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Notation

ẋ =
dx

dt
: first derivative of x with respect to t

ẍ =
d2x

dt2
: second derivative of x with respect to t

x (n) =
dnx

dtn
: n-th derivative of x with respect to t
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Let f be a function of u and v .

fu =
∂f

∂u
: partial derivative of f with respect to u

fv =
∂f

∂v
: partial derivative of f with respect to v

Example

f (x) = x3 + 2x → df

dx
= 3x2 + 2

f is the dependent variable, and x is the independent variable.
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Definitions and classifications

Definition

An equation involving derivatives of one or more dependent
variables with respect to one or more independent variables is
called a differential equation.
A differential equation involving ordinary derivatives of one or more
dependent variables with respect to a single independent variable is
called an ordinary differential equation.
A differential equation involving partial derivatives of one or more
dependent variables with respect to a more than one independent
variable is called a partial differential equation.
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Example

d2y

dx2
+ xy(

dy

dx
)2 = 0 (1)

d4x

dt4
+ 5

d2x

dt2
+ 3x = sin t (2)

∂v

∂s
+
∂v

∂t
= v (3)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (4)

The first and second differential equations are ordinary, the third
and fourth differential equations are partial differential equations.
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Definition

The order of the highest ordered derivative involved in a
differential equation is called the order of the differential equation.

d2y

dx2
+ xy(

dy

dx
)2 = 0 (5)

d4x

dt4
+ 5

d2x

dt2
+ 3x = sin t (6)

∂v

∂s
+
∂v

∂t
= v (7)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (8)

In the example the first is second order, the second is fourth order,
the third is first order, the fourth is second order differential
equations.
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Definition

A linear ordinary differential equation of order n, in the dependent
variable y and the independent variable x , is an equation that is in,
or can be expressed in, the form

a0(x)
dny

dxn
+a1(x)

dn−1y

dxn−1
+. . .+an−2(x)

d2y

dx2
+an−1(x)

dy

dx
+an(x)y = b(x)

where a0 is not identically zero.

Functions of x : x2, sin(x), x + 1, 5, 0

Not functions of x : y , 3y , y2, dydx , (
dy
dx )2, x + y , xy

Definition

A nonlinear ordinary differential equation is an ordinary differential
equation that is not linear.
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Example

d2y

dx2
+ 5

dy

dx
+ 6y = 0 . . . Linear (9)

d4y

dx4
+ x2 d

3y

dx3
+ x3 dy

dx
= xex . . . Linear (10)

d2y

dx2
+ 5

dy

dx
+ 6y2 = 0 . . . Nonlinear (11)

d2y

dx2
+ 5

dy

dx
+ 6yy = 0 . . . Nonlinear

d2y

dx2
+ 5(

dy

dx
)3 + 6y = 0 . . . Nonlinear (12)

d2y

dx2
+ 5(

dy

dx
)2 dy

dx
+ 6y = 0 . . . Nonlinear

d2y

dx2
+ 5y

dy

dx
+ 6y = 0 . . . Nonlinear (13)

d2y

dx2
+ 5y

dy

dx
+ 6y = 0 . . .Nonlinear
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Normal Form

Definition

The normal form of a system of n differential equations in n
unknown functions x1, x2, . . . , xn, is in the following form:

dx1
dt = f1(x1, x2, . . . , xn, t)
dx2
dt = f2(x1, x2, . . . , xn, t)

...
dxn
dt = fn(x1, x2, . . . , xn, t)

 (14)

Example

ẋ1 = x1 + 3x1x
2
2 + x1t

ẋ2 = x3
2 + sin x1 + t2

ẋ3 = x1x2 + x2x
2
3
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Normal Form of a Linear System

Definition

The normal form, in the general case of a linear system of n
differential equations in n unknown functions x1, x2, . . . , xn, is in
the following form:

dx1
dt = a11(t)x1 + a12(t)x2 + · · ·+ a1n(t)xn + F1(t)
dx2
dt = a21(t)x1 + a22(t)x2 + · · ·+ a2n(t)xn + F2(t)

...
dxn
dt = an1(t)x1 + an2(t)x2 + · · ·+ ann(t)xn + Fn(t)

 (15)

Example

ẋ1 = 2tx1 + 3x2 + 4x3 + t2

ẋ2 = x1 + 6x3 + 1
t

ẋ3 = 3t2x1 + (4 + t)x2 + (t + t2)x3
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A single n-th order linear differential equation can be converted
into this form. Consider

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ a2(t)

dn−2x

dtn−2
+ · · ·

+an−2(t)
d2x

dt2
+ an−1(t)

dx

dt
+ an(t)x = F (t)
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dnx

dtn
+ a1(t)

dn−1x

dtn−1︸ ︷︷ ︸
xn

+a2(t)
dn−2x

dtn−2︸ ︷︷ ︸
xn−1

+ · · ·

+an−2(t)
d2x

dt2︸︷︷︸
x3

+an−1(t)
dx

dt︸︷︷︸
x2

+an(t) x︸︷︷︸
x1

= F (t)

Notice that
ẋi = xi+1 n = 1, . . . , n − 1

and

ẋn + a1(t)xn + a2(t)xn−1 + . . .+ an−1(t)x2 + an(t)x1 = F (t)

ẋn = −an(t)x1−an−1(t)x2−. . .−a3(t)xn−2−a2(t)xn−1−a1(t)xn+F (t)
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dnx

dtn
+ a1(t)

dn−1x

dtn−1︸ ︷︷ ︸
xn

+a2(t)
dn−2x

dtn−2︸ ︷︷ ︸
xn−1

+ · · ·

+an−2(t)
d2x

dt2︸︷︷︸
x3

+an−1(t)
dx

dt︸︷︷︸
x2

+an(t) x︸︷︷︸
x1

= F (t)

Using these definitions, the normal form equivalent of (11) is

dx1
dt = x2
dx2
dt = x3

...
dxn−1

dt = xn
dxn
dt = −an(t)x1 − an−1(t)x2 − · · · − a2(t)xn−1 − a1(t)xn + F (t)


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Solution of a differential equation

Definition

Consider the n-th order ordinary differential equation

F [x , y ,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn
] = 0 (16)

A solution of an ordinary differential equation (16) on interval I is
a function that satisfies the differential equation on the interval I .

Example

dy

dx
+ y

d2y

dx2
+ 3x2 +

d3y

dx3
sin x︸ ︷︷ ︸

F [x ,y , dy
dx
, d

2y

dx2 ,
d3y

dx3 ]

= 0

∴ Solution is a function.
∴ Solution is defined on some interval I .
∴ Solution satisfies the d.e. on I .
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A Solution Classification

Continued from the previous page

Explicit Solutions and Implicit Solutions:
Explicit solution is a function f defined on interval I such that it
satisfies the ordinary differential equation on interval I when f is
substituted for the dependent variable.
A relation g(x , y) = 0 is called an implicit solution of the
ordinary differential equation on I if this relation defines at least
one function f of x on I such that this function is an explicit
solution of (16) on this interval.
Both explicit and implicit solutions are called solutions.
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Example

A function defined for all real x by

f (x) = 2 sin x + 3 cos x

is an explicit solution of the differential equation

d2y

dx2
+ y = 0

for all real x . First note that f is defined and has a second
derivative on the entire real interval. Next observe that

f ′(x) = 2 cos x − 3 sin x

f ′′(x) = −2 sin x − 3 cos x

Substituting them in the differential equation we obtain

(−2 sin x − 3 cos x) + (2 sin x + 3 cos x) = 0

which holds for all real x . Thus the function f is an explicit
solution of the differential equation.
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Example

Consider the differential equation

x
dy

dx
− 2y = 0

The function f (x) = x2 on the interval I = (−∞,∞) is an explicit
solution to the d.e. above. Substitute in the d.e.:

xf ′(x)− 2f (x) = x · 2x − 2 · x2 = 0

for all x ∈ I . Thus f is an explicit solution to the d.e. on the
interval I .

Example

Is f (x) = ex − x on the interval I = (−∞,∞) a solution to

dy

dx
+ y2 = e2x + (1− 2x)ex + x2 − 1
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Example

Consider the differential equation

x2 d
2y

dx2
− 2y = 0

and the solution candidate f (x) = x2 − x−1 on the interval
I = (0,∞).
Note that f ′(x) = 2x + x−2 and f ′′(x) = 2− 2x−3. Substitute
them in the d.e.:

x2 · (2− 2x−3)− 2(x2 − x−1) = 0

for all x on the interval I . It can be shown that this function is
also a solution to the differential equation on the interval (−∞, 0).
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Example

The relation
x2 + y2 − 25 = 0

is an implicit solution of the differential equation

x + y
dy

dx
= 0

on the interval I defined by −5 ≤ x ≤ 5. It defines two functions

f1(x) =
√

25− x2

and
f2(x) = −

√
25− x2

for all real x on I . It can easily be shown that each of these
functions is an explicit solution for the differential equation on I .
Note that if one of them is an explicit solution for the differential
equation on I , it suffices for being an implicit solution.
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Example

It can easily be shown that each of the functions f1 and f2 is an
explicit solution for the differential equation on I . Note that if one
of them is an explicit solution for the differential equation on
I : −5 ≤ x ≤ 5 it suffices for being an implicit solution. Indeed, at
least one of them satisfies the differential equation:[

x + y
dy

dx

]
y=f1

= 0

x +
√

25− x2 · −2x

2
√

25− x2
= x − x = 0
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Example

Consider the d.e.
dy

dx
+

1

2y
= 0

The relation y2 + x − 3 = 0 on the interval (∞, 3) is an implicit
solution to the d.e. above. Differentiate throughout:

2y
dy

dx
+ 1 = 0

→ dy

dx
+

1

2y
= 0

Solution generated the d.e.! Thus the relation y2 + x − 3 = 0 on
the interval (∞, 3) is an implicit solution to the given d.e.
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Example

Consider the relation xy3 − xy3 sin x = 1 and solve it for y for later
use:

xy3(1− sin x) = 1→ y3 =
1

x(1− sin x)

→ y =

[
1

x(1− sin x)

] 1
3

= [x(1− sin x)]
−1
3

Differentiate this:

dy

dx
= −1

3
[x(1− sin x)]

−4
3 [x(− cos x) + (1− sin x)]

=
x cos x + sin x − 1

3[x(1− sin x)]
4
3

=
x cos x + sin x − 1

3[x(1− sin x)]

1

[x(1− sin x)]
1
3

=
x cos x + sin x − 1

3[x(1− sin x)]
· y
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Continued from the previous page

xy3 − xy3 sin x = 1↔ dy

dx
=

x cos x + sin x − 1

3[x(1− sin x)]
· y

Thus the relation
xy3 − xy3 sin x = 1

is an implicit solution to the d.e.

dy

dx
=

x cos x + sin x − 1

3[x(1− sin x)]
· y
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Initial value problems

Problem Find a solution f of the differential equation

dy

dx
= 2x (17)

such that at x = 1 this solution f has the value 4.
Equivalently Solve

dy

dx
= 2x , y(1) = 4
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dy

dx
= 2x (17)

The solution must satisfy the differential equation (17).
y = x2 + c satisfies (17) for an arbitrary constant c.
The other condition y(1) = 4 is satisfied if 4 = 12 + c , i.e., c = 3.
The condition in addition to the differential equation (17) is called
boundary condition. If the boundary conditions relate to one x
value, the problem is called the initial value problem. If the
conditions relate to two different x values, the problem is called a
(two point) boundary value problem.
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Example

d2y

dx2
+ y = 0, y(1) = 3, y ′(1) = −4

Since the boundary conditions are given at one x value the
problem is an initial value problem.

Example

d2y

dx2
+ y = 0, y(0) = 1, y(2) = 5

Boundary conditions are given at two different x values; the
problem is a boundary value problem.

A. Karamancıoğlu Advanced Calculus



Existence of a unique solution

Theorem

Consider the differential equation

dy

dx
= f (x , y), y(x0) = y0 (18)

where
1) the function f is a continuous function of x and y in some
domain D of xy-plane, and
2) the partial derivative ∂f

∂y is also a continuous function of x and
y in D; and
3) let (x0, y0) be a point in D. Then there exists a unique solution
of the differential equation (18) defined on some interval
|x − x0| < h where h is sufficiently small.
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Continued from the previous page

Then there exists a unique solution of the differential equation (18)
defined on some interval |x − x0| < h where h is sufficiently small.

Note that this is a sufficiency theorem. A→ B does not mean A is
necessary for B to hold true.
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Example

Consider the initial value problem

dy

dx
= x2 + y2, y(1) = 3

Let us apply the existence theorem where
f (x , y) = x2 + y2, ∂f

∂y = 2y . Both functions f and ∂f
∂y are

continuous in every domain D of the xy-plane. The point (1, 3) is
in the domain D.
Thus the differential equation has a unique solution defined in the
neighborhood of x = 1.
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A first order linear differential equation in the form

dy

dx
+ p(x)y = g(x), y(x0) = y0

is a special case of the one we considered:

dy

dx
= f (x , y), y(x0) = y0 (18)

Example

Consider

(t2 − 9)y ′ + 2y = ln |20− 4t|, y(4) = −3

In the standard form:

y ′ = − 2

(t2 − 9)
y +

ln |20− 4t|
(t2 − 9)

, y(4) = −3
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y ′ = − 2

(t2 − 9)
y +

ln |20− 4t|
(t2 − 9)

, y(4) = −3

Continued from the previous page

comparing to the expression

dy

dx
= f (x , y), y(x0) = y0 (18)

we have

f (t, y) = − 2

(t2 − 9)
y +

ln |20− 4t|
(t2 − 9)

f has discontinuities at t = −3,+3, 5. Discontinuities of ∂f
∂y are at

t = −3,+3. The continuous interval of y is (−∞,∞), and
continuous intervals of t are

(−∞,−3), (−3, 3), (3, 5), (5,∞)
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Continued from the previous page

Domains for unique solution:
(−∞,−3)× (−∞,∞)︸ ︷︷ ︸

D1

, (−3, 3)× (−∞,∞)︸ ︷︷ ︸
D2

,

(3, 5)× (−∞,∞)︸ ︷︷ ︸
D3

, (5,∞)× (−∞,∞)︸ ︷︷ ︸
D4

The initial condition y(4) = −3, corresponding to the pair (4,−3)
in the theorem, is in the domain D3.
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Continued from the previous page

Thus, the differential equation

(t2 − 9)y ′ + 2y = ln |20− 4t|, y(4) = −3

satisfies the hypotheses of the existence and uniqueness theorem as
any initial condition does in domain D3. Therefore, it has a unique
solution defined for |t − 4| < h for some h.
We will see in the sequel that the sufficient existence conditions
are simpler for the linear differential equations.
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Exercise

1) Show that y = 4e2x + 2e−3x is a solution of the initial value
problem

d2y

dx2
+

dy

dx
− 6y = 0; y(0) = 6, y ′(0) = 2

2) Do the following problems have unique solutions?
a)

dy

dx
= x2 sin y , y(1) = −2

b)
dy

dx
=

y2

x − 2
, y(1) = 0
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Exact differential equations

The first order differential equations to be studied may be
expressed in either the derivative form

dy

dx
= f (x , y)

or the differential form

M(x , y)dx + N(x , y)dy = 0

An equation in one of these forms may readily be written in the
other form. For example

dy

dx
=

x2 + y2

x − y
↔ (x2 + y2)dx + (y − x)dy = 0

(sin(x) + y)dx + (x + 3y)dy = 0↔ dy

dx
= −sin(x) + y

x + 3y
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Definition

Let F be a function of two real variables such that F has
continuous first partial derivatives in a domain D. The total
differential dF of the function F is defined by the formula

dF (x , y) =
∂F (x , y)

∂x
dx +

∂F (x , y)

∂y
dy

for all (x , y) ∈ D.

