ dx2’ 7 dxn

Flx.y, I=0 (16)
A solution of an ordinary differential equation (16) on interval / is
a function that satisfies the differential equation on the interval /.

dy dPy o, &y
a+yﬁ+3x —i-ﬁsmx—o

2, 43
Flx dy d9y dy

7y7&7d)<27dx3

.. Solution is a function.
.. Solution is defined on some interval /.
. Solution satisfies the d.e. on /.
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A Solution Classification

Continued from the previous page

Explicit Solutions and Implicit Solutions:

Explicit solution is a function f defined on interval / such that it
satisfies the ordinary differential equation on interval / when f is
substituted for the dependent variable.

A relation g(x,y) = 0 is called an implicit solution of the
ordinary differential equation on [ if this relation defines at least
one function f of x on [ such that this function is an explicit
solution of (16) on this interval.

Both explicit and implicit solutions are called solutions.

A. Karamancioglu Advanced Calculus



Example

A function defined for all real x by
f(x) = 2sinx 4+ 3cos x
is an explicit solution of the differential equation

d’y
b2 V=0

for all real x. First note that f is defined and has a second
derivative on the entire real interval. Next observe that

f'(x) = 2cosx — 3sin x
f""(x) = —2sin x — 3cos x
Substituting them in the differential equation we obtain
(—2sinx —3cosx) + (2sinx + 3cosx) =0




Example

Consider the differential equation
dy
— —2y=0
de /

The function f(x) = x2 on the interval | = (—o0, 00) is an explicit
solution to the d.e. above. Substitute in the d.e.:

xf'(x)—2f(x):x-2x—2-x2:O

for all x € I. Thus f is an explicit solution to the d.e. on the
interval /.

| \

Example

Is f(x) = €* — x on the interval | = (—o0, c0) a solution to

d
Y2 e (1 2x)eX +x2— 1
dx
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Consider the differential equation

d?y
2
Y _oy=0
a2
and the solution candidate f(x) = x2 — x~! on the interval

I = (0, ).
Note that f'(x) = 2x + x~2 and f”(x) = 2 — 2x~3. Substitute
them in the d.e.:

x2. (2—- 2X_3) — 2(X2 — X_l) =0

for all x on the interval /. It can be shown that this function is
also a solution to the differential equation on the interval (—o0,0).
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Example

The relation
x24+y?—-25=0

is an implicit solution of the differential equation

dy

a0

X+y

on the interval / defined by —5 < x < 5. It defines two functions

fi(x) = V25— x?

and

fo(x) = =25 — x2

for all real x on /. It can easily be shown that each of these
functions is an explicit solution for the differential equation on /.
Note that if one of them is an explicit solution for the differential
equation on /, it suffices for being an implicit solution.
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Example

It can easily be shown that each of the functions f; and f; is an
explicit solution for the differential equation on /. Note that if one
of them is an explicit solution for the differential equation on

I : —5 < x <5 it suffices for being an implicit solution. Indeed, at
least one of them satisfies the differential equation:
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Example
Consider the d.e.

dy 1

e AT

dx * 2y
The relation y? 4+ x — 3 = 0 on the interval (oo, 3) is an implicit
solution to the d.e. above. Differentiate throughout:

dy
2y— +1=0
ydx+

dy 1
—-+—+—=0
dx + 2y
Solution generated the d.e.! Thus the relation y?> + x —3 =0 on

the interval (o0, 3) is an implicit solution to the given d.e.
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Example

Consider the relation xy® — xy3sinx = 1 and solve it for y for later

use:
1

Xy3(1 —sinx) =1 —>y3 = m

Sy = [X(l_lmx)]é — [x(1—sinx)] 3

Differentiate this:

% _ —% Bl — ST ll— ) 4 (1 — sl
_ xcosx+sinx—1 xcosx+sinx—1 1
B 3[x(1 —sin x)]% ~ 3[x(1 —sinx)] [x(1 —sin x)]%

xcosx +sinx —1

T 3x(1-sinx) 7
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Continued from the previous page

dy xcosx+sinx—1

- =1
s =spelin =1 e 2o = 3[x(1 — sinx)]

Thus the relation
xy3 — xy3sinx =1
is an implicit solution to the d.e.

Q _ xcosx+sinx —1
dx  3[x(1 —sinx)]
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Initial value problems

Problem Find a solution f of the differential equation

dy _

=2 17
B 2X (17)

such that at x = 1 this solution f has the value 4.
Equivalently Solve

dy _

-2 1) =4
B = 2% y(1)
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dy
v
The solution must satisfy the differential equation (17).
y = x? + c satisfies (17) for an arbitrary constant c.
The other condition y(1) = 4 is satisfied if 4 = 1 + ¢, i.e., c = 3.
The condition in addition to the differential equation (17) is called
boundary condition. If the boundary conditions relate to one x
value, the problem is called the initial value problem. If the
conditions relate to two different x values, the problem is called a
(two point) boundary value problem.

2x (17)
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d2y
— 0, =3 y/(1) = —4
a2ty y(1) =3, y'(1)

Since the boundary conditions are given at one x value the
problem is an initial value problem.

d2
d2

+y=0, y(0)=1,y(2)=5

Boundary conditions are given at two different x values; the
problem is a boundary value problem.
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Existence of a unique solution

Theorem
Consider the differential equation

Y fy), yoo) = (18)

where

1) the function f is a continuous function of x and y in some
domain D of xy-plane, and

2) the partial derivative 9 5y f is also a continuous function of x and
y in D; and

3) let (x0, yo) be a point in D. Then there exists a unique solution
of the differential equation (18) defined on some interval

|x — xo| < h where h is sufficiently small.
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Continued from the previous page

Then there exists a unique solution of the differential equation (18)
defined on some interval [x — xg| < h where h is sufficiently small.

Yi(x)

-
o| xg-h o xg+h

Note that this is a sufficiency theorem. A — B does not mean A is
necessary for B to hold true.
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Example

Consider the initial value problem

7

2 2
_ 1) =
I x“+y5, y(1)=3

Let us apply the existence theorem where

f(x,y) = x%+y2, g—; = 2y. Both functions f and g—}f/ are
continuous in every domain D of the xy-plane. The point (1,3) is
in the domain D.

Thus the differential equation has a unique solution defined in the
neighborhood of x = 1.
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A first order linear differential equation in the form

dy

- T Px)y =g(x). y(x0) = yo

is a special case of the one we considered:

& fy)s vlx) =y (18)

Example

Consider
(t2 — 9)y’ + 2y = In|20 — 4t|, y(4) = -3

In the standard form:

, 2 In |20 — 4t|
Y =T oY T T2 ) Y

(4) = -3

v
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2 In |20 — 4t|
!
p— 4 p—
y (t2_9)y+ (2 9) , y(4)

comparing to the expression

dx = f(xv)/): Y(XO) =)0 (18)

we have
2 In |20 — 4t

-9’ " (29
f has discontinuities at t = —3, +3,5. Discontinuities of % are at

t = —3,+43. The continuous interval of y is (—oo, o), and
continuous intervals of t are

f(tay) =

(=00, —3),(-3,3),(3,5), (5,)
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Continued from the previous page

D, I,

-3 0

Domains for unique solution:
(—OO, _3) X (—OO, OO), (_37 3) X (—OO, OO);

Dy D>
(3,5) x (—oo,ool, (5,00) X (—00,00)

-~ -~

Ds Dy
The initial condition y(4) = —3, corresponding to the pair (4, —3)
in the theorem, is in the domain Ds.

y
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Continued from the previous page

-3 [s]

Thus, the differential equation
(t> = 9)y’ + 2y = In |20 — 4t|, y(4) = -3

satisfies the hypotheses of the existence and uniqueness theorem as
any initial condition does in domain Ds. Therefore, it has a unique
solution defined for |t — 4| < h for some h.

We will see in the sequel that the sufficient existence conditions
are simpler for the linear differential equations.
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Exercise

1) Show that y = 4e2* + 2e 3% is a solution of the initial value
y

problem
d’y dy :
— —6y=0; y(0) =6, y'(0)=2
2) Do the following problems have unique solutions?
a)
% = x%siny, y(1) = -2
b)
dy _ y?
=~ _ 1) =0
i B4

A. Karamancioglu Advanced Calculus



Exact differential equations

The first order differential equations to be studied may be
expressed in either the derivative form

dy
— f
o~ [(xY)

or the differential form
M(x,y)dx + N(x,y)dy =0

An equation in one of these forms may readily be written in the
other form. For example
dx  x—y

& (P +y?)dx +(y —x)dy =0

: B dy  sin(x)+y
(sin(x) + y)dx + (x +3y)dy =0 < - xt3y
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Definition

Let F be a function of two real variables such that F has
continuous first partial derivatives in a domain D. The total
differential dF of the function F is defined by the formula

IF(x,y) IF(x,y)
Ox R oy

dF(x,y) = dy

for all (x,y) € D.

Example

Consider
F(x,y) = xy2 + 2x3y

for all real (x,y). Then

dF(x,y) = (y* + 6x%y)dx + (2xy + 2x°)dy
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Definition
The expression
M(x,y)dx + N(x, y)dy (19)

is called exact differential in a domain D if there exists a function
F of two variables such that this expression equals the total
differential dF(x,y) for all (x,y) € D. That is the expression (19)
is an exact differential in D if there exists a function F such that
oF oF
é);y) = M(x,y) and ((;;y) = N(x,y)
for all (x,y) € D.
If M(x,y)dx + N(x,y)dy is an exact differential then
M(x,y)dx + N(x,y)dy = 0 is called an exact differential equation.
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Example
The differential equation

y2dx + 2xydy = 0

is an exact differential equation since y?dx + 2xydy is an exact
differential. Consider F(x,y) = xy? :
F
OF(xy) _ 2,0y OF(xy)
dy

Ox

= 2xy

A. Karamancioglu Advanced Calculus



Test for exactness

Theorem

Consider the differential equation
M(x,y)dx + N(x, y)dy =0 (20)

where M and N have continuous first partial derivatives at all
points (x,y) in a rectangular domain D.
Exactness of the differential equation (20 ) in D is equivalent to

OM(x,y)  ON(x,y)
dy  Ox

for all (x,y) € D

A. Karamancioglu Advanced Calculus



Theorem

Suppose the differential equation M(x, y)dx + N(x,y)dy =0 is
exact in a rectangular domain D. Then a one parameter family of
solutions of this differential equation is given by F(x,y) = ¢ where
F is a function such that

OF(x,y)

Ox

= M(x,y) and <9l—'g)</,y) = N(x,y)

for all (x,y) € D and c is an arbitrary constant.
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Justification

Thus,
F F
OF(.y) g 1 OFL0Y) 0
Ox oy
is the same as
dF(x,y) =0
which is possible if
F(x,y)=c
where ¢ is an arbitrary constant. Namely
F F
0 g;’y)dx+ ‘0 g(’y)dy —0— F(x,y)=c
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Example

(3x% 4 4xy)dx + (2x* + 2y)dy = 0

is exact since
IM(x,y) IN(x,y)
NS fy = )
ay Ox
for all real (x,y). Thus we must find F such that

OF (x,y) OF (x,y)
Oy

=2x%2+2
ox X+ 2y

= 3x% + 4xy and
From the first of these

F(x,y) = /Mxy(?x—i—(b /(3X + 4xy)ox + ¢(y)

= x>+ 2x%y + ¢(y)
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Continued from the previous page

F(x,y) = x> +2x%y + ¢(y)

Then
aF(va) — 2X2 + d¢(y)
dy dy
But we must have
Bl-_g;y) N(x,y) = 2x> + 2y
Thus ;
2% +2y = 2% + gb(y)
or ;
2y = ¢(yy) —o(y)=y*+a
Hence

F(x,y) = x3 —i—2x2y—i-y2 + ¢




Continued from the previous page

F(x,y) = x> +2x%y + ¢(y)

Then
aF(va) — 2X2 + d¢(y)
dy dy
But we must have
Bl-_g;y) N(x,y) = 2x> + 2y
Thus ;
2% +2y = 2% + gb(y)
or ;
2y = ¢(yy) —o(y)=y*+a
Hence

F(x,y) = x3 —i—2x2y—i-y2 + ¢




Continued from the previous page

F(x,y) =x> + 2%y +y* + co
One parameter family of solutions:
x3+2x2y+y2+co =q

or
X3 +2x°y+y?=c

For a verification, compare total differentials of both sides:
d(x® +2x%y + y?) = d(c)

(3x2 + 4xy)dx + (2x* + 2y)dy = 0

We obtained the original equation; thus solution is verified.
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Continued from the previous page

For another verification way, write the given differential equation in
derivative form:

dy 3x% + 4xy

3x2 +4xy)dx + (2x°2 +2y)dy =0 — - = —— 2

(3x“ + 4xy)dx + (2x“ + 2y)dy I 212y

Solve the solution x3 4 2x?2
solution:

2

y + y© = c for y to generate an explicit

V2+2x2y+x3—c=0
B C

B —B1?
y2+By—|—C =0— Yi2 = —Ei [ :| —C

One can show that at least one of y; > satisfies the given differential

= —x%H/x4 — x3 e

(o)

equation; this is another verification of that the solution is correct.
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Example

Solve the initial value problem
(2xcosy + 3x%y)dx + (x> — x®siny — y)dy =0, y(0) =2
The equation is exact:

8M(X y) —2xsiny + 3x® = M
ay 0x

for all real (x, y). We must find F such that

8F(x 2) = M(x,y) = 2xcosy + 3x%y and
ox
6,:;);}/) N(x,y) =x3—x%siny —y
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Continued from the previous page

Then
F(x.) :/M(X,y)ﬁerqﬁ(y):/(2XCOSY+3X2)’)3X+¢( )
_ 2 3
= x“cosy + x°y + ¢(y)
M:x"’ x*siny + ——~ 9oly) = N(x,y) = x>~ xsiny —y
dy dy
4oly) _ _
gy ~ V=T ta
Thus 5
F(x,y):x2cosy—|—x3y—%+co
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Continued from the previous page

Family of solutions:

x2cosy+x3y— > =c
Apply the initial conditions: y =2 at x = 0. We find ¢ = —2.
Thus the solution is:

x?cosy +x3y —Z- =2

2
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Integrating factors

If the differential equation
M(x, y)dx + N(x,y)dy =0 (21)
is not exact in a domain D but the differential equation
11(x, y)M(x, y)dx + p(x, y)N(x, y)dy = 0

is exact in D, then pu(x,y) is called an integrating factor of the
differential equation (21).

(3y + 4xy?)dx + (2x + 3x%y)dy = 0

is not exact. yu(x,y) = x%y works as an integrating factor for this
equation.
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Multiplication of a nonexact differential equation by an integrating
factor thus transforms the nonexact equation into an exact one.
We refer to this resulting exact equation as essentially equivalent
to the original. This essentially equivalent exact equation has the
same one parameter family of solutions as the nonexact original.
However, the multiplication of the original equation by the
integrating factor may result in either

1) the loss of one or more solutions of the original, or

2) the gain of one or more functions which are solutions of the new
equation but not of the original, or

3) both of these phenomena.

We should check to determine whether any solutions may have
been lost or gained.
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Exercises

Check whether the following are exact or not. If exact, solve them.

(3x +2y)dx + (2x + y)dy =0
(y? +3)dx + (2xy — 4)dy =0
(2xy + 1)dx + (x* + 4y)dy = 0
Solve the initial value problem
(2xy — 3)dx + (x* +4y)dy =0, y(1)=2

(3x%y? — y3 +2x)dx + (2x3y —3xy? + 1)dy =0, y(-2)=1
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Separable differential equations

Definition

An equation of the form
F(x)G(y)dx + f(x)g(y)dy =0 (22)

is called a separable equation.