Example

Consider
F (x , y) = xy2 + 2x3y

for all real (x , y). Then

dF (x , y) = (y2 + 6x2y)dx + (2xy + 2x3)dy
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Definition

The expression
M(x , y)dx + N(x , y)dy (19)

is called exact differential in a domain D if there exists a function
F of two variables such that this expression equals the total
differential dF (x , y) for all (x , y) ∈ D. That is the expression (19)
is an exact differential in D if there exists a function F such that

∂F (x , y)

∂x
= M(x , y) and

∂F (x , y)

∂y
= N(x , y)

for all (x , y) ∈ D.
If M(x , y)dx + N(x , y)dy is an exact differential then
M(x , y)dx + N(x , y)dy = 0 is called an exact differential equation.
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Example

The differential equation

y2dx + 2xydy = 0

is an exact differential equation since y2dx + 2xydy is an exact
differential. Consider F (x , y) = xy2 :

∂F (x , y)

∂x
= y2 and

∂F (x , y)

∂y
= 2xy
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Test for exactness

Theorem

Consider the differential equation

M(x , y)dx + N(x , y)dy = 0 (20)

where M and N have continuous first partial derivatives at all
points (x , y) in a rectangular domain D.
Exactness of the differential equation (20 ) in D is equivalent to

∂M(x , y)

∂y
=
∂N(x , y)

∂x

for all (x , y) ∈ D
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Theorem

Suppose the differential equation M(x , y)dx + N(x , y)dy = 0 is
exact in a rectangular domain D. Then a one parameter family of
solutions of this differential equation is given by F (x , y) = c where
F is a function such that

∂F (x , y)

∂x
= M(x , y) and

∂F (x , y)

∂y
= N(x , y)

for all (x , y) ∈ D and c is an arbitrary constant.
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Justification

Thus,
∂F (x , y)

∂x
dx +

∂F (x , y)

∂y
dy = 0

is the same as
dF (x , y) = 0

which is possible if
F (x , y) = c

where c is an arbitrary constant. Namely

∂F (x , y)

∂x
dx +

∂F (x , y)

∂y
dy = 0→ F (x , y) = c
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Example

(3x2 + 4xy)dx + (2x2 + 2y)dy = 0

is exact since
∂M(x , y)

∂y
= 4x =

∂N(x , y)

∂x

for all real (x , y). Thus we must find F such that

∂F (x , y)

∂x
= 3x2 + 4xy and

∂F (x , y)

∂y
= 2x2 + 2y

From the first of these

F (x , y) =

∫
M(x , y)∂x + φ(y) =

∫
(3x2 + 4xy)∂x + φ(y)

= x3 + 2x2y + φ(y)
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Continued from the previous page

F (x , y) = x3 + 2x2y + φ(y)

Then
∂F (x , y)

∂y
= 2x2 +

dφ(y)

dy

But we must have

∂F (x , y)

∂y
= N(x , y) = 2x2 + 2y

Thus

2x2 + 2y = 2x2 +
dφ(y)

dy

or

2y =
dφ(y)

dy
→ φ(y) = y2 + c0

Hence
F (x , y) = x3 + 2x2y + y2 + c0
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Continued from the previous page

F (x , y) = x3 + 2x2y + φ(y)

Then
∂F (x , y)

∂y
= 2x2 +

dφ(y)

dy

But we must have

∂F (x , y)

∂y
= N(x , y) = 2x2 + 2y

Thus

2x2 + 2y = 2x2 +
dφ(y)

dy

or

2y =
dφ(y)

dy
→ φ(y) = y2 + c0

Hence
F (x , y) = x3 + 2x2y + y2 + c0
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Continued from the previous page

F (x , y) = x3 + 2x2y + y2 + c0

One parameter family of solutions:

x3 + 2x2y + y2 + c0 = c1

or
x3 + 2x2y + y2 = c

For a verification, compare total differentials of both sides:

d(x3 + 2x2y + y2) = d(c)

(3x2 + 4xy)dx + (2x2 + 2y)dy = 0

We obtained the original equation; thus solution is verified.
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Continued from the previous page

For another verification way, write the given differential equation in
derivative form:

(3x2 + 4xy)dx + (2x2 + 2y)dy = 0→ dy

dx
= −3x2 + 4xy

2x2 + 2y

Solve the solution x3 + 2x2y + y2 = c for y to generate an explicit
solution:

y2 + 2x2︸︷︷︸
B

y + x3 − c︸ ︷︷ ︸
C

= 0

y2+By+C = 0→ y1,2 = −B

2
±

√[
−B

2

]2

− C = −x2±
√
x4 − x3 + c

One can show that at least one of y1,2 satisfies the given differential
equation; this is another verification of that the solution is correct.
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Example

Solve the initial value problem

(2x cos y + 3x2y)dx + (x3 − x2 sin y − y)dy = 0, y(0) = 2

The equation is exact:

∂M(x , y)

∂y
= −2x sin y + 3x2 =

∂N(x , y)

∂x

for all real (x , y). We must find F such that

∂F (x , y)

∂x
= M(x , y) = 2x cos y + 3x2y and

∂F (x , y)

∂y
= N(x , y) = x3 − x2 sin y − y
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Continued from the previous page

Then

F (x , y) =

∫
M(x , y)∂x + φ(y) =

∫
(2x cos y + 3x2y)∂x + φ(y)

= x2 cos y + x3y + φ(y)

∂F (x , y)

∂y
= x3 − x2 sin y +

dφ(y)

dy
= N(x , y) = x3 − x2 sin y − y

dφ(y)

dy
= −y → φ(y) = −y2

2
+ c0

Thus

F (x , y) = x2 cos y + x3y − y2

2
+ c0
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Continued from the previous page

Family of solutions:

x2 cos y + x3y − y2

2
= c

Apply the initial conditions: y = 2 at x = 0. We find c = −2.
Thus the solution is:

x2 cos y + x3y − y2

2
= −2
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Integrating factors

If the differential equation

M(x , y)dx + N(x , y)dy = 0 (21)

is not exact in a domain D but the differential equation

µ(x , y)M(x , y)dx + µ(x , y)N(x , y)dy = 0

is exact in D, then µ(x , y) is called an integrating factor of the
differential equation (21).

Example

(3y + 4xy2)dx + (2x + 3x2y)dy = 0

is not exact. µ(x , y) = x2y works as an integrating factor for this
equation.
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Multiplication of a nonexact differential equation by an integrating
factor thus transforms the nonexact equation into an exact one.
We refer to this resulting exact equation as essentially equivalent
to the original. This essentially equivalent exact equation has the
same one parameter family of solutions as the nonexact original.
However, the multiplication of the original equation by the
integrating factor may result in either
1) the loss of one or more solutions of the original, or
2) the gain of one or more functions which are solutions of the new
equation but not of the original, or
3) both of these phenomena.
We should check to determine whether any solutions may have
been lost or gained.
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Exercises

Check whether the following are exact or not. If exact, solve them.

(3x + 2y)dx + (2x + y)dy = 0

(y2 + 3)dx + (2xy − 4)dy = 0

(2xy + 1)dx + (x2 + 4y)dy = 0

Solve the initial value problem

(2xy − 3)dx + (x2 + 4y)dy = 0, y(1) = 2

(3x2y2 − y3 + 2x)dx + (2x3y − 3xy2 + 1)dy = 0, y(−2) = 1
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Separable differential equations

Definition

An equation of the form

F (x)G (y)dx + f (x)g(y)dy = 0 (22)

is called a separable equation.

Multiply (22) by the integrating factor 1
f (x)G(y) :

F (x)

f (x)
dx +

g(y)

G (y)
dy = 0 (23)
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Multiply (22) by the integrating factor

F (x)

f (x)
dx +

g(y)

G (y)
dy = 0 (cf. 23)

This equation is exact since

∂

∂y

F (x)

f (x)
= 0 =

∂

∂x

g(y)

G (y)

Denoting F (x)
f (x) by M(x) and g(y)

G(y) by N(y), Equation (23) takes the
form

M(x)dx + N(y)dy = 0

Since M is function of x only, and N is function of y only, a one
parameter family of solutions is∫

M(x)dx +

∫
N(y)dy = c

where c is the arbitrary constant.
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F (x)G (y)dx + f (x)g(y)dy = 0 (cf. 22)

Consider the original equation (22) in the following form:

f (x)g(y)
dy

dx
+ F (x)G (y) = 0 (24)

If there exists a real number y = y0 such that G (y0) = 0 then (24)
reduces to

f (x)g(y)
dy

dx
= 0

which has a constant solution y = y0. We next should investigate
whether the constant solution y = y0 of the original equation is
lost or not in the process of multiplying by the integrating factor.
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Example

(x − 4)y4dx − x3(y2 − 3)dy = 0

The equation above is separable. We separate the variables by
dividing by x3y4, we obtain

x − 4

x3
dx − y2 − 3

y4
dy = 0

or
(x−2 − 4x−3)dx − (y−2 − 3y−4)dy = 0

Integrating we obtain the solutions

−1

x
+

2

x2
+

1

y
− 1

y3
= c

where c is any arbitrary constant.

A. Karamancıoğlu Advanced Calculus



Original equation : (x − 4)y4dx − x3(y2 − 3)dy = 0

Essentially equivalent equation : x−4
x3 dx − y2−3

y4 dy = 0

Soln. of essentially equiv. d.e. : −1
x + 2

x2 + 1
y −

1
y3 = c

Continued from the previous page

In multiplying by 1
f (x)G(y) = 1

x3y4 in the separation process, we

assumed that x3 6= 0 and y4 6= 0. We now consider the solution
y = 0 of G (y) = 0, i.e., y4 = 0. It is not a member of the one
parameter family of solutions which we obtained. However, writing
the original differential equation of the problem in the derivative
form

dy

dx
=

(x − 4)y4

x3(y2 − 3)

it is obvious that y = 0 is a solution of the original equation. We
conclude that it is a solution which was lost in the separation
process.
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Example

Consider
dy

dt
=

1 + cos t

1 + 3y2

We can write it as

(1 + 3y2)dy = (1 + cos t)dt

Integrating throughout yields the solution:

y + y3 = t + sin t + c
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Example

Consider
dy

dt
= −y 1 + 2t2

t
, y(1) = 2

We can write it as∫
dy

y
= −

∫
1 + 2t2

t
dt= −

∫
dt

t
−
∫

2tdt dt

ln y = − ln(t)− t2 + c

y = e− ln t−t2+c =
A

t
e−t

2

At t = 1 we have y = 2. So, 2 = Ae−1 → A = 2e1. Therefore, the
solution is

y(t) =
2

t
e1−t2
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Homogeneous differential equations

The first order differential equation

M(x , y)dx + N(x , y)dy = 0

is said to be homogeneous if, when written in derivative form

dy

dx
= f (x , y)

there exists a function g such that f (x , y) can be expressed in the
form g(v) where v = y

x
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Example

The differential equation

(x2 − 3y2)dx + 2xydy = 0

is homogeneous. This equation can be written as

dy

dx
=

3y2 − x2

2xy
=

3

2
v − 1

2

1

v

where v := y
x .
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A function F is called homogeneous of degree n if
F (tx , ty) = tnF (x , y).

Theorem

If
M(x , y)dx + N(x , y)dy = 0 (25)

is a homogeneous equation, then the change of variables y = vx
transforms (25) into a separable equation in the variables v and x.
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Proof

Homogeneity implies dy
dx = g( yx ) for some g . Let y = vx , then

dy

dx
= v + x

dv

dx
→ v + x

dv

dx
= g(v)→ [v − g(v)]dx + xdv = 0

dv

v − g(v)
+

dx

x
= 0

Integrate throughout:∫
dv

v − g(v)
+

∫
dx

x
= c

where c is an arbitrary constant. Define F (v)
∆
=
∫

dv
v−g(v) then the

solution of the original equation is

F (
y

x
) + ln |x | = c
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Example

Consider the differential equation

(x2 − 3y2)dx + 2xydy = 0

We have already seen that this is homogeneous. Write this in the
form

dy

dx
=
−x
2y

+
3y

2x
=
−1

2v
+

v

2

and let y = vx . Obtain

v + x
dv

dx
=
−1

2v
+

3v

2
→ x

dv

dx
=
−1

2v
+

v

2
→ 2v

v2 − 1
dv =

dx

x

Integration gives:

ln |v2 − 1| = ln |x |+ ln |c | → ln |v2 − 1| = ln |x ||c |

→ |v2 − 1| = |cx | → |y
2

x2
− 1| = |cx |
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Linear differential equations

Definition

A first order ordinary differential equation is linear in the
dependent variable y and the independent variable x if it is, or can
be, written in the form

dy

dx
+ P(x)y = Q(x) (26)

Note that:
If P(x) = 0, then direct integration gives the solution:
y(x) =

∫
Q(x)dx

If Q(x) = 0, then the equation is separable.
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dy

dx
+ P(x)y = Q(x) (26)

Continued from the previous page

Equation above can be written in the form

[P(x)y − Q(x)]dx + dy = 0 (27)

This has the form M(x , y)dx + N(x , y)dy = 0. Lets check the
exactness:

∂M(x , y)

∂y
= P(x) and

∂N(x , y)

∂x
= 0

Equation (27) is not exact unless P(x) = 0, in which case
Equation (26) becomes trivially simple. Let us proceed with the
general case P(x) 6= 0.
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[P(x)y − Q(x)]dx + dy = 0 (27)

Continued from the previous page

Multiply equation (27) by µ(x) to obtain

[µ(x)P(x)y − µ(x)Q(x)]dx + µ(x)dy = 0

Now the equation is exact iff:

∂[µ(x)P(x)y − µ(x)Q(x)]

∂y
=
∂µ(x)

∂x

This condition reduces to

µ(x)P(x) =
d

dx
µ(x)
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µ(x)P(x) =
d

dx
µ(x)

Continued from the previous page

This can be written as a differential equation

dµ

µ
= P(x)dx

→ ln |µ| =

∫
P(x)dx

→ µ = e
∫
P(x)dx

where it is clear that µ > 0.
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Continued from the previous page

Thus
µ = e

∫
P(x)dx (28)

is the integrating factor for (26).
Recall

dy

dx
+ P(x)y = Q(x) (cf.26)

Multiply (26) throughout by the integrating factor:

e
∫
P(x)dx dy

dx
+ e

∫
P(x)dxP(x)y = e

∫
P(x)dxQ(x) (29)

This is equivalent to

d

dx
[e
∫
P(x)dxy ] = e

∫
P(x)dxQ(x) (30)
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d

dx
[e
∫
P(x)dxy ] = e

∫
P(x)dxQ(x) (30)

Continued from the previous page

This results in

e
∫
P(x)dxy =

∫
e
∫
P(x)dxQ(x)dx + c (31)

y = e−
∫
P(x)dx [

∫
e
∫
P(x)dxQ(x)dx + c] (32)
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Example

dy

dx
+

2x + 1

x
y = e−2x (33)

Here P(x) = 2x+1
x and the integrating factor is

e
∫

2x+1
x

dx = e2x+ln |x | = e2xe ln |x | = xe2x

Multiply (33) by the integrating factor

xe2x dy

dx
+ xe2x 2x + 1

x
y = x

or
d

dx
(xe2xy) = x
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d

dx
(xe2xy) = x

Continued from the previous page

Integrate throughout

xe2xy =
x2

2
+ c

y = e−2x x

2
+

c

x
e−2x

where c is arbitrary constant.
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Bernouilli differential equations

Definition

An equation of the form

dy

dx
+ P(x)y = Q(x)yn (34)

is called a Bernouilli differential equation

Clearly, for n = 0 and n = 1, the equation is linear.