Multiply (22) by the integrating factor Wi

Fl) &)
)T 6 ¥ =0 (23)
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Multiply (22) by the integrating factor

F),  8b) . .
f(X)dx—i—G(y)dy—O (cf. 23)
This equation is exact since
D), 9 &)
dy f(x) Ox G(y)

Denoting f(( )) by M(x) and g((y)) by N(y), Equation (23) takes the
form
M(x)dx + N(y)dy =0

Since M is function of x only, and N is function of y only, a one
parameter family of solutions is

/M(x)dx—l—/N(y)dy:c

where c is the arbitrary constant.
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F(x)G(y)dx + f(x)g(y)dy =0 (cf. 22)

Consider the original equation (22) in the following form:

dy
F(x)gly), + F(x)G(y) =0 (24)
If there exists a real number y = yy such that G(yo) = 0 then (24)
reduces to J
Y
f oA
()80 =0

which has a constant solution y = yp. We next should investigate
whether the constant solution y = yg of the original equation is
lost or not in the process of multiplying by the integrating factor.
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Example

(x — 4)y*dx — x3(y*> = 3)dy = 0

The equation above is separable. We separate the variables by
dividing by x3y#, we obtain

—4 2-3
X dx—y 7

dy =0
x3 Y

or
(X_2 = 4x_3)dx = (y_2 - 3y_4)dy =0

Integrating we obtain the solutions

—1+2+1 1
- - — — — =C
X x2 y y3

where c is any arbitrary constant.
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Original equation : (x—4)y 4dx —x3(y?2-3)dy =0

Essentially equivalent equation : *3* 4 dx y 3dy =0
Soln. of essentially equiv. d.e. : 71 + % + )l, - %

Continued from the previous page

In multiplying by 60) )G(y) 314 in the separation process, we

assumed that x3 # 0 and y* ;é 0. We now consider the solution
y=00of G(y) =0, i.e., y* =0. It is not a member of the one
parameter family of solutions which we obtained. However, writing
the original differential equation of the problem in the derivative
form

dy _ (x—4)y*

dx  x3(y?—3)
it is obvious that y = 0 is a solution of the original equation. We
conclude that it is a solution which was lost in the separation
process.
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Consider
dy 1+cost
dt 1+ 3y2

We can write it as
(1 +3y?)dy = (1 + cos t)dt

Integrating throughout yields the solution:

y+y}=t+sint+c
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Consider )
dy 142t
LA 1) =2
w- v v

We can write it as

2
Yo [ Ea - [T [oar
y

Iny = —In(t) —t* + ¢

—Int—t?>+c A _p

y =y} = ?e
At t =1 we have y = 2. So, 2 = Ae 1 — A =2el. Therefore, the
solution is 5
y(t) = ;el_tQ
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Homogeneous differential equations

The first order differential equation
M(x, y)dx + N(x,y)dy =0
is said to be homogeneous if, when written in derivative form

dy
¢
dx (xy)

there exists a function g such that f(x, y) can be expressed in the
form g(v) where v = £
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Example
The differential equation

(x? — 3y?)dx + 2xydy = 0

is homogeneous. This equation can be written as

dy 3y’—x*> 3 11
dx  2xy 2 2 v

where v := £,
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A function F is called homogeneous of degree n if
F(tx, ty) = t"F(x,y).

If

M(x,y)dx + N(x,y)dy =0 (25)

is @a homogeneous equation, then the change of variables y = vx
transforms (25) into a separable equation in the variables v and x.
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Homogeneity implies % = g(%£) for some g. Let y = vx, then

dy dv dv
a—v—i—xa—) v—|—xa—g(v)—>[v—g(v)]dx+xdv—0
d
_dv &y
v—g(v) x

Integrate throughout:

/ dv dx
v—g(v) X

. . , A
where ¢ is an arbitrary constant. Define F(v) = [
solution of the original equation is

dv

=) then the

Yy
F(Z)+In|x| =
(X)+nlx| = ¢
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Example

Consider the differential equation
(x* = 3y?)dx + 2xydy = 0

We have already seen that this is homogeneous. Write this in the

form
dy —x 3y -1 v

dx 2y 2x v 32
and let y = vx. Obtain

dv -1 3v . dv -1 i v N 2v d dx
= — u— P — e — — - dv=—
dx 2v 2 dx 2v 2 v2 —1 X

Integration gives:

Injv? —1] =In|x| +In|c| = In|v® — 1] = In|x||c|

2
= [v? = 1] = |ox| = 55 = 1| = |ex
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Linear differential equations

Definition

A first order ordinary differential equation is linear in the
dependent variable y and the independent variable x if it is, or can
be, written in the form

dy

2+ P(x)y = Q) (26)

<

Note that:
If P(x) = 0, then direct integration gives the solution:

y(x) = [ Q(x)dx
If Q(x) =0, then the equation is separable.
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Continued from the previous page

Equation above can be written in the form

[P(x)y — Q(x)]dx +dy =0 (27)
This has the form M(x,y)dx + N(x,y)dy = 0. Lets check the
exactness: 8M( ) 8N( )
X,y X,y
dy () and =5

Equation (27) is not exact unless P(x) = 0, in which case
Equation (26) becomes trivially simple. Let us proceed with the
general case P(x) # 0.
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[P(x)y — Q(x)]dx +dy =0 (27)

Continued from the previous page

Multiply equation (27) by (x) to obtain
[1(x)P(x)y — u(x)Q(x)]dx + pu(x)dy =0
Now the equation is exact iff:

Op(x)P(x)y — p(x)Q()] _ du(x)

Ay ox

This condition reduces to
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Continued from the previous page

This can be written as a differential equation

du
— = P(x)dx
7 (x)

— Inju| = / P(x)dx

— = efP(x)dX

where it is clear that p > 0.
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Continued from the previous page

Thus
o= ef P(x)dx (28)
is the integrating factor for (26).
Recall
dy
o + P(x)y = Q(x) (cf.26)

Multiply (26) throughout by the integrating factor:
d
ef P(x)dxji + ef P(x)de(X)y _ ef P(X)dXQ(X) (29)

This is equivalent to

%[ef P(x)dxy] _ ef P(X)dXQ(X) (30)

v
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%[ef P(x)dxy] _ ef P(X)dXQ(X) (30)

Continued from the previous page

This results in

el PO)dx, _ /ef P Q(x)dx + ¢ (31)

y = e—fP(x)dX[/ ef P(X)dXQ(X)dX—i— C] (32)
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dy  2x 1
Y X e (33)
dx

Here P(x) = 2X+1 and the integrating factor is

ef 2’(X—Jrldx e2x+|n 2x

2xe|n |x

X = e | = xe

Multiply (33) by the integrating factor

2 1
xezxﬂjoezx X+ y =X
dx X

or
d 2x

a(xe y)=x
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&(xezxy) =X

Continued from the previous page

Integrate throughout

2
X
Xe2xy = ? +c

X

_ = 2x7
y=e 2+

e—2x

X |0

where c is arbitrary constant.
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Bernouilli differential equations

An equation of the form

Y Py = Q)" (34)

is called a Bernouilli differential equation

Clearly, for n = 0 and n = 1, the equation is linear.

1-n

Excluding the cases n =0 and n = 1, the transformation v = y
reduces the Bernouilli equation to a linear equation in v.
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Multiply the Bernouilli equation by y~" to obtain

y Y 4 Py = Q) (35)
Let v = y'~", then
dv _,dy
dx (1 —n)y dx
Now the (35) becomes
1 dv
2 PGy = Q)
dv + (1= n)P(x)v=(1-n)Q(x)
dx N

Letting P1(x) = (1 — n)P(x) and Q1(x) = (1 — n)Q(x) the
differential equation can be written as

5 TRV =Qi(x)
which is linear in v.
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Riccati differential equations

A Riccati differential equation is an ordinary differential equation
that has the form

¥ = qo(x) + q1(x)y + g2(x)y? (36)

4

The Riccati equation can always be reduced to a second order
linear ODE.

Here we assume that g» is nonzero, otherwise (36) is a linear
differential equation. If go = 0, then (36) is a Bernouilli differential
equation.
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¥ = qo(x) + q1(x)y + g2(x)y? (36)

Continued from the previous page

Use the transform

vV =yq2
then

L . a2 lop3
V=yqptyd = (qo+q1y+qzy2)q2+v$ = QOQZ+(Q1+$)V+V2

Define @ := gog> and P := g1 + % we can write

V=124 P(x)v+ Q(x)
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Continued from the previous page
v=v24 P(x)v+ Q(x)

Now use

This implies
==Y =~ x 3Y =)+ P = ~(2) +

so that - )
Yo y— Q-pP=—qQ+P
u u

and hence
i— Pu+ Qu=0. Q.E.D.

V.
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v = qo(x) + q1(x)y + g2(x)y? (36)

Theorem

If any solution u(x) of the Riccati equation (36) is known, then
substitution of y = u + % will transform (36) into a linear 1st order
equation In z.

Proof If u is a solution of the Riccati equation then

du

2 = 90() + qu(x)u + @2 (37)
By using the substitution y = u + % we have

dy d 1 du 1 dz

o Hx T TR 2k (38)
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Continued from the previous page
y = qo(x) + q1(x)y + q2(x)y

dy d 1 du 1 dz
PP Rl M (38)

2 (36)

dx  dx
Substitute (38) in the Riccati equation (36):
W12 = pu+iP+alu+i)+q
= (@’ +qu+q)+HZEae+ 250+ 1a)

equals g—;r by (37)

1 dz _ 2u i 1 n 1
dz
% —2uzq2 — q2 — zq1
dz
v —(2ug2 + q1)z — @2

which is a linear 1st order differential equation in z.
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Example

Consider the Riccati equation
dy > 1
= = = = 39
dx ty=x x2 (&8

y = % is a particular solution to (39). We want to find the other
solution. Use the transform

1 1
y=—-—+-
X z
then we have
_ .z 1
y = z2 X2

Substitute y and y’ in (39):
Z 1 1 1 1 1
+

72 x2  x  z X z X2
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Z 1 1 1 1 1
-5 - -

72 x?2  x
z 1 1 2
I S RV R R R

Continued from the previous page

Simplification yields a 1st order linear de:

z’—i—z:—x

Its solution is

z=1—x4+ce ™

Noting that y = 1 + 1, the solution to (39) is

IR U S
y_x 1— x4+ ce=X
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Example

Consider the Riccati equation

@ _

de

3y +y% = 4x* — 4x

Obviously u(x) = 2x is a particular solution of this differential
equation. From this we can obtain a 1st order linear differential
equation in z.

A. Karamancioglu Advanced Calculus



Orthogonal trajectories

Let
F(x,y,c)=0 (40)

be a given one parameter family of curves in xy-plane. A curve
that intersects curves of the family (40) at right angles is called an
orthogonal trajectory of the given family.
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Consider the family of curves x? + y? = ¢2. Each straight line
passing through the origin y = kx is an orthogonal trajectory of
the given family of circles.

Figure: Orthogonal trajectories for x? + y? = ¢
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How to find orthogonal trajectories

Step 1. Differentiate F(x,y, c) = 0 with respect to x to obtain

dy
=f 41
Y~ fxy) (41)
Step 2. Solutions of d—y = (;1}/) are the orthogonal trajectories.
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Reasoning

Step 1. Differentiate F(x,y, c) = 0 with respect to x to obtain

dy
=f 41
Y~ fx.y) (41)
Step 2. Solutions of dy = f(;ly) are the orthogonal trajectories.

In F(x, y, c) = 0 the slope of the curve passing through the point
(x,y) is d , which is f(x,y). However, the slope of the curves
passing through (x, y) having right angle to F(x,y,c) = 0 curves
are z——.

f(x.y) o _ ) _
Caution. In step 1 finding the differential equation (41) of the
given family, be sure to eliminate the parameter ¢ during the
process.
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F(x,y,c) = 0 is given by x?> 4+ y? — ¢ = 0. Differentiation gives

y dy  —x
2 2p—=0— — = —
X+ yd dx y

f(x.y)

We are looking for the orthogonal trajectories, so we must solve

gy _ v
dx X
=1
f(x.y)
or
d dy d
Y _ Y Yy =Inxtink = Iny =Inks — y = kx
dx x y X
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Find the orthogonal trajectories of the family of parabolas y = cx?.
dy dy .,y
2
= = —==2 = = =2=
e dx N dx X

X<

Orthogonal trajectory finding requires solving % = g—;

2

2ydy:—xdx—>y2:—X?—i-c—>x2—i-2y2:k2
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Oblique trajectories

Definition
Let
F(x,y,c) =0 (42)

be a given one parameter family of curves in xy-plane. A curve
that intersects curves of the family (42) at a constant angle
a # 900 is called an oblique trajectory of the given family.
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Differential equation corresponding to (42) is

Y~ flxy) (43)
Then the curve of family (42) through the point (x, y) has slope
f(x,y) at (x,y) and hence its tangent line has angle of inclination
tan1[f(x, y)] there. The tangent line of an oblique trajectory that
intersects this curve at the angle a will thus have an inclination
tan~1[f(x, y)] + a at the point (x,y). Hence the slope of the
oblique trajectory is given by

f(x,y)+tana

tan{tan™ ' [f(x,y)] + a} = 1—f(x,y)tana

Thus the differential equation of such a family of oblique
trajectories is given by

dy f(x,y)+tana
Y 44
dx 1—f(x,y)tana (44)
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Example

Find the family of oblique trajectories that intersect the family of
straight lines y = cx at angle 45°.

dy dy y
y = dx ¢ dx x

ﬂ: f(x,y)+tana (44)
dx 1—f(x,y)tana

use f(x,y) = % and tana = 1:

dy F4+1  x+y

X

dx 1-%1 x-—y

This is a homogeneous differential equation Let y = vx:

dv 1+v
V+X&_1—v
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d 1
v—l—x—v— ry

dx 1—v

Continued from the previous page

After simplification
(v—1)dv = —dx

v2+1  x

Integrating
1
5 In(v2 +1) —tan"(v) = —In|x| — In|c|
Inc®x*(v2 +1) —2tan tv =0

Inc?(x* 4 y?) —2tan~! g
X
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Solving higher order linear differential equations

Definition

A linear ordinary differential equation of order n in the dependent
variable y and the independent variable x is an equation that is in,
or can be expressed in, the form

n nfl
O e =) 9

where ag is not identically zero.

We shall assume that ag, ai1,...,a, and F are continuous real
functions on a real interval a < x < b and that ag(x) # 0 for any x
on a < x < b. The righthand member F(x) is called the
nonhomogeneous term. If F is identically zero Equation (45)

reduces to
n n—1

d"y d"y dy
() 0L 4 ()% a1 D+ any =0 (40)

and is then called homogeneous.
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Theorem

Consider the n-th order linear differential equation given by
Equation (45) where ag, ai,...,an, and F are continuous real
functions on a real interval a < x < b and that ag(x) # 0 for any x
ona<x<b. Let xo be any point on the interval a < x < b, and
let ¢y, c1,...,Ch—1 be n arbitrary real constants. Then there exists
a unique solution of Equation (45) such that

f(xo) = co, f'(x0) =c1,...,F" D(x) = cpo1

and this solution is defined over the entire interval a < x < b.
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Example

Consider the initial value problem
d2y d X /
9y e Y =2y (1) =5

In the interval —co < x < 0o the hypotheses of Theorem 6 are
satisfied, so the equation has a unique solution in this interval.
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Corollary

Let f be a solution of the n-th order homogeneous linear
differential equation given by Equation (46) such that

f(x0) =0, f(x) =0,...,F" D(x) =0

where xp is a point of the interval a < x < b in which the
coefficients ag, a1, ..., a, are all continuous and ag(x) # 0. Then
f(x) =0 for all x € [a, b].
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For a homogeneous linear differential equation, (a) the sum of the
solutions is also a solution and (b) a constant multiple of a
solution is also a solution.

Proof Consider
d2
“ar?
where «, 5 and ~y are functions of t.
Let the functions x; and x» be solutions to (47). Then

+5 —|—’yx-0 (47)

d?x dxy d“x:

a—zl+ﬁ +’yx1—Oanda +B —}—’ng—O
dt dt

We wish to prove that x; 4+ x» is also a solution, that is

dz(Xl + X2)
dt?

d(Xl + X2)

R

+9(x1+x)=0

(01
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O[(7’2()(1 +X2) —I—ﬂd(X:l —‘y—XQ)

dt? dt

Continued from the previous page

Using the basic property of the derivatives:

+9(x1+x)=0

2 2
ozdd();l)JrOzd (X2)+ﬁ ( )+ﬁd( )+7X1+7X2—0
t dt?
2 2
adcj(;;l)+ﬁd(cl);1)+vxl+a be) 5( 2) |y =040=0

Likewise, we wish to show that if x satisfies ( 7) then kx also
satisfies it for any constant k.

2( x 2
ad;t/;)—i-ﬁ (kx )—i-'y(kx)—akdd(z)—i-ﬁk (x )—i-k’yx
2
= k(a dd§;)+ﬁ()+fyx)—k 0=0
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Let fi,f,...,fn be any m solutions of the homogeneous linear
differential equation (46). Then c1fi + cofa + -+ + Cmfm is also a
solution of (46), where ci, ..., cm are m arbitrary constants.

Definition

If f1,7f,...,fn are m given functions, and ci,¢,...,cyn are m
constants then the expression c1f1 + cofo + - - - + cmfm is called a
linear combination of fi, f, ..., fn.

| A

Theorem

(Restated) Any linear combination of solutions of the homogeneous
linear differential equation (46) is also a solution of (46).

v
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sin x and cos x are solutions of

d?y
b2 V=0

By the theorem 5sin x 4 6 cos x is also a solution of the equation.

v
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Definition

The n functions fi, >, ..., f, are called linearly dependent on
a < x < b if there exist constants ci, ¢, . .., ¢y, not all zero, such
that

ah+ob+---+cfp=0

for all x such that a < x < b.

Example

Are the functions fi(x) = x, f(x) = x?, f3(x) = x? + 2x
fa(x) = 3 linearly dependent on 0 < x < 107

ax+ ox®+ C3(x2 +2x) + 43 =0, Vx € [0, 10]
In addition to zero the solution ¢; =0, =0,¢c3 =0,¢c4 = 0 we

have a nonzero solution c; =2, =1,c3 = —1,c4 = 0.
.. This group of functions is linearly dependent.
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In particular two functions f; and f, are linearly dependent on
a < x < b if there exist constants c;, ¢, not both zero, such that

af+oh=0

for all x such that a < x < b.

Example

x and 2x are linearly dependent on the interval 0 < x < 1, since
there exist constants cj, ¢, not both zero, such that

c1-Xx+c-2x=0 (48)

for all x on the interval 0 < x < 1. For instance, c; =2,¢, = —1

V.

Notice that we found constants ¢; and ¢, that work for all x in the
given interval 0 < x < 1. If they worked for some x values only
then we wouldn’t say that the functions are linearly dependent.
The next example illustrates this idea:
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Example

Consider the functions cos x, cos2x, and cos 3x on the interval
—7m < x < 7. Form the linear dependence equation

cpcosx + cpcos2x + cz3cos3x =0, -1 < x <7 (49)

When x = 0 this equation holds for c; =1, =1 and ¢z = —2.
But this does not make this set linearly dependent. For linear
dependency on —7 < x < 7, the constants c¢1, ¢, and ¢z must work
for ALL x on the interval —7m < x < 7. Notice thet, for instance,
when x = 7, the above ci, ¢, c3 don't satisfy Equation (49).

Definition
The n functions fi, f>, ..., f, are called linearly independent on
the interval a < x < b if they are not linearly dependent there.
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Example

Are fi(t) = 2t and f(t) = t linearly dependent on 0 < t < 27 If
we can find constants ¢; and ¢, not both zero, such that

a2t+ot?=0,0<t<2 (50)

holds, then f; and £ are linearly dependent.
Suppose for some ¢; and ¢, not both zero, Equation (50) is
satisfied. Then it must hold particularly at t = 0.5 and t = 1:

c1 +0.25¢0 =0

2c1+ =0
These two equations imply ¢; = ¢ = 0, that is, the functions are
linearly independent. While we require Equation (50) hold at all
points on 0 < t < 2, it even does not hold at two points on that
interval!
.. This group of functions is linearly independent.
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Alternative analysis of the previous example

Are fi(t) = 2t and f(t) = t linearly dependent on 0 < t < 27 If
we can find constants ¢; and ¢, not both zero, such that

a2t+ot?=0,0<t<2 (50)

holds, then f; and £ are linearly dependent.
Note that if (50) holds on 0 < t < 2, then so does its derivative:

c1:24+c-2t=0,0<t<L2

This implies ¢; = —cyt. Substitute this in (50):
—ot-2t+0t?=0,0<t<2 = —t?=0,0<t<2 —
¢ = 0.. Use this in (50):

c1:2t=0,0<t<2, — ¢ =0.

We have only one solution ¢c; = ¢, =0,

.". the set of functions {f1, 2} is linearly independent.
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Theorem

The n-th order homogeneous linear differential equation (46)
always possesses n solutions that are linearly independent. Further,
if i, fp, ..., fy are n linearly independent solutions of (46), then
every solution f of (46) can be expressed as a linear combination

af + af+ -+ cpfy

of these n linearly independent solutions by proper choice of the
constants ci, Cp, ..., Cp.
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Example
sin x and cos x are solutions of

d?y

— +y=0 51

dx?2 y el
for all x, —0o < x < 0o. Further one can show that these two
solutions are linearly independent. Now suppose f is any solution
of (51), then by the theorem f can be expressed as a certain linear
combination ¢z sin x + ¢ cos x of the two linearly independent

solutions sin x and cos x by proper choice of ¢; and cp.
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Definition

If f1,f,...,f, are n linearly independent solutions of the n-th order
homogeneous linear differential equation (46) on a < x < b, then
the set f1, 1, ..., f, is called a fundamental set of solutions of (46)
and the function

f(x)=ah+ o+ ---+cpfy, a<x<b

where ¢, ¢, ..., cy are arbitrary constants, is called a general
solution of (46) on a < x < b.
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Example

sin x and cos x are linearly independent solutions of

&

72 +y=0 (52)

for all x, —oo < x < c0. So, {sinx,cosx} is a fundamental set of
solutions for the differential equations (52). Thus ci sin x + ¢ cos x
is a general solution for (52). One can verify that 3sinx and
2sin x + cos x are linearly independent solutions of (52). Therefore,
{3sinx,2sin x + cos x} is another fundamental set of solutions for
(52). This implies that ¢13sinx + c»(2sin x + cos x) is also a
general solution for (52). That is, expressing the general solution is
not unique. The two general solution expressions represent the
same set.
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Definition

Let 1, f,...,f, be n real functions each of which has an (n — 1)st
derivative on a real interval a < x < b. The determinant

fl f2 N fn

g § o f

W(fi, B f)=| S
fi_(n_l) f_—2(n—1) o fn(n_l)

is called Wronskian of these n functions.
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The n solutions fi, fa, ..., f, of the n-th order homogeneous linear
differential equation (46) are linearly independent on a < x < b if

and only if the Wronskian of 1, fa, ..., f, is different from zero for

some x on the interval a < x < b.
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The Wronskian of n solutions fi, fa, . .., f, of equation (46) is either
identically zero on a < x < b or else is never zero on a < x < b.

Let us show that sin x and cos x are linearly independent for all real
X:

sinx  COSX

. = —sin?x —cos’x = —1#0
cosx —sinx

W (sin x, cos x) =
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Example

The solutions X, e %, and e2* of

d3y d’y dy
SV gt Vg,
dx3 dx2  dx T2y =0

are linearly independent on every real interval:

X e X e2X
W(e*, e ™™, ) =| & —e* 26 |=—-6e>#0
e e X 4€2X

for all real x.
The general solution to the d.e. is, therefore,

y(x) =ce + e+ cze%
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Continued from the previous page

Do the solutions €*, e, and e + e~ of

By _d’y dy
AP AN, Sl A AT, TV
dx3 dx?2  dx t+2y=0

linearly independent on every real interval? Can we write the
general solution to the d.e. as

y(x)=cae+ e *+ca(eX+e)

Are the functions sin x and |sin x| linearly independent on (a)
0<x<7m(b)0<x<27m(c)0<x<4n
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Properties of linear differential equations

Let v be any solution of the given n-th order nonhomogeneous
linear differential equation (45). Let u be any solution of the
corresponding homogeneous equation. Then u+ v is also a solution
of the given nonhomogeneous linear differential equation (45).

y = x is a solution of the nonhomogeneous differential equation
2 . . :
% + y = x and that y = sin x is a solution of the corresponding

. : 2
homogeneous differential equation % + y = 0. By the theorem,
the sum y = x + sin x is also a solution of the nonhomogeneous

equation.
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Theorem

Let y, be a given solution of the n-th order nonhomogeneous linear
differential equation (45) involving no arbitrary constants. Let

Ye = C1y1 + @Yo + - - - + cayn be the general solution of the
corresponding homogeneous equation (46). Then every solution ¢
of the n-th order nonhomogeneous linear differential equation
(45)can be expressed in the form

Ye T+ Yp
that is
ciyr+cys+ -+ cayn+¥p
for suitable choice of n arbitrary constants ci, cp, ..., Cp.
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Definition

Consider the n-th order nonhomogeneous linear differential
equation (45) and the corresponding homogeneous equation (46).
The general solution of (46) is called the complementary function
of (45). We shall denote this by y.. Any particular solution of (45)
involving no arbitrary constants is called a particular integral of
(45). The solution y. + yp is called the general solution of (45).
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Consider

d2y i
— = X
dx? y

Ye =cC1SinX + CCOSX, yp, =X

General solution:

y =c1sinx + ccosx + x
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Example

A man 1.8m tall and weighing 80kg bungee jumps off a bridge
over a river.

The bridge is 200m above the water surface and the unstretched
bungee cord is 30m long.

The spring constant of the bungee cord is Ks = 11N /m, meaning
that, when the cord is stretched, it resists the stretching with a
force of 11 newtons per meter of stretch.
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Continued from the previous page

When the man jumps off the bridge he goes into free fall until the
bungee cord is extended to its full unstretched length.

This occurs when the man's feet are at 30m below the bridge.

His initial velocity and position are zero. His acceleration is
9.8m/s? until he reaches 30 m below the bridge.
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Continued from the previous page

His position is the integral of his velocity and his velocity is the
integral of his acceleration.

So, during the initial free-fall time, his velocity is 9.8 x t m/s,
where t is time in seconds and his position is 4.9 x t2> m below the
bridge.

Solving for the time of full unstretched bungee-cord extension we
get 2.47s. At that time his velocity is 24.25 meters per second,
straight down. At this point the analysis changes because the
bungee cord starts having an effect.
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Continued from the previous page
There are two forces on the man:

1. The downward pull of gravity mg where m is the man's mass
and g is the acceleration caused by the earth's gravity

2. The upward pull of the bungee cord Ks(y(t) — 30) where y(t) is
the vertical position of the man below the bridge as a function of
time.
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Continued from the previous page

Then, using the principle that force equals mass times acceleration
and the fact that acceleration is the second derivative of position,
we can write

mg — Ks(y(t) — 30) = my(t)
my(t) + Ksy(t) = mg + 30K,

This is a second-order, linear, constant-coefficient, inhomogeneous,
ordinary differential equation. Its total solution is the sum of its
homogeneous solution and its particular solution.
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Continued from the previous page

Bridge Level
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An order reduction technique

X34+ 4x> +2x+6=0

(Hypothetically) | don't know how to solve 3rd degree polynomial
equations. If one tells me that one of its root is at x = —3.8829,
will it help me to find the others?

3 4 2 2 6
= tf3;82);+ = x%+40.1172x+1.5453 a second degree polynomial

Let f be a nontrivial solution of the n-th order homogeneous linear
differential equation given by Equation (46). Then the
transformation y = f(x)v reduces Equation (46) to an (n — 1)st
order homogeneous linear differential equation in the dependent

; _ dv
variable w = -
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An illustration on the 2nd order differential equation

Suppose f is a known nontrivial solution of the second order
homogeneous linear differential equation

d’y dy
ao(X)ﬁ‘Fal(X)aﬂL"Q(X)}/—o (53)
Let a solution to the equation above be
y = f(x)v (54)

where f is the known solution of (53) and v is a function of x that
will be determined.
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d’y dy
aO(X)@+31(X)&+32(X)Y—O (53)
y =f(x)v— (54)
dy _ ﬂ '
v f(x) 5 T f'(x)v (55)
d?y d’v ,, \dv ”

Substituting (54), (55), and (56) in (53) we obtain

2y v
ao(x)[f(x)% + 2f’(x)% + f"(x)v]

—i—al(x)[f(x)% (V] + 3 () F(x)v = 0
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2 14
() Sy +2F ()% + F(]

+a1(x)[f(x)% + f'(x)v] + a2 (x)f(x)v =0

2

() ()% + Pao(x)F () + an(x)F ()]
Haol)F"(x) + 217 () + a2 (v = 0

Since f is a solution of (53), the coefficient of v is zero, and so
that the last equation reduces to

a0 () G + 23001 () + () () G =0
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2

a0 () G + 23001 () + ()G =0
dv

Letting w = T this becomes

ao(x)f(x)ccil—iv + [2a0(x)f'(x) + a1 (x)f(x)]w = 0

This is a first order homogeneous linear differential equation in the
dependent variable w. The equation is separable, thus by the
assumptions f(x) # 0 and ap(x) # 0, we may write

dw — fl(x) | a(x)
w = R T al)

|dx
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dw _ f'(x) | ai(x)
W [2 f(x) * ap(x)

Integrating we obtain

ldx

In|w| = —In[f(x)]* — / zolggdx+ In|c|

wl[F())? [ a(x) .
In —————— = /a( d
)

C

o/ 2 o e/ A ce ek
o= Spwr 0= %=1 [ S

It can be shown that the new solution and f are linearly
independent. Thus the linear combination ¢;f + cxfv is the general
solution of (53).
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Example

y = x is a solution of

d’y  dy
2
1)— —2x— +2y =0 57
0@+ 1) - 1oy (57)
Find a linearly independent solution by reducing the order.
2
Let y = vx, then % = x% + v and % = x% + 2%. Substitute
them in (57):
d? d d
(x* + 1)(XdTZ + Zd—;) - 2x(xd—; +v)+2xv =0
or )
d<v dv
2
1)— +2— =
x(x“ + )dx2+ ™ 0
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Continued from the previous page

d?v dv

2

1)— +2— =
e )dx2 + dx s

Letting w = ZZ we obtain

dw

2

+1 +2w =20
x(x )X w

dw 5 dx
wo T x(x2+1)
dw —Z 2x
(24
% (x X2—|—1) X
In|w| = —21In|x| 4+ In(x*> + 1) +In|c| —
Injw| = —Inx®+1In(x* 4+ 1) + In|c| —
2
1
|n|W’:|nC(X72+)
X
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Continued from the previous page

_ c(x?+1)
2
Use 2 = w:
v(x) = c [x _ ;]
y(x) = cx {x - H = c(x® - 1)
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Theorem

Let x; and xy respectively be the solutions of

d2

X

an + ,6’ —|— yx = fi(t) (58)
and 2,

a—z + 6 -+ yx = fo(t) (59)
where o, 5 and ~y are functlons of t. Then x1 + x> is a solution of

25
dt2 —I—ﬁ +’yx— f(t) + H(t) (60)
Proof
dz(Xl + x2) d(x1 + x2)
2 T g Tl txe) =
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d2(X1 +X2) C/(Xl +X2)
a—m B +la )
d2X1 d2X2 dX1 dX2
—OCW‘FOCW‘FBE +BE+7X1 + vx2
d2 d2X2 dX2
a o +5 +’YX1+040,2 +ﬁﬁ+’YX2=f1(t)+f2(t)
fi(t) f(t)

Indeed, knowing solutions corresponding to f; and f» we get the
solution corresponding to the forcing function f; + f.
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Theorem

Let fi be a solution of

dny dn—ly
dx” +a1(x) dxn—1

20(x) Y 4 anlx)y = Filx)

ot a1 (0) 2

Let f» be a solution of

dny dn—ly
dx"

dy
dx

ap(x) + o+ ap-1(x) - + an(x)y = Fa(x)

Then kifi + kof> is a solution of

n

d"y
dx”n

dy
dx

d
ao(x)——+a1(x) dx”*)l/—f_. ~Fap-1(x) = +an(x)y = ki F1(x)+kaF2(x)

where ki and kp are arbitrary constants.
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Let i1g = ing = 0. And let vy results in the current i1, and w»
results in the current ip. Then for the input kyvi + kovo with
ip = 0, the current / will be kiii + koio.
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Figure: Mass-damper-spring system with inputs
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Homogeneous linear differential equations with constant

coefficients

Preliminaries
Quadratic formula If

ax* 4+ bx+c=0 (61)
then
—b++/b%2 —4ac
X = % (62)
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Qubic formula If
B+ pPtgxt+r=0 (63)

then use the transformation

p
=u—= 64
x=u-3 (64)
to obtain
3 _
vw+au+b=0 (65)
where a =g — %2 and b=r—E1 + . For the solution of (65)
evaluate
Al b2 2
2 4 27
b a3
B= = —+ =
\/ > Va2t
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The roots of (65) are:

u=A+B
u———(A+B)+\/7%(A—B)
~-}(A+B)- \/-3a-B)
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Consider

dny dn—ly d
a0 tar oy +an1d +any =0 (66)
where ag, a1, . . ., a, are real constants. Consider the solution
candidate:
y — emx
Then we have:
dy mx d2y 2 _mx dny n_mx
— = me —= = m‘e — €
ax e g2 T ’ " dx”n
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Substitute in (66):
agm"e™ + aym"te™ 4+ ... 4 a,_1me™ + a,e™ =0

or
emx(aornn + almnfl 4+ 4a,_im+ an) =0
Since ™ #£ 0, for the satisfaction of the equation we must have

1

agm" +am" "+ - +a,_1m+a, =0 (67)

This equation is called auxiliary equation or the characteristic
equation of the given differential equations (66).
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Coefficients of the auxiliary equation

dny dnfly dy
ao T + a1 1 +---+anf1a+any=0 (66)
aom™ +am™ 4+ a2, mta, =0 (67)
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the n real-distinct roots my, my, ..., m, then the general solution
of (66) is

y = Clemlx + C2em2x T Cnem,,x

where c1, C, ..., C, are arbitrary constants.
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Example

Consider P2 J
y y

X _3F 1oy =o.

dx? 3dx+ y=0

The auxiliary equation is
m* —3m+2=0

Hence m; = 1 and my = 2. The roots are real and distinct. Thus
e* and e®* are solutions. The general solution is then

y=cae’+ cre?*

where ¢y, ¢ are arbitrary constants.
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the real root m occurring k times, then the part of the general
solution of (66) corresponding to this k-fold repeated root is

(Cl + CoXx + C3X2 dbooodt Ckafl)emx

where c1, ¢, ..., Cx are arbitrary constants.
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Example

Find the general solution of

3 2
d>y 4dy 3Q

18y = 0.
dx3 dx?2 dx iy
The auxiliary equation
m3—4m> —3m+18=0
has the roots 3,3, —2. The general solution is then

y=(a+ czx)e3x + cze= X

where ¢y, ¢, c3 are arbitrary constants.
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Example

Let a constant coefficient homogeneous linear differential in the
independent variable x have the characteristic equation

(m—4)3(m—2)*(m—-5)=0
The general solution is

(c1 + cox + i3x?)e*™ + (¢4 + cs5x)e® + g™

where ¢1, ¢, ..., Cs are arbitrary constants.
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the conjugate complex roots a + bi and a — bi, neither repeated,
then the corresponding part of the general solution of (66) may be
written as

y = e®(cy sin(bx) + ¢ cos(bx))

where c1, ¢ are arbitrary constants.