Theorem

Excluding the cases n = 0 and n = 1, the transformation v = y1−n

reduces the Bernouilli equation to a linear equation in v.
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Proof

Multiply the Bernouilli equation by y−n to obtain

y−n
dy

dx
+ P(x)y1−n = Q(x) (35)

Let v = y1−n, then

dv

dx
= (1− n)y−n

dy

dx

Now the (35) becomes

1

1− n

dv

dx
+ P(x)v = Q(x)

dv

dx
+ (1− n)P(x)v = (1− n)Q(x)

Letting P1(x) = (1− n)P(x) and Q1(x) = (1− n)Q(x) the
differential equation can be written as

dv

dx
+ P1(x)v = Q1(x)

which is linear in v .
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Riccati differential equations

Definition

A Riccati differential equation is an ordinary differential equation
that has the form

ẏ = q0(x) + q1(x)y + q2(x)y2 (36)

Theorem

The Riccati equation can always be reduced to a second order
linear ODE.

Here we assume that q2 is nonzero, otherwise (36) is a linear
differential equation. If q0 = 0, then (36) is a Bernouilli differential
equation.
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ẏ = q0(x) + q1(x)y + q2(x)y2 (36)

Continued from the previous page

Use the transform
v = yq2

then

v̇ = ẏq2+y q̇2 = (q0+q1y+q2y
2)q2+v

q̇2

q2
= q0q2+(q1+

q̇2

q2
)v+v2

Define Q := q0q2 and P := q1 + q̇2
q2

we can write

v̇ = v2 + P(x)v + Q(x)

A. Karamancıoğlu Advanced Calculus



Continued from the previous page

v̇ = v2 + P(x)v + Q(x)

Now use

v = − u̇

u

This implies

v̇ = −(
u̇

u
)′ = −(u̇ × 1

u
)′ = −(

ü

u
) + (

u̇

u
)2 = −(

ü

u
) + v2

so that
ü

u
= v2 − v̇ = −Q − Pv = −Q + P

u̇

u

and hence
ü − Pu̇ + Qu = 0. Q.E.D.
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ẏ = q0(x) + q1(x)y + q2(x)y2 (36)

Theorem

If any solution u(x) of the Riccati equation (36) is known, then
substitution of y = u + 1

z will transform (36) into a linear 1st order
equation in z .
Proof If u is a solution of the Riccati equation then

du

dx
= q0(x) + q1(x)u + q2(x)u2 (37)

By using the substitution y = u + 1
z , we have

dy

dx
=

d

dx
(u +

1

z
) =

du

dx
− 1

z2

dz

dx
(38)
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Continued from the previous page

ẏ = q0(x) + q1(x)y + q2(x)y2 (36)

dy

dx
=

d

dx
(u +

1

z
) =

du

dx
− 1

z2

dz

dx
(38)

Substitute (38) in the Riccati equation (36):

du
dx −

1
z2

dz
dx = q2(u + 1

z )2 + q1(u + 1
z ) + q0

= (q2u
2 + q1u + q0)︸ ︷︷ ︸

equals du
dx

by (37)

+( 2u
z q2 + 1

z2 q2 + 1
z q1)

− 1

z2

dz

dx
=

2u

z
q2 +

1

z2
q2 +

1

z
q1

dz

dx
= −2uzq2 − q2 − zq1

dz

dx
= −(2uq2 + q1)z − q2

which is a linear 1st order differential equation in z .
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Example

Consider the Riccati equation

dy

dx
+ y = xy2 − 1

x2
(39)

y = 1
x is a particular solution to (39). We want to find the other

solution. Use the transform

y =
1

x
+

1

z

then we have

y ′ = − z ′

z2
− 1

x2

Substitute y and y ′ in (39):

− z ′

z2
− 1

x2
+

1

x
+

1

z
= x(

1

x
+

1

z
)2 − 1

x2
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− z ′

z2
− 1

x2
+

1

x
+

1

z
= x(

1

x
+

1

z
)2 − 1

x2

− z ′

z2
−
�
��
1

x2
+
�
��
1

x
+

1

z
= x(

�
��
1

x2
+

1

z2
+

2

xz
)−
�
��
1

x2

Continued from the previous page

Simplification yields a 1st order linear de:

z ′ + z = −x

Its solution is
z = 1− x + ce−x

Noting that y = 1
x + 1

z , the solution to (39) is

y =
1

x
+

1

1− x + ce−x
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Example

Consider the Riccati equation

x
dy

dx
− 3y + y2 = 4x2 − 4x

Obviously u(x) = 2x is a particular solution of this differential
equation. From this we can obtain a 1st order linear differential
equation in z .
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Orthogonal trajectories

Let
F (x , y , c) = 0 (40)

be a given one parameter family of curves in xy-plane. A curve
that intersects curves of the family (40) at right angles is called an
orthogonal trajectory of the given family.
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Example

Consider the family of curves x2 + y2 = c2. Each straight line
passing through the origin y = kx is an orthogonal trajectory of
the given family of circles.

Figure: Orthogonal trajectories for x2 + y2 = c
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How to find orthogonal trajectories

Step 1. Differentiate F (x , y , c) = 0 with respect to x to obtain

dy

dx
= f (x , y) (41)

Step 2. Solutions of dy
dx = −1

f (x ,y) are the orthogonal trajectories.
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Reasoning

Step 1. Differentiate F (x , y , c) = 0 with respect to x to obtain

dy

dx
= f (x , y) (41)

Step 2. Solutions of dy
dx = −1

f (x ,y) are the orthogonal trajectories.

In F (x , y , c) = 0 the slope of the curve passing through the point
(x , y) is dy

dx , which is f (x , y). However, the slope of the curves
passing through (x , y) having right angle to F (x , y , c) = 0 curves
are −1

f (x ,y) .

Caution. In step 1 finding the differential equation (41) of the
given family, be sure to eliminate the parameter c during the
process.
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Example

F (x , y , c) = 0 is given by x2 + y2 − c2 = 0. Differentiation gives

2x + 2y
dy

dx
= 0→ dy

dx
=
−x
y︸︷︷︸

f (x ,y)

We are looking for the orthogonal trajectories, so we must solve

dy

dx
=

y

x︸︷︷︸
−1

f (x,y)

or

dy

dx
=

y

x
→ dy

y
=

dx

x
→ ln y = ln x+ln k → ln y = ln kx → y = kx
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Example

Find the orthogonal trajectories of the family of parabolas y = cx2.

y = cx2 → dy

dx
= 2 c︸︷︷︸

y

x2

x → dy

dx
= 2

y

x

Orthogonal trajectory finding requires solving dy
dx = −x

2y

2ydy = −xdx → y2 = −x2

2
+ c → x2 + 2y2 = k2

Figure: Orthogonal trajectories for y = cx2
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Oblique trajectories

Definition

Let
F (x , y , c) = 0 (42)

be a given one parameter family of curves in xy-plane. A curve
that intersects curves of the family (42) at a constant angle
α 6= 900 is called an oblique trajectory of the given family.
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Differential equation corresponding to (42) is

dy

dx
= f (x , y) (43)

Then the curve of family (42) through the point (x , y) has slope
f (x , y) at (x , y) and hence its tangent line has angle of inclination
tan−1[f (x , y)] there. The tangent line of an oblique trajectory that
intersects this curve at the angle α will thus have an inclination
tan−1[f (x , y)] + α at the point (x , y). Hence the slope of the
oblique trajectory is given by

tan{tan−1[f (x , y)] + α} =
f (x , y) + tanα

1− f (x , y) tanα

Thus the differential equation of such a family of oblique
trajectories is given by

dy

dx
=

f (x , y) + tanα

1− f (x , y) tanα
(44)

A. Karamancıoğlu Advanced Calculus



Example

Find the family of oblique trajectories that intersect the family of
straight lines y = cx at angle 450.

y = cx → dy

dx
= c → dy

dx
=

y

x

In
dy

dx
=

f (x , y) + tanα

1− f (x , y) tanα
(44)

use f (x , y) = y
x and tanα = 1:

dy

dx
=

y
x + 1

1− y
x 1

=
x + y

x − y

This is a homogeneous differential equation Let y = vx :

v + x
dv

dx
=

1 + v

1− v
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v + x
dv

dx
=

1 + v

1− v

Continued from the previous page

After simplification
(v − 1)dv

v2 + 1
=
−dx
x

Integrating

1

2
ln(v2 + 1)− tan−1(v) = − ln |x | − ln |c |

ln c2x2(v2 + 1)− 2 tan−1 v = 0

ln c2(x2 + y2)− 2 tan−1 y

x
= 0
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Solving higher order linear differential equations

Definition

A linear ordinary differential equation of order n in the dependent
variable y and the independent variable x is an equation that is in,
or can be expressed in, the form

a0(x)
dny

dxn
+a1(x)

dn−1y

dxn−1
+ · · ·+an−1(x)

dy

dx
+an(x)y = F (x) (45)

where a0 is not identically zero.

We shall assume that a0, a1, . . . , an and F are continuous real
functions on a real interval a ≤ x ≤ b and that a0(x) 6= 0 for any x
on a ≤ x ≤ b. The righthand member F (x) is called the
nonhomogeneous term. If F is identically zero Equation (45)
reduces to

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = 0 (46)

and is then called homogeneous.
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Theorem

Consider the n-th order linear differential equation given by
Equation (45) where a0, a1, . . . , an and F are continuous real
functions on a real interval a ≤ x ≤ b and that a0(x) 6= 0 for any x
on a ≤ x ≤ b. Let x0 be any point on the interval a ≤ x ≤ b, and
let c0, c1, . . . , cn−1 be n arbitrary real constants. Then there exists
a unique solution of Equation (45) such that

f (x0) = c0, f
′(x0) = c1, . . . , f

(n−1)(x0) = cn−1

and this solution is defined over the entire interval a ≤ x ≤ b.
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Example

Consider the initial value problem

d2y

dx2
+ 3x

dy

dx
+ x3y = ex , y(1) = 2, y ′(1) = −5

In the interval −∞ < x <∞ the hypotheses of Theorem 6 are
satisfied, so the equation has a unique solution in this interval.
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Corollary

Let f be a solution of the n-th order homogeneous linear
differential equation given by Equation (46) such that

f (x0) = 0, f ′(x0) = 0, . . . , f (n−1)(x0) = 0

where x0 is a point of the interval a ≤ x ≤ b in which the
coefficients a0, a1, . . . , an are all continuous and a0(x) 6= 0. Then
f (x) = 0 for all x ∈ [a, b].
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Theorem

For a homogeneous linear differential equation, (a) the sum of the
solutions is also a solution and (b) a constant multiple of a
solution is also a solution.

Proof Consider

α
d2x

dt2
+ β

dx

dt
+ γx = 0 (47)

where α, β and γ are functions of t.
Let the functions x1 and x2 be solutions to (47). Then

α
d2x1

dt2
+ β

dx1

dt
+ γx1 = 0 and α

d2x2

dt2
+ β

dx2

dt
+ γx2 = 0

We wish to prove that x1 + x2 is also a solution, that is

α
d2(x1 + x2)

dt2
+ β

d(x1 + x2)

dt
+ γ(x1 + x2) = 0
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α
d2(x1 + x2)

dt2
+ β

d(x1 + x2)

dt
+ γ(x1 + x2) = 0

Continued from the previous page

Using the basic property of the derivatives:

α
d2(x1)

dt2
+ α

d2(x2)

dt2
+ β

d(x1)

dt
+ β

d(x2)

dt
+ γx1 + γx2 = 0

α
d2(x1)

dt2
+ β

d(x1)

dt
+ γx1 + α

d2(x2)

dt2
+ β

d(x2)

dt
+ γx2 = 0 + 0 = 0

Likewise, we wish to show that if x satisfies (47) then kx also
satisfies it for any constant k .

α
d2(kx)

dt2
+ β

d(kx)

dt
+ γ(kx) = αk

d2(x)

dt2
+ βk

d(x)

dt
+ kγx

= k(α
d2(x)

dt2
+ β

d(x)

dt
+ γx) = k · 0 = 0
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Theorem

Let f1, f2, . . . , fm be any m solutions of the homogeneous linear
differential equation (46). Then c1f1 + c2f2 + · · ·+ cmfm is also a
solution of (46), where c1, . . . , cm are m arbitrary constants.

Definition

If f1, f2, . . . , fm are m given functions, and c1, c2, . . . , cm are m
constants then the expression c1f1 + c2f2 + · · ·+ cmfm is called a
linear combination of f1, f2, . . . , fm.

Theorem

(Restated) Any linear combination of solutions of the homogeneous
linear differential equation (46) is also a solution of (46).
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Example

sin x and cos x are solutions of

d2y

dx2
+ y = 0

By the theorem 5 sin x + 6 cos x is also a solution of the equation.
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Definition

The n functions f1, f2, . . . , fn are called linearly dependent on
a ≤ x ≤ b if there exist constants c1, c2, . . . , cn, not all zero, such
that

c1f1 + c2f2 + · · ·+ cnfn = 0

for all x such that a ≤ x ≤ b.

Example

Are the functions f1(x) = x , f2(x) = x2, f3(x) = x2 + 2x
f4(x) = 3 linearly dependent on 0 ≤ x ≤ 10?

c1x + c2x
2 + c3(x2 + 2x) + c43 = 0, ∀x ∈ [0, 10]

In addition to zero the solution c1 = 0, c2 = 0, c3 = 0, c4 = 0 we
have a nonzero solution c1 = 2, c2 = 1, c3 = −1, c4 = 0.
∴ This group of functions is linearly dependent.
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In particular two functions f1 and f2 are linearly dependent on
a ≤ x ≤ b if there exist constants c1, c2, not both zero, such that

c1f1 + c2f2 = 0

for all x such that a ≤ x ≤ b.

Example

x and 2x are linearly dependent on the interval 0 ≤ x ≤ 1, since
there exist constants c1, c2, not both zero, such that

c1 · x + c2 · 2x = 0 (48)

for all x on the interval 0 ≤ x ≤ 1. For instance, c1 = 2, c2 = −1

Notice that we found constants c1 and c2 that work for all x in the
given interval 0 ≤ x ≤ 1. If they worked for some x values only
then we wouldn’t say that the functions are linearly dependent.
The next example illustrates this idea:
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Example

Consider the functions cos x , cos 2x , and cos 3x on the interval
−π ≤ x ≤ π. Form the linear dependence equation

c1 cos x + c2 cos 2x + c3 cos 3x = 0, −π ≤ x ≤ π (49)

When x = 0 this equation holds for c1 = 1, c2 = 1 and c3 = −2.
But this does not make this set linearly dependent. For linear
dependency on −π ≤ x ≤ π, the constants c1, c2 and c3 must work
for ALL x on the interval −π ≤ x ≤ π. Notice thet, for instance,
when x = π

2 , the above c1, c2, c3 don’t satisfy Equation (49).

Definition

The n functions f1, f2, . . . , fn are called linearly independent on
the interval a ≤ x ≤ b if they are not linearly dependent there.
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Example

Are f1(t) = 2t and f2(t) = t2 linearly dependent on 0 ≤ t ≤ 2? If
we can find constants c1 and c2, not both zero, such that

c12t + c2t
2 = 0, 0 ≤ t ≤ 2 (50)

holds, then f1 and f2 are linearly dependent.
Suppose for some c1 and c2, not both zero, Equation (50) is
satisfied. Then it must hold particularly at t = 0.5 and t = 1:

c1 + 0.25c2 = 0
2c1 + c2 = 0

These two equations imply c1 = c2 = 0, that is, the functions are
linearly independent. While we require Equation (50) hold at all
points on 0 ≤ t ≤ 2, it even does not hold at two points on that
interval!
∴ This group of functions is linearly independent.
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Alternative analysis of the previous example

Example

Are f1(t) = 2t and f2(t) = t2 linearly dependent on 0 ≤ t ≤ 2? If
we can find constants c1 and c2, not both zero, such that

c12t + c2t
2 = 0, 0 ≤ t ≤ 2 (50)

holds, then f1 and f2 are linearly dependent.
Note that if (50) holds on 0 ≤ t ≤ 2, then so does its derivative:

c1 · 2 + c2 · 2t = 0, 0 ≤ t ≤ 2

This implies c1 = −c2t. Substitute this in (50):
−c2t · 2t + c2t

2 = 0, 0 ≤ t ≤ 2 → −c2t
2 = 0, 0 ≤ t ≤ 2. →

c2 = 0.. Use this in (50):
c1 · 2t = 0, 0 ≤ t ≤ 2,→ c1 = 0.
We have only one solution c1 = c2 = 0,
∴ the set of functions {f1, f2} is linearly independent.
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Theorem

The n-th order homogeneous linear differential equation (46)
always possesses n solutions that are linearly independent. Further,
if f1, f2, . . . , fn are n linearly independent solutions of (46), then
every solution f of (46) can be expressed as a linear combination

c1f1 + c2f2 + · · ·+ cnfn

of these n linearly independent solutions by proper choice of the
constants c1, c2, . . . , cn.
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Example

sin x and cos x are solutions of

d2y

dx2
+ y = 0 (51)

for all x , −∞ < x <∞. Further one can show that these two
solutions are linearly independent. Now suppose f is any solution
of (51), then by the theorem f can be expressed as a certain linear
combination c1 sin x + c2 cos x of the two linearly independent
solutions sin x and cos x by proper choice of c1 and c2.
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Definition

If f1, f2, . . . , fn are n linearly independent solutions of the n-th order
homogeneous linear differential equation (46) on a ≤ x ≤ b, then
the set f1, f2, . . . , fn is called a fundamental set of solutions of (46)
and the function

f (x) = c1f1 + c2f2 + · · ·+ cnfn, a ≤ x ≤ b

where c1, c2, . . . , cn are arbitrary constants, is called a general
solution of (46) on a ≤ x ≤ b.
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Example

sin x and cos x are linearly independent solutions of

d2y

dx2
+ y = 0 (52)

for all x , −∞ < x <∞. So, {sin x , cos x} is a fundamental set of
solutions for the differential equations (52). Thus c1 sin x + c2 cos x
is a general solution for (52). One can verify that 3 sin x and
2 sin x + cos x are linearly independent solutions of (52). Therefore,
{3 sin x , 2 sin x + cos x} is another fundamental set of solutions for
(52). This implies that c13 sin x + c2(2 sin x + cos x) is also a
general solution for (52). That is, expressing the general solution is
not unique. The two general solution expressions represent the
same set.
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Definition

Let f1, f2, . . . , fn be n real functions each of which has an (n − 1)st
derivative on a real interval a ≤ x ≤ b. The determinant

W (f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

... · · ·
...

f
(n−1)

1 f
(n−1)

2 · · · f
(n−1)
n

∣∣∣∣∣∣∣∣∣
is called Wronskian of these n functions.
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Theorem

The n solutions f1, f2, . . . , fn of the n-th order homogeneous linear
differential equation (46) are linearly independent on a ≤ x ≤ b if
and only if the Wronskian of f1, f2, . . . , fn is different from zero for
some x on the interval a ≤ x ≤ b.
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Theorem

The Wronskian of n solutions f1, f2, . . . , fn of equation (46) is either
identically zero on a ≤ x ≤ b or else is never zero on a ≤ x ≤ b.

Example

Let us show that sin x and cos x are linearly independent for all real
x :

W (sin x , cos x) =

∣∣∣∣ sin x cos x
cos x − sin x

∣∣∣∣ = − sin2 x − cos2 x = −1 6= 0
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Example

The solutions ex , e−x , and e2x of

d3y

dx3
− 2

d2y

dx2
− dy

dx
+ 2y = 0

are linearly independent on every real interval:

W (ex , e−x , e2x) =

∣∣∣∣∣∣
ex e−x e2x

ex −e−x 2e2x

ex e−x 4e2x

∣∣∣∣∣∣ = −6e2x 6= 0

for all real x .
The general solution to the d.e. is, therefore,

y(x) = c1e
x + c2e

−x + c3e
2x
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Continued from the previous page

Do the solutions ex , e−x , and ex + e−x of

d3y

dx3
− 2

d2y

dx2
− dy

dx
+ 2y = 0

linearly independent on every real interval? Can we write the
general solution to the d.e. as

y(x) = c1e
x + c2e

−x + c3(ex + e−x)

Example

Are the functions sin x and | sin x | linearly independent on (a)
0 ≤ x ≤ π (b) 0 ≤ x ≤ 2π (c) 0 ≤ x ≤ 4π

A. Karamancıoğlu Advanced Calculus



Properties of linear differential equations

Theorem

Let v be any solution of the given n-th order nonhomogeneous
linear differential equation (45). Let u be any solution of the
corresponding homogeneous equation. Then u + v is also a solution
of the given nonhomogeneous linear differential equation (45).

Example

y = x is a solution of the nonhomogeneous differential equation
d2y
dx2 + y = x and that y = sin x is a solution of the corresponding

homogeneous differential equation d2y
dx2 + y = 0. By the theorem,

the sum y = x + sin x is also a solution of the nonhomogeneous
equation.
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Theorem

Let yp be a given solution of the n-th order nonhomogeneous linear
differential equation (45) involving no arbitrary constants. Let
yc = c1y1 + c2y2 + · · ·+ cnyn be the general solution of the
corresponding homogeneous equation (46). Then every solution φ
of the n-th order nonhomogeneous linear differential equation
(45)can be expressed in the form

yc + yp

that is
c1y1 + c2y2 + · · ·+ cnyn + yp

for suitable choice of n arbitrary constants c1, c2, . . . , cn.
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Definition

Consider the n-th order nonhomogeneous linear differential
equation (45) and the corresponding homogeneous equation (46).
The general solution of (46) is called the complementary function
of (45). We shall denote this by yc . Any particular solution of (45)
involving no arbitrary constants is called a particular integral of
(45). The solution yc + yp is called the general solution of (45).
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Example

Consider
d2y

dx2
+ y = x

yc = c1 sin x + c2 cos x , yp = x

General solution:

y = c1 sin x + c2 cos x + x
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Example

A man 1.8m tall and weighing 80kg bungee jumps off a bridge
over a river.

The bridge is 200m above the water surface and the unstretched
bungee cord is 30m long.

The spring constant of the bungee cord is Ks = 11N/m, meaning
that, when the cord is stretched, it resists the stretching with a
force of 11 newtons per meter of stretch.
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Continued from the previous page

When the man jumps off the bridge he goes into free fall until the
bungee cord is extended to its full unstretched length.

This occurs when the man’s feet are at 30m below the bridge.

His initial velocity and position are zero. His acceleration is
9.8m/s2 until he reaches 30 m below the bridge.
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Continued from the previous page

His position is the integral of his velocity and his velocity is the
integral of his acceleration.

So, during the initial free-fall time, his velocity is 9.8× t m/s,
where t is time in seconds and his position is 4.9× t2 m below the
bridge.

Solving for the time of full unstretched bungee-cord extension we
get 2.47s. At that time his velocity is 24.25 meters per second,
straight down. At this point the analysis changes because the
bungee cord starts having an effect.
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Continued from the previous page

There are two forces on the man:

1. The downward pull of gravity mg where m is the man’s mass
and g is the acceleration caused by the earth’s gravity

2. The upward pull of the bungee cord Ks(y(t)− 30) where y(t) is
the vertical position of the man below the bridge as a function of
time.
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Continued from the previous page

Then, using the principle that force equals mass times acceleration
and the fact that acceleration is the second derivative of position,
we can write

mg − Ks(y(t)− 30) = mÿ(t)

or
mÿ(t) + Ksy(t) = mg + 30Ks

This is a second-order, linear, constant-coefficient, inhomogeneous,
ordinary differential equation. Its total solution is the sum of its
homogeneous solution and its particular solution.
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An order reduction technique

x3 + 4x2 + 2x + 6 = 0

(Hypothetically) I don’t know how to solve 3rd degree polynomial
equations. If one tells me that one of its root is at x = −3.8829,
will it help me to find the others?

x3 + 4x2 + 2x + 6

x + 3.8829
= x2+0.1172x+1.5453 a second degree polynomial

Theorem

Let f be a nontrivial solution of the n-th order homogeneous linear
differential equation given by Equation (46). Then the
transformation y = f (x)v reduces Equation (46) to an (n − 1)st
order homogeneous linear differential equation in the dependent
variable w = dv

dx .
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An illustration on the 2nd order differential equation

Suppose f is a known nontrivial solution of the second order
homogeneous linear differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (53)

Let a solution to the equation above be

y = f (x)v (54)

where f is the known solution of (53) and v is a function of x that
will be determined.
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a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (53)

y = f (x)v → (54)

dy

dx
= f (x)

dv

dx
+ f ′(x)v (55)

d2y

dx2
= f (x)

d2v

dx2
+ 2f ′(x)

dv

dx
+ f ′′(x)v (56)

Substituting (54), (55), and (56) in (53) we obtain

a0(x)[f (x)
d2v

dx2
+ 2f ′(x)

dv

dx
+ f ′′(x)v ]

+a1(x)[f (x)
dv

dx
+ f ′(x)v ] + a2(x)f (x)v = 0

A. Karamancıoğlu Advanced Calculus



a0(x)[f (x)
d2v

dx2
+ 2f ′(x)

dv

dx
+ f ′′(x)v ]

+a1(x)[f (x)
dv

dx
+ f ′(x)v ] + a2(x)f (x)v = 0

a0(x)f (x)
d2v

dx2
+ [2a0(x)f ′(x) + a1(x)f (x)]

dv

dx

+[a0(x)f ′′(x) + a1(x)f ′(x) + a2(x)f (x)]v = 0

Since f is a solution of (53), the coefficient of v is zero, and so
that the last equation reduces to

a0(x)f (x)
d2v

dx2
+ [2a0(x)f ′(x) + a1(x)f (x)]

dv

dx
= 0
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a0(x)f (x)
d2v

dx2
+ [2a0(x)f ′(x) + a1(x)f (x)]

dv

dx
= 0

Letting w = dv
dx , this becomes

a0(x)f (x)
dw

dx
+ [2a0(x)f ′(x) + a1(x)f (x)]w = 0

This is a first order homogeneous linear differential equation in the
dependent variable w . The equation is separable, thus by the
assumptions f (x) 6= 0 and a0(x) 6= 0, we may write

dw

w
= −[2

f ′(x)

f (x)
+

a1(x)

a0(x)
]dx

A. Karamancıoğlu Advanced Calculus



dw

w
= −[2

f ′(x)

f (x)
+

a1(x)

a0(x)
]dx

Integrating we obtain

ln |w | = − ln[f (x)]2 −
∫

a1(x)

a0(x)
dx + ln |c |

ln
|w |[f (x)]2

c
= −

∫
a1(x)

a0(x)
dx

w =
ce
−
∫ a1(x)

a0(x)
dx

[f (x)]2
→ v =

∫
ce
−
∫ a1(x)

a0(x)
dx

[f (x)]2
dx → y(x) = f (x)

∫
ce
−
∫ a1(x)

a0(x)
dx

[f (x)]2
dx

It can be shown that the new solution and f are linearly
independent. Thus the linear combination c1f + c2fv is the general
solution of (53).
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Example

y = x is a solution of

(x2 + 1)
d2y

dx2
− 2x

dy

dx
+ 2y = 0 (57)

Find a linearly independent solution by reducing the order.

Let y = vx , then dy
dx = x dv

dx + v and d2y
dx2 = x d2v

dx2 + 2dv
dx . Substitute

them in (57):

(x2 + 1)(x
d2v

dx2
+ 2

dv

dx
)− 2x(x

dv

dx
+ v) + 2xv = 0

or

x(x2 + 1)
d2v

dx2
+ 2

dv

dx
= 0
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Continued from the previous page

x(x2 + 1)
d2v

dx2
+ 2

dv

dx
= 0

Letting w = dv
dx we obtain

x(x2 + 1)
dw

dx
+ 2w = 0

dw

w
= −2

dx

x(x2 + 1)

dw

w
= (
−2

x
+

2x

x2 + 1
)dx

ln |w | = −2 ln |x |+ ln(x2 + 1) + ln |c| →

ln |w | = − ln x2 + ln(x2 + 1) + ln |c | →

ln |w | = ln
c(x2 + 1)

x2
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Continued from the previous page

w =
c(x2 + 1)

x2

Use dv
dx = w :

v(x) = c

[
x − 1

x

]
y(x) = cx

[
x − 1

x

]
= c(x2 − 1)
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Theorem

Let x1 and x2 respectively be the solutions of

α
d2x

dt2
+ β

dx

dt
+ γx = f1(t) (58)

and

α
d2x

dt2
+ β

dx

dt
+ γx = f2(t) (59)

where α, β and γ are functions of t. Then x1 + x2 is a solution of

α
d2x

dt2
+ β

dx

dt
+ γx = f1(t) + f2(t) (60)

Proof

α
d2(x1 + x2)

dt2
+ β

d(x1 + x2)

dt
+ γ(x1 + x2) = · · · · · ·
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α
d2(x1 + x2)

dt2
+ β

d(x1 + x2)

dt
+ γ(x1 + x2)

= α
d2x1

dt2
+ α

d2x2

dt2
+ β

dx1

dt
+ β

dx2

dt
+ γx1 + γx2

= α
d2x1

dt2
+ β

dx1

dt
+ γx1︸ ︷︷ ︸

f1(t)

+α
d2x2

dt2
+ β

dx2

dt
+ γx2︸ ︷︷ ︸

f2(t)

= f1(t) + f2(t)

Indeed, knowing solutions corresponding to f1 and f2 we get the
solution corresponding to the forcing function f1 + f2.
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Theorem

Let f1 be a solution of

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = F1(x)

Let f2 be a solution of

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ · · ·+ an−1(x)

dy

dx
+ an(x)y = F2(x)

Then k1f1 + k2f2 is a solution of

a0(x)
dny

dxn
+a1(x)

dn−1y

dxn−1
+· · ·+an−1(x)

dy

dx
+an(x)y = k1F1(x)+k2F2(x)

where k1 and k2 are arbitrary constants.
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Let i10 = i20 = 0. And let v1 results in the current i1, and v2

results in the current i2. Then for the input k1v1 + k2v2 with
i0 = 0, the current i will be k1i1 + k2i2.