If, however, a + bi and a — bi are each k-fold roots of the auxiliary
equation (67) then the corresponding part of the general solution
of (66) may be written as

y = e™[(c1 + cax + - - - + cpx* 1) sin(bx)

+(Ckp1 + Chpax + -+ cux* 1) cos(bx)]

where c1, Co, ..., Cox are arbitrary constants.
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d?y 2 ;
—4+y=0—->m+1=0—-m=0=%
dx?

— y = e™[crsin(1-x) + cacos(1 - x)] = [cy sin x + ¢ cos x]

where c1, ¢p are arbitrary constants.
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d’y o dy - X[ e o
—=—6—"+425y =0 — m = 3+4i — y = e[c1 sin(4x)+cp cos(4x
dx? " dx

where c1, ¢p are arbitrary constants.
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Example

Let a constant coefficient homogeneous linear differential in the
independent variable x have the characteristic equation

(m—4—i33(m—4+i3)3(m—-5)=0
The general solution is

e*™[(c1 + cox + c3x?) sin 3x + (¢4 + c5x + cgx?) cos 3x] + cre™

where c¢1, ¢, ..., ¢y are arbitrary constants.
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Example
Solve the initial value problem

d’y  _dy :
W—6&+25y—0 y(0)=-3, y'(0)=-1

Its general solution is
y = e3¥[cy sin(4x) + ¢ cos(4x)]
where c1, ¢p are arbitrary constants. From this we find:

d
d—i = ¥[(3c1 — 4c2)sin4x + (4cy + 3¢2) cos 4x]
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Continued from the previous page

y = e¥[cy sin(4x) + ¢ cos(4x)]

% = e¥[(3c1 — 4c2)sin4x + (4cy + 3¢2) cos 4x]
X

Apply the initial conditions:
—3 = e*%cysin(4-0) 4+ cacos(4-0)] = o = —3
—1 = ¢e*%(3¢c; — 4c)sin(4 - 0) + (4c1 + 3¢2) cos(4 - 0)]
— 4 +3cc=-1—>c =2

The solution is

y = e¥[2sin(4x) — 3 cos(4x)]
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Undetermined coefficients method

Consider P2 J
y y 4x
—= 2= -3y =2
dx? dx 3y €

A solution candidate for this system is y, = Ae*™. Hope that for
some value of A, this candidate satisfies the differential equation.
Substitute the candidate and its derivatives

=y, =4Ae™, y) = 16Ae™
in the differential equation:
16Ae™ — 2(4Ae™) — 3(Ae®) = 2%

e?x.

1IN

Simplification yields: A = % — Yp =
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Now consider )
dy ,dy 3
— = — 3y =2
dx? dx YT e
Let this time the particular solution be y, = Ae3%. Substitute this

and its derivatives in the differential equation:
9Ae>* — 2(3Ae>) — 3(Ae>) = 2

This results in:
0 =23

This equality does not hold. Therefore, this candidate does not
work for any A. The reason that y, = Ae3* does not work is that
e3* is also the solution of the homogeneous part. Now try:

Yp = Axe3*. Substitute this and its derivatives in the differential
equation to find that A = . Thus y, = $xe® is the solution.
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UC functions are x", where n is a positive integer or zero, e,
sin(bx + ¢), cos(bx + ¢) and finite product of these four types.

x3, e¥ sin(2x), e*sin(2x + g), e*x3 cos(4x)

A\
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Definition

Given a UC function f(x), its UC set is the set of all UC functions
consisting of

(1) f(x) itself and

(2) all linearly independent functions whose linear combinations are
the successive derivatives of f(x).

For convenience in UC methods procedure, UC sets are
standardized. See Table 1.
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Example

For the UC function f(x) = x>, the set {f, ', f" ...} is
{x%,5x%,20x3, 60x2,120x, 120, 0}. We use the UC set of x> as

S = {x% x* x3,x?,x,1}. Notice that, constant multiples or linear
combinations of the linearly independent functions

x5, x* x3,x2, x, 1 yield all successive derivatives of f(x).

Example

Given f(x) = sin2x, we use the UC set {sin 2x, cos2x}. Note that,
derivatives of f(x) are f'(x) = 2cos2x, f"(x) =

—4sin2x, f"(x) = —8cos 2x, f*)(x) = 16c0s2x, . .. which are
multiples of either sin 2x or cos 2x.

| A\

A
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Given f(x) = e®, we use the UC set S = {e?*}. Note that,
derivatives of f(x) are:

f(x) = ae™, f(x) = a%e®,..., f(N(x) = a"e?*. These are all
multiples of e®.

Example

Let f(x) = x> and g(x) = cos2x, then

h(x) = f(x)g(x) = x3cos2x. UC set of x> is S; = {x3,x2,x,1},
UC set of cos2x is Sy = {cos2x,sin2x}. Then we use UC set of
x3 cos 2x as

S = {x3 cos 2x, x3 sin 2x, x? cos 2x, x? sin 2x, x cos 2x, x sin 2x,
cos 2x, sin 2x}.

For some UC functions, the canonical UC sets are presented in
Table 1.
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UC function UC set

x" {x", x"=1 x"=2 . x, 1}

eax {eax}

sin(bx + ¢) {sin(bx + ¢), cos(bx + ¢)}
cos(bx + ¢) {sin(bx + c) cos(bx + c)}
Xneax {Xn aX n eaX7 . ax aX}

x"sin(bx +¢)  {x" sm(bx +c), x cos(bx + ¢), x"Lsin(bx + ¢),
x""Lcos(bx + ¢), ..., xsin(bx + c), x cos(bx + ¢)
sin(bx + ¢),cos(bx + ¢)}

x"cos(bx +¢)  {x"sin(bx + c), x" cos(bx + c), x"Lsin(bx + c),
x"Lcos(bx + c),. .., xsin(bx 4 c), x cos(bx + c)
sin(bx + ¢),cos(bx + ¢)}

e™sin(bx +c) {e®™sin(bx + c), e cos(bx + ¢)}

e cos(bx + c) {e®sin(bx + c), e cos(bx + ¢)}

Table: 1 Some UC functions and the corresponding UC sets
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Problem statement

We want to find a particular solution of

n

d y d"ly dy
a0 ta gt Fa +ay = Fx)

where F is a finite linear combination of UC functions
Up, Uy ..oy lm

F=kiui+ koup +- -+ kmum
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Undetermined coefficients method

d" n—1 d
ao dx)’: +a1 dx”—)l/ +-- '+3n71d%/<+3ny = ki +hkouz+- -+ kmtm
1. Obtain UC sets 51, 5,, ..., S, for the UC functions
ui, U, ..., Uy as in Table 1.

2. If 5; C Sj for some i,j € {1,2,..., m}, then omit S; from
further consideration.

3. Consider the UC sets remaining after step 2. If any element of
S; is a solution for the homogeneous part, then multiply S; by the
lowest integer power of x so that the resulting set S/ does not
contain solution of homogeneous part anymore. If any set is
revised, then omit its original form from further consideration.

4. Multiply every element of the available sets by an undetermined
coefficient and add them up. It is a valid particular solution
candidate. Substitute the candidate in the differential equation
and solve it for the undetermined coefficients.

A. Karamancioglu Advanced Calculus



d2y dy 2
27 3 9, x
dx? dx teoy=xte

Let us find the general solution of the homogeneous part.
Homogeneous part of the d.e. is as follows:

d’y  ,dy

— —3—+2y=0

dx? dx Ty
Its characteristic equation is m?> — 3m + 2 = 0. This has the roots
1 and 2, therefore, the general solution is:

Ve = 1€ + e

Step 1

UC set of x?e* is S = {x?e*, xe¥, e*}.

Step 2

Since we have only one UC set, this step is omitted.
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Continued from the previous page

d’y dy 2
W—3d7+2y xe

Ve = c1€* + e

UC set of x?eX is S = {x2?eX, xe¥, e*}.
Step 3
e* is a member of y., therefore we multiply S by x.

S = {xPe*, x?e, xe*}

Multiplication by x?, or x> also result in a set that does not
contain a solution of homogeneous part. But the algorithm says
" Prefer the lowest integer power of x”

Step 4

A particular solution candidate is:

Vp = ACeX + Bx?e* + Cxe*
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d2y dy 2
i A, S _
dx? dx Ty =xe

Ve = c1€° + coxe*

Step 1 UC set of x?e* is S = {x%eX, xe*, ¥}

Step 2 Omitted. Because we have only one UC set, this step is
not applicable to this problem.

Step 3 €* is a member of y., however, if we multiply S by x the
resulting set will contain xe* which is also member of y.. Hence,
we multiply the set by x?.

—xe xe x2e
{ }

Step 4 A particular solution candidate is:

yp = Ax*eX + BxPeX + Cx?e
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d?y dy .
W— a—3y:26)(—105|nx

Ve = 1> 4+ e

Step 1 UC sets: S; = {e*}, Sp = {sinx, cosx}

Step 2 Note that neither of these sets is identical with nor
included in the other, hence both are retained.

Step 3 None of the functions €%, sin x, cosx in either of these sets
is a solution of the corresponding homogeneous equation. Hence
neither sets needs to be revised.

Step 4 Form the linear combination:

yp = Ae* 4 Bsinx + C cos x

Substitute this and its derivatives in the differential equation to
obtain A = —%, B =2, and C = —1.
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2y d
d7}2/—3dy+2y—2x 4 e 4 2xeX + 4™

Ye = Cle X+ cpe”

Step 1

UC sets: S1 = {x2,x,1}, S, = {&*}, S3 = {xe*, e*},S; = {e3*}
Step 2 S, C S35 — Delete the set S,.

Now we have the sets Si, S3 and S; remaining.

Step 3 e* of S3 is a member of y.. Multiply S3 by x:

Sh = {x?e*, xe*}

Now we have Si, S5 and S, to consider.
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Continued from the previous page

Step 1

UC sets: S1 = {x2,x,1}, Sp = {e*}, S3 = {xe*, e*},S4 = {>}
Step 2 S, C S3 — Delete the set S».

Now we have the sets S1, S3 and S; remaining.

Step 3 €* of S3 is a member of y.. Multiply S3 by x:

Sh = {x%eX, xe*}

Now we have Si, S} and S4 to consider.
Step 4
Form the linear combination by using the members of Sy, S, and
Si:
¥p = Ax? 4 Bx + C + De** 4 Ex?e* + Fxe*

Substitute this and its derivatives in the differential equation to
obtain

7
Yp=x*+3x+ 5 +2e3 — x?eX — 3xe*
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d* d?
KZ é:3x2+4sinx—2cosx

Ye = €1 + CoX + c3Sin X + ¢4 cos x
Step 1 UC sets: S; = {x?,x,1}, S, = {sin x, cos x},
S3 = {sin x, cos x}
Step 2 S, and S3 are identical; delete the set Ss.
Step 3 Multiply S; by x?. The revised set is S} = {x*, x3, x?}.
Multiply S> by x. The revised set is S) = {x sin x, x cos x}
Form the linear combination by using the members of Si and Sj:

Yp = Ax* + Bx® + Cx? + Dxsin x + Ex cos x

Step 4 Substitute this and its derivatives in the differential
equation to obtain

1 .
Yp = ZX4 — 3x2 + xsin x 4 2x cos x
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Variation of parameters method

Consider
Y'(x) + P(x)y'(x) + Q(x)y(x) = f(x) (68)

We want to find a particular solution in cases where undetermined
coefficients method cannot be applied to produce y,.
Suppose

Ye = Cy1+ @y

is a known general solution to
Y'(x) + P(x)y'(x) + Q(x)y(x) = 0. (69)
Then it is possible to find a y, of the form
Yp = Ay1 + Bys

where A and B are some functions of x to be determined (at the
present moment they are unknowns).
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We need to substitute this form of y, in (68) and try to find A and
B. To do this, we need to find y; and y,.

Yp = Ay1 + By, — y,’, = Ay{ + Ay + Byé + By,

To avoid dealing with second derivatives of A and B we will look
for A and B satisfying the following condition:

A'yl + B/yz =0 (70)

Now we need to find a solution that satisfies both (68) and (70).
We shall see that imposing an additional condition would not
cause any additional trouble in finding a solution.

— ¥y, =Ayi + By
Thus
Yo = Ayl + Ay + Byy + B'y;
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We substitute them in (68):
o
Ayi +A'y1 + Byy +B'y; + PAy;
~~ —~~

/
+ PBy; + QAy1 + QBy, = f (71)
\v/

Recall that each of y; and y» is a solution to the d.e.’s
homogeneous part:

Y'(x)+ P()y'(x) + Q(x)y(x) = 0. (69)

Thus, the sum of the underbraced terms A(y; + Py; + Qy1) equals
zero. The sum of the overbraced terms above B(y5 + Py + Qy2)
also equals zero. Thus (71) becomes

Ay + By, =f (72)
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To find A and B we need to solve (70) and (72):
Ayr+ By, =0

Ay + By, =f

e )= 17

In matrix notation
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In matrix notation

e )=

Cramer's rule may be used:

23

Foy _ _

A = 2 s LN S s LU
‘yl yz‘ W(y1,y2) W(y1,y»)
i ¥
¥
/

y

g _ 1N __nf LB nf dx
‘YI yz’ W(y1,y2) W(y1,y2)
i ¥
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Since the particular solution has the form
Yp = A(X)y1 + B(x)y2
we have

yof nf
y =—y1/dx+yz NP
i W(y1,y2) W (y1,y2)
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Determine the general solution for

d2y = tan
=7 _ P
dx? y

Ye = €1CosX + e sinx — yp = A(x) cos x + B(x) sin x

0 sin x
, tanx cosx )
A = - = cos x—sec x — A = sin x—In | sec x+tan x|+c3
cosx  sinx
—sinx cosx
COS X 0

, ‘ —sinx tanx )
B = =sinx — B = —cosx + ¢4

CosX sinx
—sinx cosx
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Continued from the previous page

— yp = cos x(sin x — In|sec x + tan x| + c3) + sin x(— cos x + c4)

Particular solution, by definition, is free of arbitrary constants. So
take c3 = 0 and ¢; = 0:

yp = cos x(sin x — In | sec x + tan x|) 4 sin x(— cos x)
Thus the general solution to the differential equation is

y = c1sin x+¢p cos x+cos x(sin x—In | sec x+tan x|)+sin x(— cos x)

v
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Example

Consider the differential equation

V= 2y —3y =xe"

One may solve it by undetermined coefficients method. We solve it
by the variation of parameters method. The homogeneous part has
the general solution:

Ve(x) = cre™ + e
The particular solution will have the form:

Yp = A(X)y1 + B(x)y2

or more explicitly

yaf nif
Y Z—)/1/dx+y2/dx
P W (y1,y2) W (y1,y2)
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Continued from the previous page

) =ag ltael
yi 2
=y - / dx +yo - nf — _dx
W(Yl ¥2) W(y1,y2)
A(X) B(x)

—X 3e3x

:_/4e2x / dX__i

dx
/WY1>Y2 /
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Continued from the previous page

i 2
=»n- / dx +y> - nf
W(y1 ¥2) W(y1, yz)
A(X) B(x)

f —X X —4x
Ji dx—/e);edx:/xe dx
W(y1,y2) 4e2x 4
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Continued from the previous page

2
X
Alx) = ——
() =-%
_ _i —4x i —4x
B(x) =1 64
Thus
2 X 3x —4x 1 —4x
Yp(x) = ——e > 4+ eX( 16e == )
z « < X 1
yold) = ~e (=2 = )
General Solution:
—X 3x X2 —X X X 1
Y0) = vel) +y(x) = c1e™ + e = e X6 — =)
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First order Case

Consider
Y+ P(x)y = f(x) (73)

Suppose y1 is a solution to
y'+P(x)y =0 (74)
Look for y, = A(x)y1. Substitute in (73) yields:
Ay] +Ay1 + PAy; = f
—~~ ——

Since yj is a solution to (74) the sum of the underbraced terms,
i.e., A(y; + Py1) equals zero, so

f f f
A/yl—f—>A’——>A—/dx—>yp—y1/dx
7 )1 7
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The Cauchy-Euler equation

The transformation x = et reduces the equation

dn n—1

"y dy
-1 _
g P T A tay = F(X)

aoX

to a linear differential equation with constant coefficients.
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We shall show it for the second order differential equation

2

d d
aox2 y—l—alx—y+agy F(x)

dx? dx
Letting x = e! assuming x > 0, we have t = Inx. Then

dy dy dt dy 1 Q dy

dx _dt dx _dt x  “dx _ dt
1 dy

d’y 1d ,dy dy d 1 1,d% dt
B2~ xdx\dt) Tdtdxx  x\ddx) X dt
1 d’y dy 2d2 d’y dy
“elae a7 e T e @
Note that
d du dt d  dy d?y dt

W= gid 7 alad) T a2 dx
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Substituting in the differential equation

d’y dy dy
_ 7 _ 7 7 =F t
(dt2 dt) + al dt +32y (e )
or )
d d
aoTé + (a1 — ao)df); + ary = F(ef)
Compare to:
axd2y+ xﬂjta F(x)
0X" 2 a1 dx 2y =
Remark

1. The leading coefficient agx” = 0 for x = 0, therefore, x =0 is
not included in the domain. We take the domain as x > 0.

2. If the domain is x < 0, then the correct transformation is

X = —et,
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Example
2 d’y dy

g7 9%

dx? dx
Let x = ef, assume x > 0. Noting that ag = 1, a1 = —2, a» = 2,
we obtain

+2y =x3

d’y _dy 3
—Z 2 32 490y =3t
dt? 3dt tey=e

The general solution will be

1
y=ce + c2e2t F §e3t

In terms of the original independent variable x:

1
y=qcax+ ch2 aF §X3
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Power series solutions

Consider a second order homogeneous linear differential equation

d2
ao(x)d 5 +a1(x) +ag( )y =0 (75)
or equivalently
d?y
22 T Pl(x) + P>(x)y =0 (76)
where Pi(x) = Z;gg and Py(x) = zzgg Assume that Equation

(75) does not have a solution expressible as a finite linear
combination of known elementary functions. Assume that it has a
solution in the form of infinite series:

oo
¢+ a(x —xo) + a(x — xo . Z x—x)" (77)
where ¢p, ci, ... are constants. (77) is known as power series in

(x — x0)-
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A function f is said to be analytic at xp if its Taylor series about xg

% £(n)(x
> ) 0)(X — xo)"

n!
n=0

exists and converges to f(x) for all x in some interval including xo.
v

Definition

The point xp is called an ordinary point of the differential
equation (75) if both of the functions P; and P in the equivalent
normalized equation (76) are analytic at xp. If either (or both) of
the functions is not analytic at xg, then xq is called a singular
point of the differential equation (75).
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d’y dy 2
ﬁ—i-xd——l—(x +2)y=0

Here P1(x) = x and Py(x) = x? + 2. Both functions are analytic
everywhere. Thus all the points are ordinary points.

d?y dy 1
—1)—= e —v=0
(x )dx2 +de+xy
or equivalently,
d?y x dy 1

ay Y. = ,_0

a2 (x —1) dx - x(x — 1)y

Here Pi(x) = (X ) and Py(x) = X(Xl_l). Py is analytic everywhere
except at x = 1. P is analytic everywhere except at x = 0 and

x =1. Thus x =0 and x = 1 are singular points of the differential
equation.
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Theorem

Hypothesis:

The point xq is an ordinary point of the differential equation (75).
Conclusion:

The differential equation (75) has two nontrivial linearly
independent power series solutions of the form

oo
E C,, X —Xo
n=0

and these power series converge in some interval |x — xp| < R
(where R > 0) about xg.
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The method of solution

Assume that the solution y is

o0
y=cy+ c(x —xp) + a(x — x0)? + - :Zc,,x—xo
n=0
Then
dy = +2a(x—x)+3a(x—x)2+ - = Z ncy(x — xo)™t
dx
d? >
dTy = 200+63(x—x0)+12¢s(x—x0) >+ - = Zn n—1)cn(x—x0)" 2

n=
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We substitute y and its derivatives in the differential equation. We
then simplify the resulting equation

Ko + Ki(x — x0) + Ka(x —x0)*> +--- =0

In order that this equation be valid for all x in the interval of
convergence |x — xp| < R, we must set

Ko=Ki=Ky=---=0
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Example

Consider )
d<y dy 5
W+X?+(X +2)y=0
We want to find power series solution of this equation about
xp = 0. Solution has the form: y = "7 cn(x — x0)"

Equivalently, y = >~77 c,x". This implies:

() d2y (9}
- = Z nc,x"1, v Z n(n—1)c,x"—2
n=1 X n=2

Substituting in the differential equation we obtain

in n—1)cpx"” 2—i—xEInc,, n= 1+x2§:c,,x +2ZC,, =
n=2
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Continued from the previous page

o0

Zn (n—1)cpx"" 2—|—><z:nc,,x" 1+x22cnx +2ZC,,X
n=2

in n—1)c,x"" 2+chnx +Zc,, ”+2+2Zc,,x =0

n=

o o [o¢] (o @]
Z n(n— 1)c,,x"72 + Z ncpx™ + Z cpx™2 42 Z cpx" =
=0 =0

n=2 =
%/_/ ~" ~"
1 2 3 4
(78)

Consider the first term and use n = m + 2 transformation
o0 o0 o0
Zn n—1)c,x"" Z m+2)(m+1)cmy2x™ Z(n+2)(n+1)cn+2x"
n=2 m=0 n=0
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Continued from the previous page

Consider the third term and use n = m — 2 transformation

(%s) 0o [e's)
E C,,X'H_2 = E Cm_2Xm = E Cn_2Xn
n=0 m=2 n=2

Now Equation (78) becomes

o0 o0 o0 (o)
Z(n +2)(n+ 1)cppox"+ Z ncpx™ + Z ChoXx"+2 Z cx"=0
n=0 n=1 n=2 n=0

~" \_V—/ ~"~

1 2 3 4

(79)

A. Karamancioglu Advanced Calculus



Continued from the previous page

Now Equation (78) becomes

o0 o0 o o
Z(n +2)(n+ 1)cppox"+ Z ncpx™ + Z ChoX"+2 Z cx"=0
n=0 n=1 n=2 n=0
1
(80)

Obtain useful appearances of the terms:

[e.9]
st term: 2¢p 4 6c3x + Z(n +2)(n+ 1)cppox”

n=2

o0
2nd term: c1x + Z nc,x"
n=2

[o.¢]
4th term: 2¢y + 2¢1x + 2 Z cpx"
n=2
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Continued from the previous page

Now Equation (80) becomes

o0 oo
2¢p + 6c3x + Z(n +2)(n+ 1)cppox" + aax + Z nc,x"
n=2 n=2

o0 o
+ Z Cnox"+2co+2c1x+2 Z chx"=0
n=2 n=2

— (2C0 = 2C2) T (3C1 ol 6C3)X

+ 3 [(n+2)(n +1)cnsa + (n+2)cn + coo]x” =0
n=2

A. Karamancioglu Advanced Calculus



Continued from the previous page

(2c0 4+ 2¢2) + (3¢c1 + 6c3)x
+ D [(n+2)(n+ 1)cnsa + (0 +2)cn + cn2]x” =0
n=2

Equating every power of x to zero we have:

G = —Q
1

3= —=C

T2

(n+2)ch + cn2
(n+1)(n+2) "’

Ch42 = —
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Continued from the previous page

(n aF 2)Cn + cph—2

= — > 2
H
ence . 4o + ¢ . 1C

4T 7T T g®

ne 2@da 8

> 20 40"

The general solution is:

1 1 3
Yy =C+ C1X — cox2 — §c1x3 aF ZCOX4 F Eclx‘r’ T oo

1 1 3
y:CO(l_X2+ZX4+"')+C1(X—§X3—|—4—0x5—|—---)
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Solutions about singular points

Consider a second order homogeneous linear differential equation

2
200 9% + (02 4 ar(x)y =0 (75)

and assume that xp is a singular point of (75). We are not assured
of a power series solution in positive powers of x — xg. However,
under certain conditions we may assume the solution of the form

y=Ix=x0l")_ cnlx = x0)" (81)

n=0

where r is a certain (real or complex) constant.
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Let us classify the singular points. For this, normalize (75):

d2
2 4 Pi(x)

dy
— 4+ P, =0 76
dx 2(x)y (76)

dx

where Pl(x) — a(x) and PQ(X) _ ag(x)'

ao(x)

Definition

Consider the d.e. (75) and assume at least one of the functions Py
and P; in the equivalent normalized equation (76) is not analytic
at xp, so that xg is a singular point of (75). If the functions defined
by the products

(x — x0)P1(x) and (x — xo)sz(x)

are both analytic at xp, then xp is called regular singular point of
(75). Otherwise we call it irregular.
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2

Normalized form:

d?y ldy x-5
a2 axax T 220

Here Pi(x) = —o and Py(x) = ’;—;25 Clearly xo = 0 is a singular
point of the d.e.
The products xP1(x) = —3 and x?P(x) = %52 are analytic at

x =0, so x =0 is a regular singular point of the d.e.
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Example
d’y dy
2(, 29 el _
x“(x —2) X2+2(x 2) X+(x+1)y—0

Normalized form:

d?y 2 dy x+1
et AT S P
32 x2(x — 2) dx + x2(x — 2)2y

Here P1(x) = ﬁ and P(x) =
points at x =0 and x = 2

At x =0, xPi(x) = —5 and x 2P, (x) = 2)2 we see that
xP1(x) is not analytlc at x=0,s0x=0is an irregular singular
point of the d.e.

At x = 2, both (x — 2)Py(x) = % and (x — 2)?Py(x) = Xx—tl are
analytic, so x = 2 is a regular singular point of the d.e.

+1 :
(x—27 have the singular
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Theorem

Given that xg is a regular singular point of the d.e. (75), the d.e.
(75) has at least one nontrivial solution of the form

y=Ix—x0|")_ calx — x0)" (81)
n=0

where r is a definite (real or complex) constant which may be
determined, and this solution is valid in some deleted interval
0 < |x — xo| < R about xp.

Ay \ \
I

vR Oy xRN
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We saw in a previous example that x = 0 is a regular singular point
of the d.e.

By the theorem, this equation has a nontrivial solution in the form

oo
|x|" Z Gl
n=0

valid in some deleted interval 0 < |x| < R about x = 0.
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The Method of Frobenius

1. Let xp be a regular singular point of the d.e. (75). We seek a
solution of the form

y=(x—x0)" Y nocn(x —x0)"= > 7" cn(x — x0)""" valid for

0 < x —xp < R. Note that for 0 < x — xg < R the term |x — xp|"
becomes (x — xp)". When —R < x — xg < 0 the following
procedure may be repeated by replacing x — xp by —(x — xp).

2. Term by term differentiation:

o0 oo
d
y = z;) ol =) = G = D+ el )

o¢]
d2 Zn+r )(n+r—1)ca(x — x0)™" 2
x

We substitute y, % , 5% in (75).
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Continued from the previous page

3. Substitution results in an expression of the form
Ko(x —x0) T + Ki(x — x0) TH! + Ko(x — x0) T2 4+ =0

4. For a solution we must set

5. Equating Ky to zero we obtain a quadratic expression in r,
called indicial equation of the d.e. (75). The roots of this
quadratic expression is often called the exponents of the d.e. (75).
Denote the solutions r; and r» where Re(r1) > Re(r»).

6. Now equate the remaining coefficients to zero. This leads to a
set of conditions involving r.

7. We substitute r; for r in the conditions of step 6, and choose ¢,
satisfying the conditions. If ¢, are so chosen, the resulting series
(81) with r = ry is a solution.
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Continued from the previous page

8. If n # r», we may repeat the procedure of Step 7 using the root
rp. In this way we may obtain a linearly independent solution of the
d.e. (81). When r; and r, are real and unequal, the second solution
may or may not be linearly independent from the one obtained in
Step 7. Also, when r; and r, are real and equal we do not get a
new solution. These are exceptional cases and treated later.
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L
Solve ) J
d
2x2d7}2/—xd—i+(x—5)y:0

in some interval 0 < x < R. We assume

oo
Y=Y e
n=0

where ¢y # 0. Then

(e}

dy Z 1
= =% (n+4r)e,x"t"
dx e
d2y - n+r—2
v Z(n +r)(n+r—1)cyx
n=0
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2 d2y X dy
dx? dx

Continued from the previous page

. By . : . :
Substitute y, %, 37{ in the differential equation:
o
Z n+r—1)cyx"t Z(n + r)eax"t"
n=0

00 o)
+ c Xn+r+1 -5 c Xn+r
§ n E n
n=0 n=0

Let us simplify this:

SoR(n+r)(n+r—1) = (n+r) = Sleax™ + 3 ey 1x" =0
n=1

v
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Continued from the previous page

i[2(n +r)(n+r—1)—(n+r) = 5lc,x"" + i Crx™ =0

n=0 n=1

or
[2r(r — 1) — r — B]cox”

—i—i{[Q(n +r)(n+r—1)—(n+r)—5]cs + Cnil}xn—f—r —0
n=1

The lowest power of x has the factor (indicial equation)

2r(r—1)—r—-5=0.

Equating this to zero yields rn = % and r, = —1. These are the
exponents of the the d.e. Notice that these numbers are real and
unequal.

v
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Continued from the previous page

The coefficients of the higher power x's are equated to zero. This
gives a recurrence formula:

2(n+r)(n+r—1)—(n+r)—5lch+cn-1=0, n>1
Letting r=n = g yields:

5 3 5
[2(n+2)(n+3) = (n+2) =5lea— o1 =0, n>1

This simplifies to:
n(2n+T7)c, +¢ch-1=0, n>1

or

Ch_
n—1 n>1

C":_n(2n+7)’ -
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Co C1 Co 2 Co

a=——, Q=——F===7—, (3=—"-=—=—"7,...
YT 90 T 22108 P39 7722
So the solution corresponding to r = % is
5 7 9 11
v = aled - b+ dpd =t )
= ngi(l—%x—l—ﬁxz—%x?’—i—---)

Recall that the general form of the solution is:

(e.e]
y = g enx™ = ox" + x4+ x4 a3t -
n=0

v
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Continued from the previous page
Now let r = —1 and obtain the corresponding recurrence formula

2(n—1)(n—2)—(n—1)=5]ch+cr-1=0, n>1
This simplifies to:
n(2n—T7)ch+cp-1=0, n>1

or

Ch—1
e >1
cn n(2n—7)’ h=
This yields:
1 1 1 1 1
= —¢ 0 ==-C=-—¢ GG=-C0=—0C,---
1= 50 @= 0 =350, B=30= 5500
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1 1 1 1 1
1 =<=-C0, C=-0=5:0, G=;0=

5 6~ 30 327 o0

Continued from the previous page

The solution corresponding to r = —1 is

y = a(xTHi4mx+ogx>+)
= coxfl(l—i—%x—i—%xz—i—%x‘?’—i—---)

The two solution corresponding to rn = % and r, = —1 are linearly
independent. Thus the general solution could be written as

1 1
y:Clx (1—=x4 —x?

73 )
X T 108" T T)

1 1 1
+Cox Y1+ X—|—%X +90 S4..0)

A. Karamancioglu Advanced Calculus



It is claimed in the beginning of this section that when r; and r»
are real and unequal we may or may not find a second linearly
independent solution in the form of (81).

y=Ix=x|"> calx = x)" (81)
n=0

The following theorem states an existence condition for the linearly
independent solutions.
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Theorem

Let the point xg be a regular singular point of the d.e. (75). Let
and rp [where Re(r;) > Re(r2)] be the roots of the indicial
equation associated with xg. We can conclude that:

1. Suppose 1 — r» # N, where N is a nonnegative integer (that is,
rn—r #0,1,2,...). Then the d.e. (75) has two nontrivial linearly
independent solutions y; and y» of the form (81) given respectively
by

oo

yi = |x — xo|™ Z cn(x — x0)"
n=0

where ¢y # 0, and

o0
y2 = |x — xo|™ Z dn(x — x0)"
n=0

where dy # 0.
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2. Suppose r1 — r» = N, where N is a positive integer. Then the
d.e. (75) has two nontrivial linearly independent solutions y; and
Yo given respectively by

(e o]

1= |X — Xo|r1 Z Cn(X — Xo)n
n=0

where ¢g # 0, and

o
ya = |x — xo|™ Zd,,(x —x0)" + Cy1(x) In|x — xo|
n=0

where dy # 0, and C is a constant which may or may not be zero.