A. Karamancıoğlu Advanced Calculus



Figure: Mass-damper-spring system with inputs
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Homogeneous linear differential equations with constant
coefficients

Preliminaries
Quadratic formula If

ax2 + bx + c = 0 (61)

then

x =
−b ±

√
b2 − 4ac

2a
(62)
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Qubic formula If

x3 + px2 + qx + r = 0 (63)

then use the transformation

x = u − p

3
(64)

to obtain
u3 + au + b = 0 (65)

where a = q − p2

3 and b = r − pq
3 + 2p3

27 . For the solution of (65)
evaluate

A =
3

√
−b

2
+

√
b2

4
+

a3

27

B =
3

√
−b

2
−
√

b2

4
+

a3

27
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The roots of (65) are:
u = A + B

u = −1
2 (A + B) +

√
−3

4 (A− B)

u = −1
2 (A + B)−

√
−3

4 (A− B)
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Consider

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = 0 (66)

where a0, a1, . . . , an are real constants. Consider the solution
candidate:

y = emx

Then we have:

dy

dx
= memx ,

d2y

dx2
= m2emx , . . . ,

dny

dxn
= mnemx
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Substitute in (66):

a0m
nemx + a1m

n−1emx + · · ·+ an−1memx + ane
mx = 0

or
emx(a0m

n + a1m
n−1 + · · ·+ an−1m + an) = 0

Since emx 6= 0, for the satisfaction of the equation we must have

a0m
n + a1m

n−1 + · · ·+ an−1m + an = 0 (67)

This equation is called auxiliary equation or the characteristic
equation of the given differential equations (66).
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Coefficients of the auxiliary equation

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = 0 (66)

a0m
n + a1m

n−1 + · · ·+ an−1m + an = 0 (67)
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the n real-distinct roots m1,m2, . . . ,mn then the general solution
of (66) is

y = c1e
m1x + c2e

m2x + · · ·+ cne
mnx

where c1, c2, . . . , cn are arbitrary constants.
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Example

Consider
d2y

dx2
− 3

dy

dx
+ 2y = 0.

The auxiliary equation is

m2 − 3m + 2 = 0

Hence m1 = 1 and m2 = 2. The roots are real and distinct. Thus
ex and e2x are solutions. The general solution is then

y = c1e
x + c2e

2x

where c1, c2 are arbitrary constants.
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the real root m occurring k times, then the part of the general
solution of (66) corresponding to this k-fold repeated root is

(c1 + c2x + c3x
2 + · · ·+ ckx

k−1)emx

where c1, c2, . . . , ck are arbitrary constants.
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Example

Find the general solution of

d3y

dx3
− 4

d2y

dx2
− 3

dy

dx
+ 18y = 0.

The auxiliary equation

m3 − 4m2 − 3m + 18 = 0

has the roots 3, 3,−2. The general solution is then

y = (c1 + c2x)e3x + c3e
−2x

where c1, c2, c3 are arbitrary constants.
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Example

Let a constant coefficient homogeneous linear differential in the
independent variable x have the characteristic equation

(m − 4)3(m − 2)2(m − 5) = 0

The general solution is

(c1 + c2x + c3x
2)e4x + (c4 + c5x)e2x + c6e

5x

where c1, c2, . . . , c6 are arbitrary constants.
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Theorem

Consider the n-th order homogeneous linear differential equations
(66) with constant coefficients. If the auxiliary equation (67) has
the conjugate complex roots a + bi and a− bi, neither repeated,
then the corresponding part of the general solution of (66) may be
written as

y = eax(c1 sin(bx) + c2 cos(bx))

where c1, c2 are arbitrary constants.
If, however, a + bi and a− bi are each k-fold roots of the auxiliary
equation (67) then the corresponding part of the general solution
of (66) may be written as

y = eax [(c1 + c2x + · · ·+ ckx
k−1) sin(bx)

+(ck+1 + ck+2x + · · ·+ c2kx
k−1) cos(bx)]

where c1, c2, . . . , c2k are arbitrary constants.
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Example

d2y

dx2
+ y = 0→ m2 + 1 = 0→ m = 0± i

→ y = e0x [c1 sin(1 · x) + c2 cos(1 · x)] = [c1 sin x + c2 cos x ]

where c1, c2 are arbitrary constants.
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Example

d2y

dx2
−6

dy

dx
+25y = 0→ m = 3±4i → y = e3x [c1 sin(4x)+c2 cos(4x)]

where c1, c2 are arbitrary constants.
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Example

Let a constant coefficient homogeneous linear differential in the
independent variable x have the characteristic equation

(m − 4− i3)3(m − 4 + i3)3(m − 5) = 0

The general solution is

e4x [(c1 + c2x + c3x
2) sin 3x + (c4 + c5x + c6x

2) cos 3x ] + c7e
5x

where c1, c2, . . . , c7 are arbitrary constants.

A. Karamancıoğlu Advanced Calculus



Example

Solve the initial value problem

d2y

dx2
− 6

dy

dx
+ 25y = 0 y(0) = −3, y ′(0) = −1

Its general solution is

y = e3x [c1 sin(4x) + c2 cos(4x)]

where c1, c2 are arbitrary constants. From this we find:

dy

dx
= e3x [(3c1 − 4c2) sin 4x + (4c1 + 3c2) cos 4x ]
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Continued from the previous page

y = e3x [c1 sin(4x) + c2 cos(4x)]

dy

dx
= e3x [(3c1 − 4c2) sin 4x + (4c1 + 3c2) cos 4x ]

Apply the initial conditions:

−3 = e3·0[c1 sin(4 · 0) + c2 cos(4 · 0)]→ c2 = −3

−1 = e3·0[(3c1 − 4c2) sin(4 · 0) + (4c1 + 3c2) cos(4 · 0)]

→ 4c1 + 3c2 = −1→ c1 = 2

The solution is

y = e3x [2 sin(4x)− 3 cos(4x)]
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Undetermined coefficients method

Consider
d2y

dx2
− 2

dy

dx
− 3y = 2e4x

A solution candidate for this system is yp = Ae4x . Hope that for
some value of A, this candidate satisfies the differential equation.
Substitute the candidate and its derivatives

→ y ′p = 4Ae4x , y ′′p = 16Ae4x

in the differential equation:

16Ae4x − 2(4Ae4x)− 3(Ae4x) = 2e4x

Simplification yields: A = 2
5 → yp = 2

5e
4x .
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Now consider
d2y

dx2
− 2

dy

dx
− 3y = 2e3x

Let this time the particular solution be yp = Ae3x . Substitute this
and its derivatives in the differential equation:

9Ae3x − 2(3Ae3x)− 3(Ae3x) = 2e3x

This results in:
0 = 2e3x

This equality does not hold. Therefore, this candidate does not
work for any A. The reason that yp = Ae3x does not work is that
e3x is also the solution of the homogeneous part. Now try:
yp = Axe3x . Substitute this and its derivatives in the differential
equation to find that A = 1

2 . Thus yp = 1
2xe

3x is the solution.

A. Karamancıoğlu Advanced Calculus



Definition

UC functions are xn, where n is a positive integer or zero, eax ,
sin(bx + c), cos(bx + c) and finite product of these four types.

Example

x3, e3x , sin(2x), ex sin(2x +
π

2
), exx3 cos(4x)
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Definition

Given a UC function f (x), its UC set is the set of all UC functions
consisting of
(1) f (x) itself and
(2) all linearly independent functions whose linear combinations are
the successive derivatives of f (x).
For convenience in UC methods procedure, UC sets are
standardized. See Table 1.
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Example

For the UC function f (x) = x5, the set {f , f ′, f ′′, . . .} is
{x5, 5x4, 20x3, 60x2, 120x , 120, 0}. We use the UC set of x5 as
S = {x5, x4, x3, x2, x , 1}. Notice that, constant multiples or linear
combinations of the linearly independent functions
x5, x4, x3, x2, x , 1 yield all successive derivatives of f (x).

Example

Given f (x) = sin2x , we use the UC set {sin 2x , cos 2x}. Note that,
derivatives of f (x) are f ′(x) = 2 cos 2x , f ′′(x) =
−4 sin 2x , f ′′′(x) = −8 cos 2x , f (4)(x) = 16cos2x , . . . which are
multiples of either sin 2x or cos 2x .
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Example

Given f (x) = eax , we use the UC set S = {eax}. Note that,
derivatives of f (x) are:
ḟ (x) = aeax , f̈ (x) = a2eax , . . . , f (n)(x) = aneax . These are all
multiples of eax .

Example

Let f (x) = x3 and g(x) = cos 2x , then
h(x) = f (x)g(x) = x3 cos 2x . UC set of x3 is S1 = {x3, x2, x , 1},
UC set of cos 2x is S2 = {cos 2x , sin 2x}. Then we use UC set of
x3 cos 2x as
S = {x3 cos 2x , x3 sin 2x , x2 cos 2x , x2 sin 2x , x cos 2x , x sin 2x ,
cos 2x , sin 2x}.

For some UC functions, the canonical UC sets are presented in
Table 1.
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UC function UC set

xn {xn, xn−1, xn−2, . . . , x , 1}
eax {eax}
sin(bx + c) {sin(bx + c), cos(bx + c)}
cos(bx + c) {sin(bx + c), cos(bx + c)}
xneax {xneax , xn−1eax , . . . , xeax , eax}
xn sin(bx + c) {xn sin(bx + c), xn cos(bx + c), xn−1 sin(bx + c),

xn−1 cos(bx + c), . . . , x sin(bx + c), x cos(bx + c)
sin(bx + c), cos(bx + c)}

xn cos(bx + c) {xn sin(bx + c), xn cos(bx + c), xn−1 sin(bx + c),
xn−1 cos(bx + c), . . . , x sin(bx + c), x cos(bx + c)
sin(bx + c), cos(bx + c)}

eax sin(bx + c) {eax sin(bx + c), eax cos(bx + c)}
eax cos(bx + c) {eax sin(bx + c), eax cos(bx + c)}

Table: 1 Some UC functions and the corresponding UC sets
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Problem statement

We want to find a particular solution of

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = F (x)

where F is a finite linear combination of UC functions
u1, u2, . . . , um :

F = k1u1 + k2u2 + · · ·+ kmum
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Undetermined coefficients method

a0
dny

dxn
+a1

dn−1y

dxn−1
+ · · ·+an−1

dy

dx
+any = k1u1 +k2u2 + · · ·+kmum

1. Obtain UC sets S1,S2, . . . ,Sm for the UC functions
u1, u2, . . . , um as in Table 1.
2. If Si ⊆ Sj for some i , j ∈ {1, 2, . . . ,m}, then omit Si from
further consideration.
3. Consider the UC sets remaining after step 2. If any element of
Si is a solution for the homogeneous part, then multiply Si by the
lowest integer power of x so that the resulting set S ′i does not
contain solution of homogeneous part anymore. If any set is
revised, then omit its original form from further consideration.
4. Multiply every element of the available sets by an undetermined
coefficient and add them up. It is a valid particular solution
candidate. Substitute the candidate in the differential equation
and solve it for the undetermined coefficients.
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Example

d2y

dx2
− 3

dy

dx
+ 2y = x2ex

Let us find the general solution of the homogeneous part.
Homogeneous part of the d.e. is as follows:

d2y

dx2
− 3

dy

dx
+ 2y = 0

Its characteristic equation is m2 − 3m + 2 = 0. This has the roots
1 and 2, therefore, the general solution is:

yc = c1e
x + c2e

2x

Step 1
UC set of x2ex is S = {x2ex , xex , ex}.
Step 2
Since we have only one UC set, this step is omitted.
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Continued from the previous page

d2y

dx2
− 3

dy

dx
+ 2y = x2ex

yc = c1e
x + c2e

2x

UC set of x2ex is S = {x2ex , xex , ex}.
Step 3
ex is a member of yc , therefore we multiply S by x .

S ′ = {x3ex , x2ex , xex}

Multiplication by x2, or x3 also result in a set that does not
contain a solution of homogeneous part. But the algorithm says
”Prefer the lowest integer power of x”
Step 4
A particular solution candidate is:

yp = Ax3ex + Bx2ex + Cxex
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Example

d2y

dx2
− 2

dy

dx
+ y = x2ex

yc = c1e
x + c2xe

x

Step 1 UC set of x2ex is S = {x2ex , xex , ex}.
Step 2 Omitted. Because we have only one UC set, this step is
not applicable to this problem.
Step 3 ex is a member of yc , however, if we multiply S by x the
resulting set will contain xex which is also member of yc . Hence,
we multiply the set by x2.

S ′ = {x4ex , x3ex , x2ex}

Step 4 A particular solution candidate is:

yp = Ax4ex + Bx3ex + Cx2ex
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Example

d2y

dx2
− 2

dy

dx
− 3y = 2ex − 10 sin x

yc = c1e
3x + c2e

−x

Step 1 UC sets: S1 = {ex}, S2 = {sin x , cos x}
Step 2 Note that neither of these sets is identical with nor
included in the other, hence both are retained.
Step 3 None of the functions ex , sin x , cos x in either of these sets
is a solution of the corresponding homogeneous equation. Hence
neither sets needs to be revised.
Step 4 Form the linear combination:

yp = Aex + B sin x + C cos x

Substitute this and its derivatives in the differential equation to
obtain A = −1

2 , B = 2, and C = −1.
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Example

d2y

dx2
− 3

dy

dx
+ 2y = 2x2 + ex + 2xex + 4e3x

yc = c1e
2x + c2e

x

Step 1
UC sets: S1 = {x2, x , 1}, S2 = {ex}, S3 = {xex , ex},S4 = {e3x}
Step 2 S2 ⊂ S3 → Delete the set S2.
Now we have the sets S1,S3 and S4 remaining.
Step 3 ex of S3 is a member of yc . Multiply S3 by x :

S ′3 = {x2ex , xex}

Now we have S1, S
′
3 and S4 to consider.
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Continued from the previous page

Step 1
UC sets: S1 = {x2, x , 1}, S2 = {ex}, S3 = {xex , ex},S4 = {e3x}
Step 2 S2 ⊂ S3 → Delete the set S2.
Now we have the sets S1,S3 and S4 remaining.
Step 3 ex of S3 is a member of yc . Multiply S3 by x :

S ′3 = {x2ex , xex}

Now we have S1, S
′
3 and S4 to consider.

Step 4
Form the linear combination by using the members of S1, S4, and
S ′3:

yp = Ax2 + Bx + C + De3x + Ex2ex + Fxex

Substitute this and its derivatives in the differential equation to
obtain

yp = x2 + 3x +
7

2
+ 2e3x − x2ex − 3xex
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Example

d4y

dx4
+

d2y

dx2
= 3x2 + 4 sin x − 2 cos x

yc = c1 + c2x + c3 sin x + c4 cos x

Step 1 UC sets: S1 = {x2, x , 1}, S2 = {sin x , cos x},
S3 = {sin x , cos x}
Step 2 S2 and S3 are identical; delete the set S3.
Step 3 Multiply S1 by x2. The revised set is S ′1 = {x4, x3, x2}.
Multiply S2 by x . The revised set is S ′2 = {x sin x , x cos x}
Form the linear combination by using the members of S ′1 and S ′2:

yp = Ax4 + Bx3 + Cx2 + Dx sin x + Ex cos x

Step 4 Substitute this and its derivatives in the differential
equation to obtain

yp =
1

4
x4 − 3x2 + x sin x + 2x cos x
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Variation of parameters method

Consider
y ′′(x) + P(x)y ′(x) + Q(x)y(x) = f (x) (68)

We want to find a particular solution in cases where undetermined
coefficients method cannot be applied to produce yp.
Suppose

yc = c1y1 + c2y2

is a known general solution to

y ′′(x) + P(x)y ′(x) + Q(x)y(x) = 0. (69)

Then it is possible to find a yp of the form

yp = Ay1 + By2

where A and B are some functions of x to be determined (at the
present moment they are unknowns).
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We need to substitute this form of yp in (68) and try to find A and
B. To do this, we need to find y ′p and y ′′p .

yp = Ay1 + By2 → y ′p = Ay ′1 + A′y1 + By ′2 + B ′y2

To avoid dealing with second derivatives of A and B we will look
for A and B satisfying the following condition:

A′y1 + B ′y2 = 0 (70)

Now we need to find a solution that satisfies both (68) and (70).
We shall see that imposing an additional condition would not
cause any additional trouble in finding a solution.

→ y ′p = Ay ′1 + By ′2

Thus
y ′′p = Ay ′′1 + A′y ′1 + By ′′2 + B ′y ′2
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We substitute them in (68):

Ay ′′1︸︷︷︸+A′y ′1 +
︷︸︸︷
By ′′2 +B ′y ′2 + PAy ′1︸ ︷︷ ︸

+
︷ ︸︸ ︷
PBy ′2 +QAy1︸ ︷︷ ︸+

︷ ︸︸ ︷
QBy2 = f (71)

Recall that each of y1 and y2 is a solution to the d.e.’s
homogeneous part:

y ′′(x) + P(x)y ′(x) + Q(x)y(x) = 0. (69)

Thus, the sum of the underbraced terms A(y ′′1 + Py ′1 + Qy1) equals
zero. The sum of the overbraced terms above B(y ′′2 + Py ′2 + Qy2)
also equals zero. Thus (71) becomes

A′y ′1 + B ′y ′2 = f (72)
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To find A and B we need to solve (70) and (72):

A′y1 + B ′y2 = 0

A′y ′1 + B ′y ′2 = f

In matrix notation [
y1 y2

y ′1 y ′2

] [
A′

B ′

]
=

[
0
f

]
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In matrix notation [
y1 y2

y ′1 y ′2

] [
A′

B ′

]
=

[
0
f

]
Cramer’s rule may be used:

A′ =

∣∣∣∣ 0 y2

f y ′2

∣∣∣∣∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ =
−y2f

W (y1, y2)
→ A =

∫
−y2f

W (y1, y2)
dx

B ′ =

∣∣∣∣ y1 0
y ′1 f

∣∣∣∣∣∣∣∣ y1 y2

y ′1 y ′2

∣∣∣∣ =
y1f

W (y1, y2)
→ B =

∫
y1f

W (y1, y2)
dx
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Since the particular solution has the form

yp = A(x)y1 + B(x)y2

we have

yp = −y1

∫
y2f

W (y1, y2)
dx + y2

∫
y1f

W (y1, y2)
dx
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Example

Determine the general solution for

d2y

dx2
+ y = tan x

yc = c1 cos x + c2 sin x → yp = A(x) cos x + B(x) sin x

A′ =

∣∣∣∣ 0 sin x
tan x cos x

∣∣∣∣∣∣∣∣ cos x sin x
− sin x cos x

∣∣∣∣ = cos x−sec x → A = sin x−ln | sec x+tan x |+c3

B ′ =

∣∣∣∣ cos x 0
− sin x tan x

∣∣∣∣∣∣∣∣ cos x sin x
− sin x cos x

∣∣∣∣ = sin x → B = − cos x + c4
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Continued from the previous page

→ yp = cos x(sin x − ln | sec x + tan x |+ c3) + sin x(− cos x + c4)

Particular solution, by definition, is free of arbitrary constants. So
take c3 = 0 and c4 = 0:

yp = cos x(sin x − ln | sec x + tan x |) + sin x(− cos x)

Thus the general solution to the differential equation is

y = c1 sin x+c2 cos x+cos x(sin x−ln | sec x+tan x |)+sin x(− cos x)
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Example

Consider the differential equation

ÿ − 2ẏ − 3y = xe−x

One may solve it by undetermined coefficients method. We solve it
by the variation of parameters method. The homogeneous part has
the general solution:

yc(x) = c1e
−x + c2e

3x

The particular solution will have the form:

yp = A(x)y1 + B(x)y2

or more explicitly

yp = −y1

∫
y2f

W (y1, y2)
dx + y2

∫
y1f

W (y1, y2)
dx
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Continued from the previous page

yc(x) = c1 e−x︸︷︷︸
y1

+c2 e3x︸︷︷︸
y2

yp = y1 · −
∫

y2f

W (y1, y2)
dx︸ ︷︷ ︸

A(x)

+y2 ·
∫

y1f

W (y1, y2)
dx︸ ︷︷ ︸

B(x)

A(x) = −
∫

y2f

W (y1, y2)
dx = −

∫
e3xxe−x∣∣∣∣ e−x e3x

−e−x 3e3x

∣∣∣∣dx
= −

∫
xe2x

4e2x
dx = −

∫
x

4
dx = −x2

8
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Continued from the previous page

yc(x) = c1 e−x︸︷︷︸
y1

+c2 e3x︸︷︷︸
y2

yp = y1 · −
∫

y2f

W (y1, y2)
dx︸ ︷︷ ︸

A(x)

+y2 ·
∫

y1f

W (y1, y2)
dx︸ ︷︷ ︸

B(x)

B(x) =

∫
y1f

W (y1, y2)
dx =

∫
e−xxe−x

4e2x
dx =

∫
xe−4x

4
dx

= − x

16
e−4x − 1

64
e−4x
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Continued from the previous page

yc(x) = c1 e−x︸︷︷︸
y1

+c2 e3x︸︷︷︸
y2

yp = y1A(x) + y2B(x)

A(x) = −x2

8

B(x) = − x

16
e−4x − 1

64
e−4x

Thus

yp(x) = −x2

8
e−x + e3x(− x

16
e−4x − 1

64
e−4x)

yp(x) = −x2

8
e−x + ex(− x

16
− 1

64
)

General Solution:

y(x) = yc(x) + yp(x) = c1e
−x + c2e

3x − x2

8
e−x + ex(− x

16
− 1

64
)
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First order Case

Consider
y ′ + P(x)y = f (x) (73)

Suppose y1 is a solution to

y ′ + P(x)y = 0 (74)

Look for yp = A(x)y1. Substitute in (73) yields:

Ay ′1︸︷︷︸+A′y1 + PAy1︸ ︷︷ ︸ = f

Since y1 is a solution to (74) the sum of the underbraced terms,
i.e., A(y ′1 + Py1) equals zero, so

A′y1 = f → A′ =
f

y1
→ A =

∫
f

y1
dx → yp = y1

∫
f

y1
dx
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The Cauchy-Euler equation

Theorem

The transformation x = et reduces the equation

a0x
n d

ny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ · · ·+ an−1x

dy

dx
+ any = F (x)

to a linear differential equation with constant coefficients.
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We shall show it for the second order differential equation

a0x
2 d

2y

dx2
+ a1x

dy

dx
+ a2y = F (x)

Letting x = et assuming x > 0, we have t = ln x . Then

dy

dx
=

dy

dt
· dt
dx

=
dy

dt
· 1

x
→ x

dy

dx
=

dy

dt

d2y

dx2
=

1

x

d

dx
(
dy

dt
) +

dy

dt

d

dx

1

x
=

1

x
(
d2y

dt2

dt

dx
)− 1

x2

dy

dt

=
1

x2
(
d2y

dt2
− dy

dt
)→ x2 d

2y

dx2
=

d2y

dt2
− dy

dt

Note that
d

dx
(u) =

du

dt

dt

dx
→ d

dx
(
dy

dt
) =

d2y

dt2

dt

dx
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Substituting in the differential equation

a0(
d2y

dt2
− dy

dt
) + a1

dy

dt
+ a2y = F (et)

or

a0
d2y

dt2
+ (a1 − a0)

dy

dt
+ a2y = F (et)

Compare to:

a0x
2 d

2y

dx2
+ a1x

dy

dx
+ a2y = F (x)

Remark
1. The leading coefficient a0x

n = 0 for x = 0, therefore, x = 0 is
not included in the domain. We take the domain as x > 0.
2. If the domain is x < 0, then the correct transformation is
x = −et .
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Example

x2 d
2y

dx2
− 2x

dy

dx
+ 2y = x3

Let x = et , assume x > 0. Noting that a0 = 1, a1 = −2, a2 = 2,
we obtain

d2y

dt2
− 3

dy

dt
+ 2y = e3t

The general solution will be

y = c1e
t + c2e

2t +
1

2
e3t

In terms of the original independent variable x :

y = c1x + c2x
2 +

1

2
x3
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Power series solutions

Consider a second order homogeneous linear differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (75)

or equivalently

d2y

dx2
+ P1(x)

dy

dx
+ P2(x)y = 0 (76)

where P1(x) = a1(x)
a0(x) and P2(x) = a2(x)

a0(x) . Assume that Equation

(75) does not have a solution expressible as a finite linear
combination of known elementary functions. Assume that it has a
solution in the form of infinite series:

c0 + c1(x − x0) + c2(x − x0)2 + · · · =
∞∑
n=0

cn(x − x0)n (77)

where c0, c1, . . . are constants. (77) is known as power series in
(x − x0).
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Definition

A function f is said to be analytic at x0 if its Taylor series about x0

∞∑
n=0

f (n)(x0)

n!
(x − x0)n

exists and converges to f (x) for all x in some interval including x0.

Definition

The point x0 is called an ordinary point of the differential
equation (75) if both of the functions P1 and P2 in the equivalent
normalized equation (76) are analytic at x0. If either (or both) of
the functions is not analytic at x0, then x0 is called a singular
point of the differential equation (75).

A. Karamancıoğlu Advanced Calculus



Example

d2y

dx2
+ x

dy

dx
+ (x2 + 2)y = 0

Here P1(x) = x and P2(x) = x2 + 2. Both functions are analytic
everywhere. Thus all the points are ordinary points.

Example

(x − 1)
d2y

dx2
+ x

dy

dx
+

1

x
y = 0

or equivalently,

d2y

dx2
+

x

(x − 1)

dy

dx
+

1

x(x − 1)
y = 0

Here P1(x) = x
(x−1) and P2(x) = 1

x(x−1) . P1 is analytic everywhere
except at x = 1. P2 is analytic everywhere except at x = 0 and
x = 1. Thus x = 0 and x = 1 are singular points of the differential
equation.
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Theorem

Hypothesis:
The point x0 is an ordinary point of the differential equation (75).
Conclusion:
The differential equation (75) has two nontrivial linearly
independent power series solutions of the form

∞∑
n=0

cn(x − x0)n

and these power series converge in some interval |x − x0| < R
(where R > 0) about x0.
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The method of solution

Assume that the solution y is

y = c0 + c1(x − x0) + c2(x − x0)2 + · · · =
∞∑
n=0

cn(x − x0)n

Then

dy

dx
= c1 + 2c2(x − x0) + 3c3(x − x0)2 + · · · =

∞∑
n=1

ncn(x − x0)n−1

d2y

dx2
= 2c2+6c3(x−x0)+12c4(x−x0)2+· · · =

∞∑
n=2

n(n−1)cn(x−x0)n−2
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We substitute y and its derivatives in the differential equation. We
then simplify the resulting equation

K0 + K1(x − x0) + K2(x − x0)2 + · · · = 0

In order that this equation be valid for all x in the interval of
convergence |x − x0| < R, we must set

K0 = K1 = K2 = · · · = 0
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Example

Consider
d2y

dx2
+ x

dy

dx
+ (x2 + 2)y = 0

We want to find power series solution of this equation about
x0 = 0. Solution has the form: y =

∑∞
n=0 cn(x − x0)n

Equivalently, y =
∑∞

n=0 cnx
n. This implies:

dy

dx
=
∞∑
n=1

ncnx
n−1,

d2y

dx2
=
∞∑
n=2

n(n − 1)cnx
n−2

Substituting in the differential equation we obtain

∞∑
n=2

n(n− 1)cnx
n−2 + x

∞∑
n=1

ncnx
n−1 + x2

∞∑
n=0

cnx
n + 2

∞∑
n=0

cnx
n = 0
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Continued from the previous page

∞∑
n=2

n(n− 1)cnx
n−2 + x

∞∑
n=1

ncnx
n−1 + x2

∞∑
n=0

cnx
n + 2

∞∑
n=0

cnx
n = 0

∞∑
n=2

n(n − 1)cnx
n−2 +

∞∑
n=1

ncnx
n +

∞∑
n=0

cnx
n+2 + 2

∞∑
n=0

cnx
n = 0

∞∑
n=2

n(n − 1)cnx
n−2

︸ ︷︷ ︸
1

+
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
2

+
∞∑
n=0

cnx
n+2

︸ ︷︷ ︸
3

+ 2
∞∑
n=0

cnx
n

︸ ︷︷ ︸
4

= 0

(78)
Consider the first term and use n = m + 2 transformation

∞∑
n=2

n(n−1)cnx
n−2 =

∞∑
m=0

(m+2)(m+1)cm+2x
m =

∞∑
n=0

(n+2)(n+1)cn+2x
n
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Continued from the previous page

Consider the third term and use n = m − 2 transformation

∞∑
n=0

cnx
n+2 =

∞∑
m=2

cm−2x
m =

∞∑
n=2

cn−2x
n

Now Equation (78) becomes

∞∑
n=0

(n + 2)(n + 1)cn+2x
n

︸ ︷︷ ︸
1

+
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
2

+
∞∑
n=2

cn−2x
n

︸ ︷︷ ︸
3

+ 2
∞∑
n=0

cnx
n

︸ ︷︷ ︸
4

= 0

(79)
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Continued from the previous page

Now Equation (78) becomes

∞∑
n=0

(n + 2)(n + 1)cn+2x
n

︸ ︷︷ ︸
1

+
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
2

+
∞∑
n=2

cn−2x
n

︸ ︷︷ ︸
3

+ 2
∞∑
n=0

cnx
n

︸ ︷︷ ︸
4

= 0

(80)
Obtain useful appearances of the terms:

1st term: 2c2 + 6c3x +
∞∑
n=2

(n + 2)(n + 1)cn+2x
n

2nd term: c1x +
∞∑
n=2

ncnx
n

4th term: 2c0 + 2c1x + 2
∞∑
n=2

cnx
n
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Continued from the previous page

Now Equation (80) becomes

2c2 + 6c3x +
∞∑
n=2

(n + 2)(n + 1)cn+2x
n + c1x +

∞∑
n=2

ncnx
n

+
∞∑
n=2

cn−2x
n + 2c0 + 2c1x + 2

∞∑
n=2

cnx
n = 0

→ (2c0 + 2c2) + (3c1 + 6c3)x

+
∞∑
n=2

[(n + 2)(n + 1)cn+2 + (n + 2)cn + cn−2]xn = 0
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Continued from the previous page

(2c0 + 2c2) + (3c1 + 6c3)x

+
∞∑
n=2

[(n + 2)(n + 1)cn+2 + (n + 2)cn + cn−2]xn = 0

Equating every power of x to zero we have:

c2 = −c0

c3 = −1

2
c1

cn+2 = −(n + 2)cn + cn−2

(n + 1)(n + 2)
, n ≥ 2
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Continued from the previous page

cn+2 = −(n + 2)cn + cn−2

(n + 1)(n + 2)
, n ≥ 2

Hence

c4 = −4c2 + c0

12
=

1

4
c0

c5 = −5c3 + c1

20
=

3

40
c1

The general solution is:

y = c0 + c1x − c0x
2 − 1

2
c1x

3 +
1

4
c0x

4 +
3

40
c1x

5 + . . .

y = c0(1− x2 +
1

4
x4 + · · · ) + c1(x − 1

2
x3 +

3

40
x5 + · · · )
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Solutions about singular points

Consider a second order homogeneous linear differential equation

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = 0 (75)

and assume that x0 is a singular point of (75). We are not assured
of a power series solution in positive powers of x − x0. However,
under certain conditions we may assume the solution of the form

y = |x − x0|r
∞∑
n=0

cn(x − x0)n (81)

where r is a certain (real or complex) constant.
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Let us classify the singular points. For this, normalize (75):

d2y

dx2
+ P1(x)

dy

dx
+ P2(x)y = 0 (76)

where P1(x) = a1(x)
a0(x) and P2(x) = a2(x)

a0(x) .