V.
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Differential operators

The general linear system of two first order differential equations in
two unknown functions x and y is of the form

a1(t)% + ax(1) G + as()x + aa(t)y = Fu(2) } (82)
bi(t) % + by(t) % + bs(t)x + ba(t)y = Fa(t)

Solution of the system is an ordered pair (f, g) such that x = f(t)
and y = g(t) simultaneously satisfy both equations in some
interval a <t < b.
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A dx
px 2 &
Tt
A dx
D"x =
X7 e
(2D +5)x = 2% +5x

When x = t3 + sin t, this becomes

2d(t3 +sint)

5(t% +sin t
™ +5(t> +sint)

(2D +5)(t> +sint) =

= 2(3t? + cost) + 5(t> +sint)
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A linear combination of x and its first n derivatives

d"x n dn1lx n n dx n
a a cee 4 ap_1— + apx
0 gtn V=1 Ly T

can be written in operators notation as

(D" + D"t + -+ a,.1D+a,) x

Linear operator with constant coefficients
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The operator agD" + a;D" ! +--- +a, 1D + a, is denoted by L,
ie.,

L2 2D "+ D" 4 +a, 1D+ a,
Assume that f; and f> are both n times differentiable functions of

t, and ¢; and ¢ are constants. Then

Llcifi 4+ bh] = allfi] + clL[h]
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L =3D?+ 5D — 2 applies to 3t% + 2sin t, then

L[3t* 4 25sin t] = 3L[t?] 4 2L]sin t]

LHS: (3D? + 5D — 2)(3t* + 2sin t)
— (18 — 6sint) + (30t 4 10cos t) 4 (—6t> — 4sint)
— —6t% + 30t + 18 — 10sin t + 10cos t
RHS: 3L[t?]+2L[sin t] = 3(3D%+5D —2)t*+2(3D*+5D —2)sin t
3(3j:2t +5dit — 2t )—1—2(35225|nt+555|nt—2sint)
3(6 + 10t — 2t?) +2(—3sint + 5cos t — 2sin t)
— —6t> + 30t + 18 — 10sin t + 10cos t
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Suppose two linear operators L1 and L, apply to f successively. If
f has sufficiently many derivatives

Lilof = Lolyf = Lf

where L is the product of Ly and Ly using the rules of the
polynomial product.

(D+1)(D+3)sint = (D +3)(D+1)sint = (D*+4D + 3)sint
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Consider ) J
I e } (83)
eSS 4 ey =

In the operator notation

(2D —-3)x —2Dy = f
(2D+3)x+ (2D +8)y =1f
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Continued from the previous page

(2D —-3)x —2Dy = f
2D+3)x+(2D+8)y =1

Lix+ Loy = f1, multiply by L4
L3x + Lyy = f, multiply by L

Lalix + Laloy = Lsfq

Lolsx + Lolay = Lof: }subtracthd from the 1st
2L3 olay = Lofp

(Laly — Lol3)x = Lafy — Lofy

Lsx = g1
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Continued from the previous page

(L4L1 - L2L3)x = 14fi — Lob
[(2D + 8)(2D — 3) — (—2D)(2D + 3)]x = (2D + 8)t — (—2D)2
D% + 16D — 24]x =2 + 8t

1
[D?> 42D —3|x =t + =

4
d’x dx 1
— +2— —3x=t+ - 84
dez T dt 3 T3 (84)
1 11
—>X:c1et+ch*3t—§t—%
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Continued from the previous page

Reconsider
Lix+ Ly =fi,
L3X = L4.y = f.27

Lix+ Loy = f1, multiply by L3
L3x + Loy = fo, multiply by L;

L3lix + L3loy = L3f
Lilsx + LiLay = L1fp

(Laly — Lol3)y = L1 — L3f

} subtract the 1st from the 2nd

Lsy = g
3
[D2—|—2D—3]y:—§t—1 (85)

1 5
Sy = ket + k -3t i
y 1€ + koe + 8 + 17
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Continued from the previous page

Solutions to (84) and (85) are:

1 11
— X = clet aF Cge_?’t

1 5
— kyet k —3t Zt
—Yy 1€ + koe T+ 8 +*12

In x, for arbitrarily selected constants (ci, ¢2), (84) is satisfied
In y, for arbitrarily selected constants (ki, k2), (85) is satisfied

Recall P2 J
X Ix 1
— 42— —3x=t+ - 4
) + g 3x + 1 (84)
3
[D2—|—2D—3]y:—§t—1 (85)

However, arbitrarily selected constants (ci1, ¢, k1, k2) do not work
for simultaneous solution of (83):
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Continued from the previous page

However, arbitrarily selected constants (ci1, ¢, k1, k2) do not work
for simultaneous solution of (83):

d; d _
29X — 2% —3x =t } (83)

29 + 29 +3x+8y =2

Let us substitute the solutions of (84) and (85) into the original
equation (83) to resolve the issue of arbitrary constants. Generally
substitution in one d.e.of the d. e. set is sufficient for resolving the
arbitrary constants.

v
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Here we randomly chose the first equation of (83) to substitute the
solutions in it:

dx dy
y Bl L AN
g Tar
2 1 11
[2c1et—6c2e_3t—§]—[2k1et—6k2e_3t+1]—[3c1et+3cze_3t—t—ﬁ =t

or
(—c1 — 2ky)et + (—9c + 6ko)e 3t =0

Thus we must have
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Solution
t 3t 1, 11
X = c1e + ¢e = sit= = .
1 t2 3. 3 0 5 c1, ¢ arbitrary constants
y = —3¢a¢€ +§C2e +§t+ﬁ
or
x = —2kjet + 2kpe 3t — Lp LU .
- 3 . 3, 3 ki, ko arbitrary constants
y=kie" + ke +5t+ 35

V.
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The Laplace transform

Definition

Let f be a real valued function of the real variable t, defined for
t > 0. Let s be a variable that we shall assume to be real, and
consider the function F defined by

F(s) = /000 e S'f(t)dt (86)

for all values of s for which this integral exists. The function F
defined by the integral (86) is called the Laplace transform of the
function f. We will denote the Laplace transform F of f by L{f}.
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00 R
ft)y=1,t >0« L{1} = / e *'ldt = lim / e *f1dt
0 0

R—o00
) _e—st R . 1 e—sR 1
= |im = |lim |- — = -
R— 00 S 0 R—oo | S S S
for all s > 0. )
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o0 1
f(t) =t, t>0<—>£{t}:/ e_Sttdt:?
0

for all s > 0.
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== R
F(t) = e, t > 0« L{e™} :/ e—stettdr — lim / Sa=s)t gy
0 R—o0 Jo

R
| e _[etear g 1
= lim = lim — —
R—o0 a—s 0 R—oc0 a—s a—s s—a

for all s > a.
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- . b
f(t) = sin bt, t>0<—>£{sm(bt)}=52+—bZ; s>0 |
s
f(t) = cosbt, t > 0 <> L{cos(bt)} = 252 s>0

A\
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Existence of the Laplace Tranform

Some functions, such as f(t) = et’, do not have Laplace
transforms. For a function to have a Laplace transform, the
following integral must exist:

F(s) = /0 T et (t)dt (86)

When do such integrals exist? To answer this we need to define
piecewise continuity and being of exponential order first.
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Definition

A function f of t is said to be piecewise continuous on a finite
interval a < t < b if this interval can be divided into a finite
number of subintervals such that (1) f is continuous in the interior
of each of these subintervals, and (2) f approaches finite limits as
t approaches either endpoint of each of the subintervals from its
interior.
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Piecewise continuous function

Example

4 f(t)

=

Figure: Piecewise Continuous Function on [a,b]
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Example

f(t)= % is discontinuous at t = 3. This function is not

piecewise continuous on any interval containing t = 3, because
neither lim¢—34 nor lim;_,3_ exists.

J ()

@] 3

Figure: f(t) = 15
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Example

|

f(t) = 0 1 F<? s discontinuous at t = 0. This function
cos(;) t>0

is not piecewise continuous on any interval containing t = 0,
because lim;_,04 does not exist.

f(t)
| [\
0 \/ '
-1

Figure: f(t) =0 for t <0 and cos 1 for t > 0
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Definition
A function f of t is said to be of exponential order if there exist a
constant « and positive constants tg and M such that

e “tf(t)) <M (87)

for all t > ty at which f is defined. More explicitly, if f is of
exponential order corresponding to some definite constant « in
(87), then we say that f is of exponential order e“f.
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Every bounded function is of exponential order, for instance sin(bt)
t" is of exponential order

e? is of exponential order

et’ is not of exponential order.
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Example

f(t) = sin(t) is of exponential order. Because we can find, for
instance, « =2, to =1, M =5 so that

e f(t)) < M

is satisfied for all t > tg.

| 5\

Example

f(t) = t2 is of exponential order. Because we can find, for
instance, « = 3, tg =2, M =5 so that

e f(t)) < M

is satisfied for all t > tg.

\
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Theorem

Let f be a real function that has the following properties:

1) f is piecewise continuous in every finite closed interval
0<t<b (b>0)

2) f is of exponential order e**. Then the Laplace transform

/ e *'f(t)dt
0

of f exists for s > «.

V.

Proof Since f is of exponential order, there exist «, tg and M such
that
[f(t)] < Me®t, for t > to

We can write

[e’e] to [e%e]
/ et ()dt = / et ()dt + / et (t)dt
0 0 t

0
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Continued from the previous page

(e%e] to o0
/ e‘“f(t)dt:/ e‘“f(t)dt+/ e *tf(t)dt
0 0 to

Part1 Part?2

Part 1 exists because the integral has finite limits and the function
f(t) is piecewise continuous.
For the second part, for t > tg note that

|F(£)] < Me®t — |e 5t (t)] < Me (52t

—>/ e tf(t ydt<M/ So‘)tdt<l\/1/ eeelig = M
S«

for s > a.
This shows that the integral ftzo le s'f(t)|dt exists. This implies

that [~ e™f(t)dt exists.
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Continued from the previous page
(e’e] to (e'e}
/ e S'f(t)dt = / e“f(t)dt+/ e *tf(t)dt
0 0 t

0

—~
Partl Part2

Integrals exist for part 1 and part 2. This shows that the integral

/ e 'f(t)dt
0

exists.
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Let f; and f, be functions whose Laplace transforms exist, and
c1, ¢ be constants. Then L{c1fi + cxh} = aL{A} + l{f}.
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Let f be a real valued function that is continuous for t > 0 and of
exponential order e*t. Let f' be piecewise continuous in every
finite closed interval 0 < t < b. Then L{f'} exists for s > « and
L{f'} =sL{f} — £(0).
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It is known that L{sin bt} = ;z%z-
This implies £{(sin bt)'} = s —sin(b- t)i—o =
By direct computation:

L{bcos bt} =

bs
s24-b2

_b
s24-b2

52-i-b2
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L{t} =% o L{(t)} =s5 —tl—o=13
By direct computation:
£{1} =
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Theorem

Let f be a real valued function having a continuous (n — 1)st
derivative f("=1) for t > 0; and assume that f, f', f", ..., f(n=1)
are all of exponential order e®t. Suppose f(") is piecewise
continuous in every finite closed interval 0 < t < b. Then L{f("}
exists for s > o and

L{FM} = s"L{f}—s""1F(0)—s"2F'(0)—s"3F"(0)—...—F(""D)(0

Example

LF(t) = s>F(s) — sf(0) — £(0)
LF(t) = sF(s) — s*f(0) — sf(0) — £(0)
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For a given f let L{f} exist for s > «. Then for any constant a,
L{ef(t)} = F(s — a) for s > o+ a, where F denotes L{f}.
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Suppose f has Laplace transform F. Then

L) = (1) [F(s)
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Definition

For each real number a > 0, unit step function u, is defined for

nonnegative t by
0; t<a
ua(t) = 1, t>a

uft)

1= = = =
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Theorem

Suppose f has Laplace transform F, and consider the translated
function defined by

ua(t)f(t—a):{ 1(2,(t—a), S§:<a

Then L{u,(t)f(t —a)} = e *L{f(t)} = e *F(s)

fit)
WA

300 24 t
fit-5)

FA

4 T 9t

—

5 t
uhit5)

[\A

300 245 7 9t

2
us(t)
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Example

() = 0, 0<t<b
E\t) = t—3, t>5

Before applying the theorem to this translated function, we must
express the functional values t — 3 for t > 5 in terms of t — 5.
That is we express t — 3 as (t — 5) 4+ 2 and write

() = 0, 0<t<5
W= (t-5)+2, t>5

0, 0<t<b
US(t)f(t_S)_{ (t—5)+2, t>5
where f(t) =t + 2, t > 0. Hence we apply Theorem 29 with
f(t)=t+2. F(s)=L{t+2} = L{t} +2L{1} = + 2.
Therefore,

1 2

C{us(t)f(t —5)} = e *F(s) = e>(5 + )
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The inverse Laplace transform

Let f and g be two functions that are continuous for t > 0 and
that have the same Laplace transform F. Then f(t) = g(t) for all
t > 0.

Find the inverse Laplace transform £71{

oo )
s24+6s5+13 1"

L 1 3.
=5 < 3 2t
(S+3)2 i 22 26 sin

1 1
s2+6s+13 (s+3)2+22

2
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1 _é+Bs+C
s(s24+1) s s241
1 _A(s*+1) Bs+Cs

G200 si2i0 | 2
1=A(s>+1)+ (Bs+ C)s
1=(A+B)s>+Cs+ A

—+A+B=0,C=0,A=1

LHogt= ﬁl{}— £

}=1—cost

52+1

( +1)
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2 5

LHe™ (5 +2) = w(D)f(t-4)

with f(t) =2t + 5.
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Definition

Let f and g be two functions that are piecewise continuous on
every finite closed interval 0 < t < b and of exponential order.
The function denoted by f * g and defined by

f(t) «g(t /f (t—7)d

is called the convolution of the functions f and g.

Letu=t—r7
—>f(t *g (t) = otf t—T)dT:—ftOf(t—u)g(u)du
= Jo & t—U)dU—g()*f()
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Let the functions f and g be piecewise continuous on every finite
closed interval 0 < t < b and of exponential order. Then

L{f xg} = L{f} L{g}
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Example

oy = et _
o e, y(0)=3

Take the Laplace transform of both sides. Let the Laplace
transform of the unknown function y be Y which is also unknown
meanwhile.

1 1
—-2)Y -3 =
5_5—>(s ) 3 s—5

sY —y(0) —2Y =

y_ 3514 _ A B
(s—2)(s—5) s-2 s-—5

To find A, multiply both sides by (s — 2) and evaluate at s = 2:

(5_352)_(51:)x(s—z):sgx(s—z)jLs_Sx(s—z)
3s—14 B
o5 —A+S_5><(s—2) i
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Continued from the previous page

3s — 14

) A+s_5><(s—2) i

3% 214 B 8
X A+ Z x(2-2) s A=2
2 —5) g x@-2=A=3

To find B, multiply both sides by (s — 5) and evaluate at s = 5.
This gives B as % Thus
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Example
d’y _dy ’
=2 22 _8y=0, y(0)=3, y'(0)=6
g2 2g; 8 =0,y(0)=3,(0)

{s?Y —sy(0) = y'(0)} — 2{sY — y(0)} —8Y =0
[s> — 25 —8]Y —35=0

v — 3s A n B
S (s—4)(s+2) s—4 s+2
3s
A -
(s—4)(s+2) =4
3s
B = ><(s—|—2)] =1
[(s —4)(s +2) —
YV = 3s = 2 I ! —2et 4o

(s—4)(s+2) s—4 s+2

A. Karamancioglu Advanced Calculus



Example

l|

2
dT‘)Z/ +y=e?sint, y(0) =0, y'(0) =0

(Y — (0 YO} + Y =
1
[(s+2)2+1]
v — 1 :As+B+ Cs+D
(s2+D[(s+2)2+1 s2+1  (s+2)2+1
1 As+B(s+2)2+1 GC+D s?+1
(@D 127 +1] P11 (st22+1 (s+2P+1s2+1)

{s’Y —s0—-0}+ Y =
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Continued from the previous page

1 _(As+B)(s+2?+1, (Cs+D) s*+
(s2+D[(s+2)2+1] s2+1 (s+2)2+1 (s+2)2+1s2+

=

(=

1= (As+ B)(s* +4s+5) + (Cs + D)(s* + 1)
1=(A+C)s>+(4A+ B+ D)s* + (5A+ 4B + C)s + (5B + D)

A+ C = 0
4A+B+D = 0 -1, 1 _ 1 3
BA+4B+C = 0 A‘?’B_s’c_s’D_s
5B+ D =1

A. Karamancioglu Advanced Calculus



Continued from the previous page

8

_ Fs+ Ts+3
241 (s+2)2+1

:s2+1+52+1+(5+2)2+1+

1 1 1
y(t) = 5 s t+ 3 sint + ge_ztcos t+ §6_2tsin t
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Example

£+4£+5d—+2y =10cost, y(0) =0, y'(0) =0, y"(0) =3
de3 " de2 T dt ’ ’ 7

{s*Y — $?y(0) — s/(0) — y"(0)} + 4{s*Y — sy(0) — y'(0)}
+5{sY — y(0)} +2Y =

S
2+]_

(s3Y —520—50—3} +4{s?Y —s0—0} +5{sY — 0} +2Y = 21 :

{*Y =3} + 4{s®Y} +5{sY} +2Y =

s
2_|_1
- 35> +10s + 3
(24 1)(s+1)2(s+2)
-1 2 2 s 2
s+2+s+1_(s+1)2_52+1+s2+1

y(t) = —e 2 +2e7t —2te ! —cost +2sint




Example
9 _6x+3y = 8e

%—2x—y = 4et

x(0) = —1, y(0)=0

In Laplace domain :

sX+1-6X+3Y = B
sY —2X-Y = A

_  —s+9
(s—6)X+3y = =t
22X+ (s-1)Y = A
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(s—6)X+3y = ==t
22X+ (s-1)Y = %

In matrix notation:

A. Karamancioglu Advanced Calculus



The Laplace Transform: Theory and Applications, Joel L.