Definition

Consider the d.e. (75) and assume at least one of the functions P1

and P2 in the equivalent normalized equation (76) is not analytic
at x0, so that x0 is a singular point of (75). If the functions defined
by the products

(x − x0)P1(x) and (x − x0)2P2(x)

are both analytic at x0, then x0 is called regular singular point of
(75). Otherwise we call it irregular.
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Example

2x2 d
2y

dx2
− x

dy

dx
+ (x − 5)y = 0

Normalized form:

d2y

dx2
− 1

2x

dy

dx
+

x − 5

2x2
y = 0

Here P1(x) = − 1
2x and P2(x) = x−5

2x2 . Clearly x0 = 0 is a singular
point of the d.e.
The products xP1(x) = −1

2 and x2P2(x) = x−5
2 are analytic at

x = 0, so x = 0 is a regular singular point of the d.e.
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Example

x2(x − 2)2 d
2y

dx2
+ 2(x − 2)

dy

dx
+ (x + 1)y = 0

Normalized form:

d2y

dx2
+

2

x2(x − 2)

dy

dx
+

x + 1

x2(x − 2)2
y = 0

Here P1(x) = 2
x2(x−2)

and P2(x) = x+1
x2(x−2)2 have the singular

points at x = 0 and x = 2.
At x = 0, xP1(x) = 2

x(x−2) and x2P2(x) = x+1
(x−2)2 we see that

xP1(x) is not analytic at x = 0, so x = 0 is an irregular singular
point of the d.e.
At x = 2, both (x − 2)P1(x) = 2

x2 and (x − 2)2P2(x) = x+1
x2 are

analytic, so x = 2 is a regular singular point of the d.e.
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Theorem

Given that x0 is a regular singular point of the d.e. (75), the d.e.
(75) has at least one nontrivial solution of the form

y = |x − x0|r
∞∑
n=0

cn(x − x0)n (81)

where r is a definite (real or complex) constant which may be
determined, and this solution is valid in some deleted interval
0 < |x − x0| < R about x0.
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Example

We saw in a previous example that x = 0 is a regular singular point
of the d.e.

2x2 d
2y

dx2
− x

dy

dx
+ (x − 5)y = 0

By the theorem, this equation has a nontrivial solution in the form

|x |r
∞∑
n=0

cnx
n

valid in some deleted interval 0 < |x | < R about x = 0.
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The Method of Frobenius

1. Let x0 be a regular singular point of the d.e. (75). We seek a
solution of the form
y = (x − x0)r

∑∞
n=0 cn(x − x0)n=

∑∞
n=0 cn(x − x0)n+r valid for

0 < x − x0 < R. Note that for 0 < x − x0 < R the term |x − x0|r
becomes (x − x0)r . When −R < x − x0 < 0 the following
procedure may be repeated by replacing x − x0 by −(x − x0).
2. Term by term differentiation:

y =
∞∑
n=0

cn(x − x0)n+r → dy

dx
=
∞∑
n=0

(n + r)cn(x − x0)n+r−1

d2y

dx2
=
∞∑
n=0

(n + r)(n + r − 1)cn(x − x0)n+r−2

We substitute y , dydx ,
d2y
dx2 in (75).
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Continued from the previous page

3. Substitution results in an expression of the form

K0(x − x0)r+k + K1(x − x0)r+k+1 + K2(x − x0)r+k+2 + · · · = 0

4. For a solution we must set

K0 = K1 = K2 = · · · = 0

5. Equating K0 to zero we obtain a quadratic expression in r ,
called indicial equation of the d.e. (75). The roots of this
quadratic expression is often called the exponents of the d.e. (75).
Denote the solutions r1 and r2 where Re(r1) > Re(r2).
6. Now equate the remaining coefficients to zero. This leads to a
set of conditions involving r .
7. We substitute r1 for r in the conditions of step 6, and choose cn
satisfying the conditions. If cn are so chosen, the resulting series
(81) with r = r1 is a solution.
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Continued from the previous page

8. If r1 6= r2, we may repeat the procedure of Step 7 using the root
r2. In this way we may obtain a linearly independent solution of the
d.e. (81). When r1 and r2 are real and unequal, the second solution
may or may not be linearly independent from the one obtained in
Step 7. Also, when r1 and r2 are real and equal we do not get a
new solution. These are exceptional cases and treated later.
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Example

Solve

2x2 d
2y

dx2
− x

dy

dx
+ (x − 5)y = 0

in some interval 0 < x < R. We assume

y =
∞∑
n=0

cnx
n+r

where c0 6= 0. Then

dy

dx
=
∞∑
n=0

(n + r)cnx
n+r−1

d2y

dx2
=
∞∑
n=0

(n + r)(n + r − 1)cnx
n+r−2
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2x2 d
2y

dx2
− x

dy

dx
+ (x − 5)y = 0

Continued from the previous page

Substitute y , dydx ,
d2y
dx2 in the differential equation:

2
∞∑
n=0

(n + r)(n + r − 1)cnx
n+r −

∞∑
n=0

(n + r)cnx
n+r

+
∞∑
n=0

cnx
n+r+1 − 5

∞∑
n=0

cnx
n+r

Let us simplify this:

∞∑
n=0

[2(n + r)(n + r − 1)− (n + r)− 5]cnx
n+r +

∞∑
n=1

cn−1x
n+r = 0
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Continued from the previous page

∞∑
n=0

[2(n + r)(n + r − 1)− (n + r)− 5]cnx
n+r +

∞∑
n=1

cn−1x
n+r = 0

or
[2r(r − 1)− r − 5]c0x

r

+
∞∑
n=1

{[2(n + r)(n + r − 1)− (n + r)− 5]cn + cn−1}xn+r = 0

The lowest power of x has the factor (indicial equation)

2r(r − 1)− r − 5 = 0.

Equating this to zero yields r1 = 5
2 and r2 = −1. These are the

exponents of the the d.e. Notice that these numbers are real and
unequal.
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Continued from the previous page

The coefficients of the higher power x’s are equated to zero. This
gives a recurrence formula:

[2(n + r)(n + r − 1)− (n + r)− 5]cn + cn−1 = 0, n ≥ 1

Letting r = r1 = 5
2 yields:

[2(n +
5

2
)(n +

3

2
)− (n +

5

2
)− 5]cn − cn−1 = 0, n ≥ 1

This simplifies to:

n(2n + 7)cn + cn−1 = 0, n ≥ 1

or
cn = − cn−1

n(2n + 7)
, n ≥ 1
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cn = − cn−1

n(2n + 7)
, n ≥ 1

Continued from the previous page

c1 = −c0

9
, c2 = − c1

22
=

c0

198
, c3 = − c2

39
= − c0

7722
, . . .

So the solution corresponding to r = 5
2 is

y = c0(x
5
2 − 1

9x
7
2 + 1

198x
9
2 − 1

7722x
11
2 + · · · )

= c0x
5
2 (1− 1

9x + 1
198x

2 − 1
7722x

3 + · · · )

Recall that the general form of the solution is:

y =
∞∑
n=0

cnx
n+r = c0x

r + c1x
1+r + c2x

2+r + c3x
3+r + · · ·
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Now let r = −1 and obtain the corresponding recurrence formula

[2(n − 1)(n − 2)− (n − 1)− 5]cn + cn−1 = 0, n ≥ 1

This simplifies to:

n(2n − 7)cn + cn−1 = 0, n ≥ 1

or
cn = − cn−1

n(2n − 7)
, n ≥ 1

This yields:

c1 =
1

5
c0, c2 =

1

6
c1 =

1

30
c0, c3 =

1

3
c2 =

1

90
c0, . . .
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c1 =
1

5
c0, c2 =

1

6
c1 =

1

30
c0, c3 =

1

3
c2 =

1

90
c0, . . .

Continued from the previous page

The solution corresponding to r = −1 is

y = c0(x−1 + 1
5 + 1

30x + 1
90x

2 + · · · )
= c0x

−1(1 + 1
5x + 1

30x
2 + 1

90x
3 + · · · )

The two solution corresponding to r1 = 5
2 and r2 = −1 are linearly

independent. Thus the general solution could be written as

y = C1x
5
2 (1− 1

9
x +

1

198
x2 − 1

7722
x3 + · · · )

+C2x
−1(1 +

1

5
x +

1

30
x2 +

1

90
x3 + · · · )
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It is claimed in the beginning of this section that when r1 and r2
are real and unequal we may or may not find a second linearly
independent solution in the form of (81).

y = |x − x0|r
∞∑
n=0

cn(x − x0)n (81)

The following theorem states an existence condition for the linearly
independent solutions.
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Theorem

Let the point x0 be a regular singular point of the d.e. (75). Let r1
and r2 [where Re(r1) ≥ Re(r2)] be the roots of the indicial
equation associated with x0. We can conclude that:
1. Suppose r1 − r2 6= N, where N is a nonnegative integer (that is,
r1 − r2 6= 0, 1, 2, . . .). Then the d.e. (75) has two nontrivial linearly
independent solutions y1 and y2 of the form (81) given respectively
by

y1 = |x − x0|r1

∞∑
n=0

cn(x − x0)n

where c0 6= 0, and

y2 = |x − x0|r2

∞∑
n=0

dn(x − x0)n

where d0 6= 0.
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2. Suppose r1 − r2 = N, where N is a positive integer. Then the
d.e. (75) has two nontrivial linearly independent solutions y1 and
y2 given respectively by

y1 = |x − x0|r1

∞∑
n=0

cn(x − x0)n

where c0 6= 0, and

y2 = |x − x0|r2

∞∑
n=0

dn(x − x0)n + Cy1(x) ln |x − x0|

where d0 6= 0, and C is a constant which may or may not be zero.
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Differential operators

The general linear system of two first order differential equations in
two unknown functions x and y is of the form

a1(t)dxdt + a2(t)dydt + a3(t)x + a4(t)y = F1(t)

b1(t)dxdt + b2(t)dydt + b3(t)x + b4(t)y = F2(t)

}
(82)

Solution of the system is an ordered pair (f , g) such that x = f (t)
and y = g(t) simultaneously satisfy both equations in some
interval a ≤ t ≤ b.
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Definitions

Dx
4
=

dx

dt

Dnx
4
=

dnx

dtn

(2D + 5)x = 2
dx

dt
+ 5x

When x = t3 + sin t, this becomes

(2D + 5)(t3 + sin t) = 2
d(t3 + sin t)

dt
+ 5(t3 + sin t)

= 2(3t2 + cos t) + 5(t3 + sin t)
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A linear combination of x and its first n derivatives

a0
dnx

dtn
+ a1

dn−1x

dtn−1
+ · · ·+ an−1

dx

dt
+ anx

can be written in operators notation as

(a0D
n + a1D

n−1 + · · ·+ an−1D + an)︸ ︷︷ ︸
Linear operator with constant coefficients

x
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The operator a0D
n + a1D

n−1 + · · ·+ an−1D + an is denoted by L,
i.e.,

L
4
= a0D

n + a1D
n−1 + · · ·+ an−1D + an

Assume that f1 and f2 are both n times differentiable functions of

t, and c1 and c2 are constants. Then

L[c1f1 + c2f2] = c1L[f1] + c2L[f2]
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Example

L = 3D2 + 5D − 2 applies to 3t2 + 2 sin t, then

L[3t2 + 2 sin t] = 3L[t2] + 2L[sin t]

LHS: (3D2 + 5D − 2)(3t2 + 2 sin t)

= (18− 6 sin t) + (30t + 10 cos t) + (−6t2 − 4 sin t)

= −6t2 + 30t + 18− 10 sin t + 10 cos t

RHS: 3L[t2]+2L[sin t] = 3(3D2 +5D−2)t2 +2(3D2 +5D−2) sin t

= 3(3
d2

dt2
t2 + 5

d

dt
t2 − 2t2) + 2(3

d2

dt2
sin t + 5

d

dt
sin t − 2 sin t)

3(6 + 10t − 2t2) + 2(−3 sin t + 5 cos t − 2 sin t)

= −6t2 + 30t + 18− 10 sin t + 10 cos t
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Suppose two linear operators L1 and L2 apply to f successively. If
f has sufficiently many derivatives

L1L2f = L2L1f = Lf

where L is the product of L1 and L2 using the rules of the
polynomial product.

Example

(D + 1)(D + 3) sin t = (D + 3)(D + 1) sin t = (D2 + 4D + 3) sin t
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Example

Consider
2dx
dt − 2dy

dt − 3x = t

2dx
dt + 2dy

dt + 3x + 8y = 2

}
(83)

In the operator notation

(2D − 3)x − 2Dy = f1
(2D + 3)x + (2D + 8)y = f2

}
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Continued from the previous page

(2D − 3)x − 2Dy = f1
(2D + 3)x + (2D + 8)y = f2

}
L1x + L2y = f1, multiply by L4

L3x + L4y = f2, multiply by L2

}
L4L1x + L4L2y = L4f1
L2L3x + L2L4y = L2f2

}
subtract 2nd from the 1st

(L4L1 − L2L3)x = L4f1 − L2f2

L5x = g1
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Continued from the previous page

(L4L1 − L2L3)x = L4f1 − L2f2

[(2D + 8)(2D − 3)− (−2D)(2D + 3)]x = (2D + 8)t − (−2D)2

[8D2 + 16D − 24]x = 2 + 8t

[D2 + 2D − 3]x = t +
1

4

d2x

dt2
+ 2

dx

dt
− 3x = t +

1

4
(84)

→ x = c1e
t + c2e

−3t − 1

3
t − 11

36
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Continued from the previous page

Reconsider
L1x + L2y = f1,
L3x + L4y = f2,

}
L1x + L2y = f1, multiply by L3

L3x + L4y = f2, multiply by L1

}
L3L1x + L3L2y = L3f1
L1L3x + L1L4y = L1f2

}
subtract the 1st from the 2nd

(L4L1 − L2L3)y = L1f2 − L3f1

L5y = g2

[D2 + 2D − 3]y = −3

8
t − 1 (85)

→ y = k1e
t + k2e

−3t +
1

8
t +

5

12
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Continued from the previous page

Solutions to (84) and (85) are:

→ x = c1e
t + c2e

−3t − 1

3
t − 11

36

→ y = k1e
t + k2e

−3t +
1

8
t +

5

12

In x , for arbitrarily selected constants (c1, c2), (84) is satisfied
In y , for arbitrarily selected constants (k1, k2), (85) is satisfied
Recall

d2x

dt2
+ 2

dx

dt
− 3x = t +

1

4
(84)

[D2 + 2D − 3]y = −3

8
t − 1 (85)

However, arbitrarily selected constants (c1, c2, k1, k2) do not work
for simultaneous solution of (83):
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Continued from the previous page

However, arbitrarily selected constants (c1, c2, k1, k2) do not work
for simultaneous solution of (83):

2dx
dt − 2dy

dt − 3x = t

2dx
dt + 2dy

dt + 3x + 8y = 2

}
(83)

Let us substitute the solutions of (84) and (85) into the original
equation (83) to resolve the issue of arbitrary constants. Generally
substitution in one d.e.of the d. e. set is sufficient for resolving the
arbitrary constants.
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Continued from the previous page

Here we randomly chose the first equation of (83) to substitute the
solutions in it:

2
dx

dt
− 2

dy

dt
− 3x = t

[2c1e
t−6c2e

−3t−2

3
]−[2k1e

t−6k2e
−3t+

1

4
]−[3c1e

t+3c2e
−3t−t−11

12
] = t

or
(−c1 − 2k1)et + (−9c2 + 6k2)e−3t = 0

Thus we must have

k1 = −1

2
c1, k2 =

3

2
c2
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Continued from the previous page

Solution

x = c1e
t + c2e

−3t − 1
3 t −

11
36

y = −1
2c1e

t + 3
2c2e

−3t + 1
8 t + 5

12

}
c1, c2 arbitrary constants

or

x = −2k1e
t + 2

3k2e
−3t − 1

3 t −
11
36

y = k1e
t + k2e

−3t + 1
8 t + 5

12

}
k1, k2 arbitrary constants
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The Laplace transform

Definition

Let f be a real valued function of the real variable t, defined for
t > 0. Let s be a variable that we shall assume to be real, and
consider the function F defined by

F (s) =

∫ ∞
0

e−st f (t)dt (86)

for all values of s for which this integral exists. The function F
defined by the integral (86) is called the Laplace transform of the
function f . We will denote the Laplace transform F of f by L{f }.
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Example

f (t) = 1, t > 0↔ L{1} =

∫ ∞
0

e−st1dt = lim
R→∞

∫ R

0
e−st1dt

= lim
R→∞

[
−e−st

s

]R
0

= lim
R→∞

[
1

s
− e−sR

s

]
=

1

s

for all s > 0.
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Example

f (t) = t, t > 0↔ L{t} =

∫ ∞
0

e−sttdt =
1

s2

for all s > 0.
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Example

f (t) = eat , t > 0↔ L{eat} =

∫ ∞
0

e−steatdt = lim
R→∞

∫ R

0
e(a−s)tdt

= lim
R→∞

[
e(a−s)t

a− s

]R
0

= lim
R→∞

[
e(a−s)R

a− s
− 1

a− s

]
=

1

s − a

for all s > a.