Schiff

Partial Fraction Decompositions. We will be concerned with the
quotient of two polynomials, namely a rational function

_ PO
Q(s)
where the degree of Q(s) is greater than the degree of P(s), and P(s)

and Q(s) have no common factors|, Then F(s) can be expressed as a
finite sum of partial fractions.

F(s)
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(i) For each linear factor of the form as + b of Q(s), there
corresponds a partial fraction of the form

A

A constant.
as+b

(ii) For each repeated linear factor of the form (as + b)", there
corresponds a partial fraction of the form
A1 AZ Aﬂ
S
as+b  (as+ b)? (as+b)?

A1, Az, ..., A, constants.
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(iii) For every quadratic factor of the form as®? + bs + ¢, there
corresponds a partial fraction of the form
As+ B

_ A, B constants.
as? + bs+ ¢

(iv) For every repeated quadratic factor of the form (as® +bs—+c)”,
there corresponds a partial fraction of the form

A8+ By + AzS + By ApSs+ By
as? 4+ bs +c¢ (as? + bs + ¢)? (as? + bs + )"’
Ay ey BB ccny-Biy COTISEATIES:
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Time Domain Function Laplace Transform

1 :

edt i
sin(bt) sszz
cos(bt) P
t"(n=1,2,...) L
t"e?(n=1,2,...) #
tsin(bt) (Szi%
t cos(bt) (5522;7:2)2
e % sin(bt) (S+a§’2+b2
e~ 2% cos(bt) (S:a)%
Ua(t) e_sas

Table: Laplace Transforms table
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Example
Consider
ty+y+2y=0, y(0)=1

Let us transform the equation into the Laplace domain. We first
do it for the first term. The properties

y ¢ s7Y —sy(0) — y(0)

and 4
L{EF(8)} = (1) [F(s)]

imply
d! :
ty < (—1)1@[52\/ — sy(0) — y(0)] — —s>Y —2sY +1

The given d.e. thus have the Laplace domain representation:

(=s’Y —2sY + 1)+ (sY = 1) +2Y =0




Continued from the previous page

The given d.e. thus have the Laplace domain representation:

(—=s?Y —2sY + 1)+ (sY = 1) +2Y =0

. 1 2
s s
This is a 1st order linear differential equation in independent

. . . . 1_24 2
variable s. Its integrating factor is u(s) = ef(s s2> ° = ses

Recall that for the 1st order linear d.e.'s we have

[ef POdx 1 il P()dxQ(x) (cf. 30)
Thus 2
21/ Ce s
[Y(s)ses} =0— Y(s) = .
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|

Ce s

Y(s) = .

Use Maclaurin expansion of the exponential term to obtain:
1)n2n 1 2 2 4
Yieh= CZ n|5n+1 = <5—52+53 354+>
Now take the inverse Laplace transform:

—1)m2"t" 2
Y(t)ZCZ():C<1—2t+t2—9t3+...>

—~ ()

The condition y(0) = 1 gives C = 1. Thus the result is

(—1)m2ntn , 2.
t =1-2t+t"— -t
I
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The matrix method

Consider the linear system of the form

d
T = auxitawxe+ o+ X
d
GE = anxitanxe+ -+ anX,
: (88)
o = ayx1 + amx2 ++c + apnXn
Define
a1 di12 ... din X1 %
d
a1 axn ... a X2 dX P
: dt :
anl an2 ... anpn Xn ‘2;"
Now (88) can be written as
dX
— = AX (89)
dt
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Definition
By a solution of the system (88), that is, of the vector differential
equation (89), we mean an n x 1 column vector function

$1
P2

®n
whose components ¢1, ¢, ..., ¢, have a continuous derivative on
the real interval a < t < b, and which is such that

90 = ay¢r + anda + - + atedn
2 = api¢r + andy + -+ axdn
djin = am¢1+amP2 + -+ annn

for all t such that a < t < b.
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Any linear combination of the solutions of the homogeneous linear
system (88) is itself a solution of the system (88).

Definition

There exist sets of n linearly independent solutions of the
homogeneous linear system (88). Every solution of system (88)
can be written as a linear combination of any n linearly
independent solutions of (88).

| \

A. Karamancioglu Advanced Calculus



Definition
Let

$11 $12 d1n
$21 $22

¢, = ; Oo =

(b;ﬂ ¢n2 ¢nn

be n linearly independent solutions of the homogeneous linear
system (88). Let ¢, ¢, ..., ¢y, be n arbitrary constants. Then the

solution
X =c®1(t) + caPa(t) + - - - + cpPa(t)

is called a general solution of the system (88).
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Consider the n vector functions &1, ®,, ..., ®, defined
respectively, by
$11 $12 ®1n
21 22 2
o= | | 0= | o
¢n1 ¢n2 (lsnn
The n x n determinant
$11 f12 ... P1n
$21 ¢22 ... 2n
anl ¢n2 oo ¢nn
is called Wronskian of the n vector functions ®1,®,,...,o,. We

will denote its value at t by W(®1(t), Pa(t),..., Pn(t)).




n solutions ®1,®,, ..., P, of the homogeneous linear system (88)
are linearly independent on an interval a < t < b if and only if
W (®d1(t), Po(t),...,Pn(t)) #0 for all t € [a, b].
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Let ®1,P,, ..., d, be n solutions of the homogeneous linear
differential equation (88) on an interval a < t < b. Then either
W(®1(t), Pa(t),...,dn(t)) =0 forall t € [a, b] or

W (®d1(t), P2(t),...,Pn(t)) =0 for no t € [a, b].
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Vi

v
Define v = _2 then we assume the solutions of (88) have the

Vn
form X = ve*t. Recalling

dX
= AX 89
™ (89)

substitute X = ve into (89) to obtain

Avert = Avel

— Av = Av

— Av = Alv
(A=X)v = 0
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(A= A)v =0 (90)

which is an algebraic equation in the explicit form

(a11—)\)v1+a12vz+-~+a1nvn = 0
avi+ (a2 — AN)va+ -+ av, = 0
anlvl+an2v2+"'+(ann_A)Vn =0

This can be written in a matrix notation as follows:
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dil1 di2 '+ din 10 --- 0 %1 0

dp1 dz2 -+ ap o1 --- 0 Vo 0
A —
dpnl dn2 dnn 00 1 Vn 0
ail— A a2 e ain Vi 0
a1 ax-—A - azn V2 0
anl an2 ann — A Vn 0
%1
. . . V2 .
This equation holds only for certain A and . pairs.
Vn
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This equation set has a non trivial solution if and only if

ait— A any - ain
a1 ap —A - azn 0
. — b
dnl an2 R

or in matrix notation |[A — Al| = 0. This is called characteristic
equation for system (89). The \ values satisfying the characteristic
equation are called characteristic values of (89). Solutions of (90)
corresponding to characteristic values are called characteristic
vectors of (89). Recall that

dX
— = AX
g (89)

(A= A)v =0 (90)
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Case of n distinct characteristic values

Suppose that each of the n characteristic values A1, Ap, ..., A, of
the n x n square coefficient matrix A of the vector differential
equation is distinct and let v(), v(®) . v(") be a set of n
respective corresponding characteristic vectors of A. Then the n
distinct vector functions xi, xo, . . ., x, defined respectively by

xi(t) = viDeMt (1) = v@ et x (1) = v(Melnt

are solutions of the vector differential equation (89) on every real
interval [a, b]. This can be verified by direct substitution.
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Now consider the Wronskian of the n solutions x1, xo, .. ., Xp:

v116>‘1t vlge)‘2t Vlne)\nt
V2]_e>\1t V92 e)\gt V2ne)\nt
Vnl e)\lt Vnze)\gt v,me>‘"t
Vit Vi - Vin
V V DR V
_ e(>‘1+A2++>\")t 21 22 2n # 0
Vnl Vn2 ~-°°  Vpp

Since exponential functions never result in zero, and from linear
algebra eigenvectors corresponding to distinct eigenvalues are
linearly independent which makes the determinant above nonzero.
The n solutions x1, x2, ..., X, are linearly independent.
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Theorem

Consider the homogeneous linear system

dx:

T ail 32 - an X1
dxy ..

g | | 921 a2 an X2
2;" dnl an2 -  anpn Xn

That is, the vector differential equation

dX
— = AX

dt

with obvious definitions. Suppose each of the n characteristic
values A1, Ao, ..., A\n of A is distinct; and let vV v . (") pe
a set of respective corresponding characteristic vectors of A.
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Continued from the previous page

Then on every real interval, the n vector functions defined by

v(l)e)‘lt, \/(2)6)\2t7 e V(n)e)\nt

form a linearly independent set of solutions of (88), that is (89),

and

X = vt 4 et 4 o y(Mernt
where c¢1, ¢, ..., Ccp are n arbitrary constants, is a general solution
of (88).
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Consider
& 7 -1 6 x1
P | =|-10 4 -12 X2
d
&g 2 1 -1 X3

or in vector-matrix notation

dX
- AX
dt

A. Karamancioglu Advanced Calculus



Continued from the previous page

7= 6
S|A=XM=]| =10 4—Xx —12 |=X3—10A2+31A—30
—2 1 —1-2)

Characteristic values are obtained by equating characteristic
expression above to zero:

M=2 X=3 X=5

Let us find characteristic vectors for each characteristic value. To
find a characteristic vector for A1 = 2, we need to solve

77—\ -1 6 Vi 0
(A=A1l)v =0 or -10 4-X 12 vwi|l=10
—2 1 —-1-X) V3 0
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7T— X\ -1 6 Vi 0
—-10 4— )\ —12 vw | =10
—2 1 —-1-— )\1 V3 0
7—2 —1 6 Vi 0
-10 4-2 12 wi|l=1|0
-2 1 —1-2 V3 0
5 -1 6 Vi 0 1
-10 2 -12 v =10 R |
~—~
-2 1 -3 V3 0 GaussianElim. -1

Next find a characteristic vector for A\» = 3
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7T— X -1 6 Vi 0
—10 4-— )X —12 vwl=1]0
—2 1 —-1-— )\2 V3 0
7—-3 -1 6 Vi 0
—10 4-3 —12 vw =10
—2 1 -1-3 V3 0
4 -1 6 Vi 0 1
-10 1 -12 vo | =10 - VA= 22
—2 1 —4 V3 0 GaussianElim. -1

Next find a characteristic vector for A\3 =5
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7T— )3 —1 6 Vi 0
—10 4— )3 —12 wl|l=10
—2 1 —-1-— )\3 V3 0
7—-5 -1 6 Vi 0
—-10 4-5 12 w | =10 }
—2 1 —-1-5 V3 0
2 -1 6 Vi 0 3
—10 —1 —12 vwl|=1]0 - V=1 6
~~
-2 1 —6 V3 0 GaussianElim. -2
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1
ForA=X=2—-v=| -1
L _1 -
P
ForA=XM=3>v@ =] -2
-1
Feq
ForA=X3=5— vB® = | —6 | We have distinct characteristic
-2

values and corresponding characteristic vectors. For a general
solution, we use them in the solution formula:

1 1 3
X=c| -1|e&+e| 2|+ | -6 |t
-1 —1 —2
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Case of repeated characteristic values

We again consider the vector differential equation

dX

— = AX
dt

where A is an n X n real constant matrix. We suppose that A has a
real characteristic value A1 of multiplicity m, where 1 < m < n,
and that all the other characteristic values A\p11, Ami2, .-, Ap (if
there are any) are distinct.

Let 6 x 6 matrix A have the characteristic equation
(A —T7)*(A — 2)(A —5) = 0. Here \; = 7 repeated 4 times; \s = 2
and A\g = 5 are distinct. Linear algebra says we obtain 4 or less
linearly independent characteristic vectors for \; = 7, depending
on the matrix A.
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We know that the repeated characteristic value A1 of multiplicity m
has p linearly independent characteristic vectors, where 1 < p < m.
Now we consider two subcases (1) p=m and (2) p < m.

Case 1 If p = m then we will have totally n linearly independent
characteristic vectors for the matrix A. In this case the general
solution has the form that is the same as the one for all distinct
characteristic values. The next example illustrates this:
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Consider
31 -1
CCITX: 1 3 -1 |X
t 3 3 -1
or in vector-matrix notation
dX
— = AX
dt
3— A 1 =1l
—S]JA=XM=| 1 3-X -1 |=X-5)+81-4

3 3 -1-A

Characteristic values are obtained by equating characteristic
equation to zero:

M=1, =2 )3=2
—— N————

distinct repeated
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Evaluate Av = A\v at the characteristic values:

At A=1
1
v = |1
3
is a characteristic vector.
At A =2
1 1
v@ =1 1], v® =10
0 1

are characteristic vectors. v(? and v(3®) are linearly independent.
General solution is

1 1 1
Xt)=ca|l|e+c| -1 et+c| 0| e
3 0 1
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Case (2), p < m: In this case there are less than m linearly
independent characteristic vectors v(!) corresponding to the
characteristic value A; of multiplicity m. Hence there are less than
m linearly independent solutions of system (88) of the form

v(D) et corresponding to A1. Thus there is not a full set of n

linearly independent solutions of (88) of basic exponential form
k)e)\kt.

(
v
Clearly we must seek linearly independent solutions of another
form.
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Continued from the previous page
Let A be a characteristic value of multiplicity m = 2. Suppose
p =1 < m, so that there is only one type of characteristic vector v
and hence only one type of solution of the basic exponential form
ve*t corresponding to A\. We need two linearly independent
solutions in order to write the general solution. The second
solution is of the form

(vt + w)e

together with ve form a linearly independent set of two solutions.

Let us substitute this in the differential equation

dX

ARG
dt
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(vt + w)re  + velt = A(vt + w)e
Dividing throughout by e** and rearranging, this can be written as
(AW —AV)t+(Aw+v—Aw) =0

This implies
(A= X)v=0

Aw+v—Aw =0

We already know the v satisfying the first equation. From the
second equation we want to find w:

(A= X)w=v

Upon finding w, the general solution will be

X(t) = cve + co(vt + w)et
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Now let A be a characteristic value of multiplicity m = 3, and
suppose p < m. Here there are two possibilities: p =1 and p = 2.
If p =1, there is only one type of characteristic vector v and hence
only one type of solution of the form

Ve)\t

corresponding to A. Then a second solution corresponding to A is
of the form
(vt + w)et

Substitute this in the d.e. 2¥ = AX
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(vt + w)re  + velt = A(vt + w)e
Dividing throughout by e** and rearranging, this can be written as
(AW —AV)t+(Aw+v —Aw) =0

This implies
(A= X)v=0
Aw+v—Aw =0

We already know the v satisfying the first equation. From the
second equation we want to find w:

(A= X)w=v

Upon finding w, an already found part of the general solution will
be

X(t) = crvet + co(vt + w)e




Continued from the previous page

In this case the third solution corresponding to A is of the form

£2
(VE + wt 4 z)e
Upon substituting this in the d.e. ‘Z,—)t( = AX we observe that z
satisfies
(A=X)z=w

z obtained from this is used in the third solution. These three
solutions obtained are linearly independent. The general solution
will be

t2

X(t) = crve + oo(vt + w)e + C3(V§ + wt + z)eM
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If p = 2, there are two linearly independent characteristic vectors
v(D) and v(® corresponding to A and hence there are two linearly
independent solutions of the form

v At and (@At

Then a third solution corresponding to A is of the form

(vt + w)e
where v satisfies
(A= X)v=0 (91)
and w satisfies
(A=X)w=v (92)

The v in (91) is defined by kjv(!) + kov(?). We need to determine
ki and k» which satisfy (92).
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Consider
4 3 1
dX
t § 12 6
or in vector-matrix notation
dX
— = AX
dt
4 — X\ 3 1
—S|A=M|=| -4 —4-Xx -2 |=X-6)+121-38
8 12 6— A\
Characteristic values are obtained by equating characteristic
equation to zero:
Al =X=XA3=2
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Evaluate Av = Av at the characteristic value. We obtain two
linearly independent characteristic vectors:

1
— V(l) = 0 ; V(2) = 1
5 -3

For the third solution we solve

(A= X)w=v
with
ky
v=Kk v 4 kzv(z) = ko
—2k1 — 3ko
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2 3 1 wy ky
A-2w=v— | -4 -6 -2 wy | = ko
8 12 4 w3 —2/(1 — 3/(2
Notice that rows on the lefthand side of the equality are
proportional. For consistency we must have kp = —2k;. Select
1
ki=1, ko=—-2—v=| —2 | Solving for w we obtain
4
0
w = | 0 |. Thus the general solution is X(t) =
1
1 0 1 0
cl 0 et + o 1 et + ¢ 2 |t+ |0 e
-2 -3 4 1
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Sturm-Liouville Boundary Value Problems

Sturm-Liouville BVP is boundary value problem which consists of
(a) A second order homogeneous linear d.e. of the form

) [p(x)"y} +[a(x) + Ar()]y =0 (93)

dx dx
where p, g, and r are real functions such that p has a continuous
derivative, g and r are continuous, and p(x) > 0 and r(x) > 0 for
all x on a real interval a < x < b; and X is a parameter
independent of x; and
(b) two supplementary conditions

Ary(a) + Axy'(a) = 0

Biy(b) + Bay'(b) = 0 (%4)

where A1, Ay, B and By are real constants such that A; and A,
are not both zero, and B; and B are not both zero.
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d2y

— 7 Ny —

dx2+ y=0
y(0) =0, y(m)=0

is a Sturm Liouville problem. The differential equation may be

written as
d dy
p(x) q(x) r(x)
y( 0 )=0
a
y(ur_ ) =0
b

This verifies the claim.
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The boundary value problem
G |[ &
dx | dx

]+[2x2+)\x3]y:0

3y(1) +4y/(1) =0
59(2) — 3y/(2) = 0
is a Sturm-Liouville problem.
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Example
Find nontrivial solutions of the Sturm-Liouville problem

d2y
2V Ny =
dx2+ y=0

y(0) =0, y(m)=0
Solution
We consider three cases A =0, A <0, and A > 0.
Case 1: A = 0 reduces the the problem to
d?y

a2 =
The general solution is

y =0 + ox

The first condition y(0) = 0 yields ¢; = 0. The second condition
7)) = c1 + o = 0 yields ¢ = 0.
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Thus, when A = 0 the only solution is the trivial solution.
Case 2: For the d.e

d?y
22 T =0y(0)=0, y(m)=0

when \ < 0, the characteristic equation is
m*+A=0

Its roots ++/—\ are real and unequal. The corresponding general
solution is

y =c1e¥ + cpe” ™

where a = v/—\. Apply the conditions y(0) = 0 and y(7) = 0:

i+ =0 ce* +ce =0
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Solve the equations arising from applying the condition:

a+o =0
e + e ™ = 0
The only solution is ¢ = ¢, =0

.. When )\ < 0 we have only the trivial solution.
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Case 3: )\ > 0 implies that the characteristic equation has the
roots &iv/\.This leads to the general solution

y = cisin VIx + Co COS VAx

Now apply the condition y(0) =0 :
c1sin0+ cpcos0=0

This results in ¢ = 0. The other condition y(7) = 0 yields:

c1 sin VAT + Cp COS VAr=0
Because ¢ = 0, this reduces to

c1 sin VAr=0

If we let ¢; = 0, then we get a trivial solution. This is not desired.

Therefore we make sin vV Ar = 0
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The general solution corresponding to A > 0 from the previous

slide: 0
y = crsinVx + M
Continued from the previous page

sin VA = 0 is satisfied if VA = n, or equivalently, A = n?. In other
words, A must be a member of the infinite sequence

1,4,9,16,...

. For A\=n? (n=1,2,3,...) we have nontrivial solutions

Y = cpsin nx
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dx

Aiy(a)+ Azy'(a) = 0
Biy(b) + Bay'(b) = 0

£ [P | a0+ ey =0 (cf. 93)

(cf. 94)

Definition

Consider the Sturm-Liouville equation (93) and the supplementary
conditions (94). The values of the parameter X in (93) for which
there exists nontrivial solutions of the problem are called the
characteristic values of the problem. The corresponding
nontrivial solutions themselves are called the characteristic
functions of the problem.
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Example

Find the characteristic values and characteristic functions of

d [ dy A

— 0

dx [ dx } e
Y'(1)=0, y'(e") =0

where we assume that the parameter \ is nonnegative.

Solution: We consider separately the cases A = 0 and A > 0.

Case 1: A = 0 reduces the problem to

I IV
ddex_

Integrate twice for the general solution:

d d C
x—y:C%—y:—%y:Cln]XH—Co
dx dx X

where C and (y are arbitrary constants.
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Apply the supplementary conditions to this general solution:

y=Cln|x| + G, y'(1) =0, y,(ezw) =0

C C
y'(l):T:0—>C:0,&y'(ezw):eﬁzoﬁCzo

Thus C becomes 0. There is no condition imposed on Cy. Solution
becomes

y==G
Thus A = 0 is a characteristic value and the corresponding

characteristic functions are y = Cp, where Cy is an arbitrary
nonzero constant.
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Case 2: A > 0:

L I
dx | dx xy_
dy d’y A _
-Q—l—xz—y—{—)\y:O
dx dx?2

For x # 0, this is equivalent to the Cauchy Euler equation

d’y  dy

2

2 L Ly =
de2+de—i— y=20

Letting x = et, the solution is found to be
g

y = crsin VAt + ¢ cos VAL
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y = c1sin VAt + ¢ cos VL.

Back to the x gives
y = asin(vVAInx) + ¢ cos(VA In x).

Apply the supplementary conditions y’(1) = 0, y’(e>™) =0 to the
general solution. Let us apply the first condition first:

b _ Clﬁcos(\f)\ln x) — Czﬁsin(ﬁln x)

dx  x X
CQf sin(vAIn1) =0

—>C1\/X:0—>C1:0

CIIF/\ cos(VAIn1) —

y'(1)=0—

A. Karamancioglu Advanced Calculus



Continued from the previous page

Now apply the second supplementary conditions y’(e?™) = 0 to the
general solution. This leads to

Ve ¥ sin(2rVA) = 0

Nontrivial solutions will require A = "72, (n=1,2,3,...) Thus,
corresponding to the characteristic values A = ”72, (n=1,2,3,...),

with x > 0, the characteristic functions are

nlnx
y = C,,cos( > >
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Theorem

Hypothesis Consider the Sturm Liouville problem consisting of
1. the differential equation

: [P( = } +[a(x) + Ar(x)]y =0

where p, g, and r are real functions such that p has continuous
derivative, g and r are continuous, p(x) > 0 and r(x) > 0 for all x
on a real interval a < x < b, and X is a parameter independent of
x; and

2. the conditions

Ary(a) + Axy'(a) = 0
Biy(b) + Boy'(b) = 0

where Az, Ay, B, and Bs are real constants such that A; and Ay
are not both zero, and B; and B are not both zero.
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Conclusions:

1. There exists an infinite number of characteristic values A\, of the
given problem. These characteristic values can be arranged in a
monotonic increasing sequence

/\1<)\2<)\3<...

and such that A\, — 400 as n — +o0.

2.Corresponding to each characteristic value A\, there exists a one
parameter family of characteristic functions ¢,. Each of these
characteristic functions is defined on a < x < b, and any two
characteristic functions corresponding to the same characteristic
value are nonzero constant multiples of each other.

3. Each characteristic function ¢, corresponding to the
characteristic value A\, (n =1,2,3,...) has exactly (n — 1) zeros in
the open interval a < x < b.
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Example

Consider the Sturm Liouville problem

d?y

y(0) =0, y(m)=0

It has already been solved and was found that it has infinitely
many characteristic values, therefore, the 1st conclusion is valid.
Validity of the 2nd conclusion may be verified for a characteristic
function For instance, for A = 9 corresponding solutions are

csin 3x where c is arbitrary. Looking at some of the solutions
5sin3x, 12sin3x, —2.2sin3x, ..., one observes that for the same
characteristic value, corresponding characteristic functions are
multiple of each other.
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Conclusion 3 suggests the characteristic function ¢, sin nx
corresponding to A = n® has exactly n — 1 zeros in the open
interval 0 < x < m. We know that sin nx = 0 if and only if

nx = km, where k is an integer. Thus the zeros of ¢, sin nx are

given by
k
x = 7:7 (k=0,41,£2,...) (95)

The zeros of (95) which lie in the open interval 0 < x < 7 are the
ones corresponding to k =1,2,..., n— 1. Totally, there are n — 1
zeros in the interval.
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Orthogonality of Characteristic Functions

Two functions f and g are called orthogonal with respect to the
weight function r on the interval a < x < b if and only if

b
/ f(x)g(x)r(x)dx =0

The functions sin x and sin 2x are orthogonal with respect to the
weight function having the constant value 1 on the interval
0<x<m:

T sin® x|"
/ (sin x)(sin2x)(1)dx = 2 3 =0
0

0
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Definition

Let {¢n}, n=1,2,3,..., be an infinite set of functions defined on
the interval a < x < b. The set {¢,} is called orthogonal system
with respect to the weight function r on a < x < b if every two
distinct functions of the set are orthogonal with respect to r on

a < x < b. That is, the set {¢,} is orthogonal with respect to r
ona<x<bpif

b
/a Om(X)on(x)r(x)dx =0, for m+#n

Example

Consider the infinite set of functions {sin x,sin 2x,sin3x,...} on
the interval 0 < x < 7. Let the weight function be 1. Then this
set is orthogonal wrt this weight function:

sin(m—n)x  sin(m+ n)x|"

/O(S‘”mx)(sm”x)“)dxz Am—n)  2Am+n |,

v
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Theorem

Hypothesis Consider the Sturm Liouville problem consisting of
1. the differential equation

: [P( = } +[a(x) + Ar(x)]y =0

where p, g, and r are real functions such that p has continuous
derivative, g and r are continuous, p(x) > 0 and r(x) > 0 for all x
on a real interval a < x < b, and X is a parameter independent of
x; and

2. the conditions

Ary(a) + Axy'(a) = 0
Biy(b) + Boy'(b) = 0

where Az, Ay, B, and Bs are real constants such that A; and Ay
are not both zero, and B; and B are not both zero.
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Let A\, and )\, be two distinct characteristic values of this
problem. Let ¢,, be a characteristic function for A\, and ¢, be a
characteristic function for A,.

Conclusion The characteristic functions ¢, and ¢, are orthogonal
with respect to the weight function r on the interval a < x < b.

Example

Consider the Sturm Liouville problem

Y+ Ay =0, y(0)=0, y(r)=0

where r = 1. Corresponding to each characteristic value
A=n?(n=1,2,...) we have characteristic functions

cpsinnx (n=1,2, ) Define ¢p(x) =sinnx, n=1,2,... The
set {¢n}, n=1,2,..., is an orthogonal system because

/ (sinmx)(sinnx)(1)dx =0, for m=1,2,..., n=1,2,..., m#|n
0
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Polynomial Division

Theorem

Let the polynomials p(x) and d(x) # 0 be given. Then there exist
unique g(x) and r(x) polynomials such that

p(x) = d(x)q(x) + r(x).

Furthermore, deg d(x) > 1 implies deg r(x) < deg d(x); and
deg d(x) = 0 implies r(x) = 0.

v

Proof We prove it by induction. We prove that it holds true firstly
for deg p(x) = 0. Then we show that if it is true for deg p(x) = k,
then it will be true for deg p(x) = k + 1.
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... there exist unique g(x) and r(x) polynomials ..."
" ... degd(x) > 1 implies deg r(x) < deg d(x); and degd(x) =0
implies r(x) = 0" [Conclusion of the theorem].

Case of deg p(x) =0

In this case p(x) = c. Let us denote deg d(x) by m. There are two
subcases: m =0 and m > 0. Consider the m = 0 case first. In this
case d(x) = k. Then p(x) = k% + 0. .. The theorem holds.

In the m > 0 case choose g(x) = 0 and r(x) = c. This yields

p(x) = d(x) -0+ c. ... The theorem holds.
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Case of degp(x) =k +1

Let us assume that the theorem holds for deg p(x) = k, we will
show that this implies it holds true for deg p(x) = k + 1.

Let p(x) have the form:

k+1

p(x) = akp1x“ " + ax* 4+ aix + ag

where axy1 # 0. Now we have two cases: m = 0 case and m > 0
case.

Subcase of m =0

m = 0 implies d(x) = c. In this case choose q(x) = 1p(x) and
r(x) = 0. This yields

p(x) = ctp(x) +0

" ... there exist unique g(x) and r(x) polynomials ..."

" ... degd(x) > 1 implies deg r(x) < deg d(x); and degd(x) =0
implies r(x) = 0" [Conclusion of the theorem].
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Subcase of m > 0

Let d(x) = dmx™ + - -+ 4+ dix + dy where d,,, # 0. Notice that
24l £ 0. Choose pi(x) = p(x) — ZLxk+1=md(x). This
annihilates the x**1 term. The degree of p1(x) is k or lower. By
the hypothesis, there exist g; and r; satisfying the theorem for
p1(x). More explicitly,

p1(x) = d(x)qi(x) + ri(x) = p(x) — %x”l_md(x)

m

— p(x) = ZELKFMG () + d(x)r(x) + i (x)

m

a —-m
= Pl = d(x) | GEXTT 4 ()| + ()

r(x)

q(x)

For k + 1st degree polynomial p(x) we have shown existence of g
and r satisfying the theorem.
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Now let us show that for a given p, corresponding g and r are
unique. Let

p(x) = d(x)qi(x) + r(x) = d(x)qa2(x) + ra(x)
— d(x) [q1(x) — q2(x)] = r2(x) — r1(x)

Now there two cases: m =0 and m > 0.
Case of m = 0:

m = 0 implies ri(x) = r(x) =0 — d(x) [q1(x
Since d(x) # 0, we have [g1(x) — g2(x)] =0,
q1(x) = q2(x).

) = q2(x)] =0
this implies
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Case of m > 0:

Suppose [g1(x) — g2(x)] # 0 and calculate the degrees of the
polynomials on both sides. Degree of LHS is m or larger. On the
RHS we have two polynomials where each one has degree lower
than m. Difference of them also has degree lower than m. The
degrees of LHS and RHS are equal. This is a contradiction. The
contradiction is caused by the supposition [g1(x) — g2(x)] # 0.
Correcting this we have g;(x) = g2(x). Also, the correction yields
r(x) — ri(x) = 0, which implies r(x) = ri(x).
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Numerical Solutions by ode23.m Consider the first order
differential equation

d 2 1
dy 2+
dx X

y =e %, y(1) =2. (96)

We want to find a solution in the interval [1,5]. Form two m-files:
Let their names be mymain.m and myequation.m.
mymain.m:

[t,x]=0de23(’myequation’, [1,5],2);
plot(t,x,’0’)

myequation.m:

function ydot=myequation(x,y)
ydot=-((2*x+1) /x) *xy +exp(-2#*x) ;
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The graphics is concatenation of o characters due to the "o’ option
in the plot command.

Save mymain.m and myequation.m files in the work folder of
MATLAB.

In the workplace of MATLAB, type mymain and press enter key.
The graphics obtained is depicted below:

o
04,
%200
T 1€z 28 3 38 4 4E

Figure: Numerical solution of the 1st order differential equation
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The differential equation (96) is linear and its analytical solution is
y(x) = %e*x + @eﬂx. For the purpose of comparison with the
numerical solution we can plot this over the previous graphics by

using the following codes in the workplace of MATLAB (Figure 8):

hold on

x=1:0.1:5

y=exp (-2*x) .*x/2+14.27*xexp(-2*x) . /x
plot(x,y)

Figure: Analytical solution of the 1st order differential equation
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Now let us modify the files mymain.m and myequation.m to solve
the following second order differential equation in the interval [0, 5]

d?y dy . .
ey + 5E +4y =sin(t), y(0)=3; y(0)=09. (97)
This can be written in the normal form as:
)'<1 = X2 Y o
Xp = —4x; —5xp +sin(t) } x(0) =3 x(0) =9 (%)
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Corresponding m-files are shown below:
mymain.m:

[t,x]=0de23(’myequation’, [0,5], [3,9]);
plot(t,x(:,1),’0%,t,x(:,2),’07)

myequation.m:

function xdot=myequation(t,x)
xdot=[x(2); -4*x(1)-5*x(2)+sin(t)];
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The codes above yields the following graphics:

B
5
b
o
C OO
2 Oo3
o o 4
%¢
c O cogag
D% o c o coccBam
1
kS 0 °
T po0®
i .
0 05 1 15 2 25 3 35 ¢ 45 5

Figure: Numerical solution of the 2nd order differential equation

A. Karamancioglu Advanced Calculus