A. Karamancıoğlu Advanced Calculus



Example

f (t) = sin bt, t > 0↔ L{sin(bt)} =
b

s2 + b2
, s > 0

Example

f (t) = cos bt, t > 0↔ L{cos(bt)} =
s

s2 + b2
, s > 0
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Existence of the Laplace Tranform

Some functions, such as f (t) = et
2
, do not have Laplace

transforms. For a function to have a Laplace transform, the
following integral must exist:

F (s) =

∫ ∞
0

e−st f (t)dt (86)

When do such integrals exist? To answer this we need to define
piecewise continuity and being of exponential order first.
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Definition

A function f of t is said to be piecewise continuous on a finite
interval a ≤ t ≤ b if this interval can be divided into a finite
number of subintervals such that (1) f is continuous in the interior
of each of these subintervals, and (2) f approaches finite limits as
t approaches either endpoint of each of the subintervals from its
interior.
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Piecewise continuous function

Example

Figure: Piecewise Continuous Function on [a,b]
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Example

f (t) = 1
t−3 is discontinuous at t = 3. This function is not

piecewise continuous on any interval containing t = 3, because
neither limt→3+ nor limt→3− exists.

Figure: f (t) = 1
t−3
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Example

f (t) =

{
0 t < 0

cos( 1
t ) t > 0

is discontinuous at t = 0. This function

is not piecewise continuous on any interval containing t = 0,
because limt→0+ does not exist.

Figure: f (t) = 0 for t < 0 and cos 1
t for t > 0
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Definition

A function f of t is said to be of exponential order if there exist a
constant α and positive constants t0 and M such that

e−αt |f (t)| < M (87)

for all t > t0 at which f is defined. More explicitly, if f is of
exponential order corresponding to some definite constant α in
(87), then we say that f is of exponential order eαt .
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Example

Every bounded function is of exponential order, for instance sin(bt)
tn is of exponential order
eat is of exponential order
et

2
is not of exponential order.
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Example

f (t) = sin(t) is of exponential order. Because we can find, for
instance, α = 2, t0 = 1, M = 5 so that

e−αt |f (t)| < M

is satisfied for all t > t0.

Example

f (t) = t2 is of exponential order. Because we can find, for
instance, α = 3, t0 = 2, M = 5 so that

e−αt |f (t)| < M

is satisfied for all t > t0.
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Theorem

Let f be a real function that has the following properties:
1) f is piecewise continuous in every finite closed interval
0 ≤ t ≤ b, (b > 0)
2) f is of exponential order eαt . Then the Laplace transform∫ ∞

0
e−st f (t)dt

of f exists for s > α.

Proof Since f is of exponential order, there exist α, t0 and M such
that

|f (t)| < Meαt , for t ≥ t0

We can write∫ ∞
0

e−st f (t)dt =

∫ t0

0
e−st f (t)dt +

∫ ∞
t0

e−st f (t)dt
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Continued from the previous page∫ ∞
0

e−st f (t)dt =

∫ t0

0
e−st f (t)dt︸ ︷︷ ︸
Part1

+

∫ ∞
t0

e−st f (t)dt︸ ︷︷ ︸
Part2

Part 1 exists because the integral has finite limits and the function
f (t) is piecewise continuous.
For the second part, for t ≥ t0 note that

|f (t)| < Meαt → |e−st f (t)| < Me−(s−α)t

→
∫ ∞
t0

|e−st f (t)|dt < M

∫ ∞
t0

e−(s−α)tdt ≤ M

∫ ∞
0

e−(s−α)tdt =
M

s − α

for s > α.
This shows that the integral

∫∞
t0
|e−st f (t)|dt exists. This implies

that
∫∞
t0

e−st f (t)dt exists.
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Continued from the previous page∫ ∞
0

e−st f (t)dt =

∫ t0

0
e−st f (t)dt︸ ︷︷ ︸
Part1

+

∫ ∞
t0

e−st f (t)dt︸ ︷︷ ︸
Part2

Integrals exist for part 1 and part 2. This shows that the integral∫ ∞
0

e−st f (t)dt

exists.
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Theorem

Let f1 and f2 be functions whose Laplace transforms exist, and
c1, c2 be constants. Then L{c1f1 + c2f2} = c1L{f1}+ c2L{f2}.
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Theorem

Let f be a real valued function that is continuous for t ≥ 0 and of
exponential order eαt . Let f ′ be piecewise continuous in every
finite closed interval 0 ≤ t ≤ b. Then L{f ′} exists for s > α and
L{f ′} = sL{f } − f (0).
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Example

It is known that L{sin bt} = b
s2+b2 .

This implies L{(sin bt)′} = s b
s2+b2 − sin(b · t)t=0 = bs

s2+b2

By direct computation:
L{b cos bt} = bs

s2+b2
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Example

L{t} = 1
s2 → L{(t)′} = s 1

s2 − t|t=0 = 1
s

By direct computation:
L{1} = 1

s

A. Karamancıoğlu Advanced Calculus



Theorem

Let f be a real valued function having a continuous (n − 1)st
derivative f (n−1) for t ≥ 0; and assume that f , f ′, f ′′, . . . , f (n−1)

are all of exponential order eαt . Suppose f (n) is piecewise
continuous in every finite closed interval 0 ≤ t ≤ b. Then L{f (n)}
exists for s > α and

L{f (n)} = snL{f }−sn−1f (0)−sn−2f ′(0)−sn−3f ′′(0)−. . .−f (n−1)(0)

Example

Lf̈ (t) = s2F (s)− sf (0)− ḟ (0)

L
...
f (t) = s3F (s)− s2f (0)− sḟ (0)− f̈ (0)
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Theorem

For a given f let L{f } exist for s > α. Then for any constant a,
L{eat f (t)} = F (s − a) for s > α + a, where F denotes L{f }.
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Theorem

Suppose f has Laplace transform F . Then

L{tnf (t)} = (−1)n
dn

dsn
[F (s)]
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Definition

For each real number a ≥ 0, unit step function ua is defined for
nonnegative t by

ua(t) =

{
0; t < a
1, t > a
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Theorem

Suppose f has Laplace transform F , and consider the translated
function defined by

ua(t)f (t − a) =

{
0, 0 < t < a
f (t − a), t > a

Then L{ua(t)f (t − a)} = e−asL{f (t)} = e−asF (s)
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Example

g(t) =

{
0, 0 < t < 5
t − 3, t > 5

Before applying the theorem to this translated function, we must
express the functional values t − 3 for t > 5 in terms of t − 5.
That is we express t − 3 as (t − 5) + 2 and write

g(t) =

{
0, 0 < t < 5
(t − 5) + 2, t > 5

u5(t)f (t − 5) =

{
0, 0 < t < 5
(t − 5) + 2, t > 5

where f (t) = t + 2, t > 0. Hence we apply Theorem 29 with
f (t) = t + 2. F (s) = L{t + 2} = L{t}+ 2L{1} = 1

s2 + 2
s .

Therefore,

L{u5(t)f (t − 5)} = e−5sF (s) = e−5s(
1

s2
+

2

s
)
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The inverse Laplace transform

Theorem

Let f and g be two functions that are continuous for t ≥ 0 and
that have the same Laplace transform F . Then f (t) = g(t) for all
t ≥ 0.

Example

Find the inverse Laplace transform L−1{ 1
s2+6s+13

}.

1

s2 + 6s + 13
=

1

(s + 3)2 + 22
=

1

2
× 2

(s+3)2 + 22
↔ 1

2
e−3t sin 2t

A. Karamancıoğlu Advanced Calculus



Example

1

s(s2 + 1)
=

A

s
+

Bs + C

s2 + 1

1

s(s2 + 1)
=

A

s

(s2 + 1)

(s2 + 1)
+

Bs + C

s2 + 1

s

s

1 = A(s2 + 1) + (Bs + C )s

1 = (A + B)s2 + Cs + A

→ A + B = 0, C = 0, A = 1

L−1{ 1

s(s2 + 1)
} = L−1{1

s
} − L−1{ s

s2 + 1
} = 1− cos t

A. Karamancıoğlu Advanced Calculus



Example

L−1{e−4s(
2

s2
+

5

s
)} = u4(t)f (t − 4)

with f (t) = 2t + 5.
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Definition

Let f and g be two functions that are piecewise continuous on
every finite closed interval 0 ≤ t ≤ b and of exponential order.
The function denoted by f ∗ g and defined by

f (t) ∗ g(t) =

∫ t

0
f (τ)g(t − τ)dτ

is called the convolution of the functions f and g .

Let u = t − τ
→ f (t) ∗ g(t) =

∫ t
0 f (τ)g(t − τ)dτ = −

∫ 0
t f (t − u)g(u)du

=
∫ t

0 g(u)f (t − u)du = g(t) ∗ f (t)
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Theorem

Let the functions f and g be piecewise continuous on every finite
closed interval 0 ≤ t ≤ b and of exponential order. Then

L{f ∗ g} = L{f } · L{g}
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Example

dy

dt
− 2y = e5t , y(0) = 3

Take the Laplace transform of both sides. Let the Laplace
transform of the unknown function y be Y which is also unknown
meanwhile.

sY − y(0)− 2Y =
1

s − 5
→ (s − 2)Y − 3 =

1

s − 5

Y =
3s − 14

(s − 2)(s − 5)
=

A

s − 2
+

B

s − 5

To find A, multiply both sides by (s − 2) and evaluate at s = 2:

3s − 14

(s − 2)(s − 5)
× (s − 2) =

A

s − 2
× (s − 2) +

B

s − 5
× (s − 2)

[
3s − 14

(s − 5)
= A +

B

s − 5
× (s − 2)

]
s=2
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Continued from the previous page[
3s − 14

(s − 5)
= A +

B

s − 5
× (s − 2)

]
s=2

3× 2− 14

(2− 5)
= A +

B

2− 5
× (2− 2)→ A =

8

3

To find B, multiply both sides by (s − 5) and evaluate at s = 5.
This gives B as 1

3 . Thus

Y =
3s − 14

(s − 2)(s − 5)
=

8
3

s − 2
+

1
3

s − 5
↔ 8

3
e2t +

1

3
e5t
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Example

d2y

dt2
− 2

dy

dt
− 8y = 0, y(0) = 3, y ′(0) = 6

{s2Y − sy(0)− y ′(0)} − 2{sY − y(0)} − 8Y = 0

[s2 − 2s − 8]Y − 3s = 0

Y =
3s

(s − 4)(s + 2)
=

A

s − 4
+

B

s + 2

A =

[
3s

(s − 4)(s + 2)
× (s − 4)

]
s=4

= 2

B =

[
3s

(s − 4)(s + 2)
× (s + 2)

]
s=−2

= 1

Y =
3s

(s − 4)(s + 2)
=

2

s − 4
+

1

s + 2
↔ 2e4t + e−2t
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Example

d2y

dt2
+ y = e−2t sin t, y(0) = 0, y ′(0) = 0

{s2Y − sy(0)− y ′(0)}+ Y =
1

[(s + 2)2 + 1]

{s2Y − s0− 0}+ Y =
1

[(s + 2)2 + 1]

Y =
1

(s2 + 1)[(s + 2)2 + 1]
=

As + B

s2 + 1
+

Cs + D

(s + 2)2 + 1

1

(s2 + 1)[(s + 2)2 + 1]
=

As + B

s2 + 1

(s + 2)2 + 1

(s + 2)2 + 1
+

Cs + D

(s + 2)2 + 1

s2 + 1

s2 + 1
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Continued from the previous page

1

(s2 + 1)[(s + 2)2 + 1]
=

(As + B)

s2 + 1

(s + 2)2 + 1

(s + 2)2 + 1
+

(Cs + D)

(s + 2)2 + 1

s2 + 1

s2 + 1

1 = (As + B)(s2 + 4s + 5) + (Cs + D)(s2 + 1)

1 = (A + C )s3 + (4A + B + D)s2 + (5A + 4B + C )s + (5B + D)

A + C = 0
4A + B + D = 0
5A + 4B + C = 0
5B + D = 1

 A =
−1

8
, B =

1

8
, C =

1

8
, D =

3

8
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Continued from the previous page

Y =
−1
8 s + 1

8

s2 + 1
+

1
8s + 3

8

(s + 2)2 + 1

=
−1
8 s

s2 + 1
+

1
8

s2 + 1
+

1
8s

(s + 2)2 + 1

+
2
8

(s + 2)2 + 1
−

2
8

(s + 2)2 + 1
+

3
8

(s + 2)2 + 1

=
−1
8 s

s2 + 1
+

1
8

s2 + 1
+

1
8 (s + 2)

(s + 2)2 + 1
+

1
8

(s + 2)2 + 1

y(t) =
−1

8
cos t +

1

8
sin t +

1

8
e−2t cos t +

1

8
e−2t sin t
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Example

d3y

dt3
+4

d2y

dt2
+5

dy

dt
+2y = 10 cos t, y(0) = 0, y ′(0) = 0, y ′′(0) = 3

{s3Y − s2y(0)− sy ′(0)− y ′′(0)}+ 4{s2Y − sy(0)− y ′(0)}

+5{sY − y(0)}+ 2Y = 10
s

s2 + 1

{s3Y−s20−s0−3}+4{s2Y−s0−0}+5{sY−0}+2Y = 10
s

s2 + 1

{s3Y − 3}+ 4{s2Y }+ 5{sY }+ 2Y = 10
s

s2 + 1

Y =
3s2 + 10s + 3

(s2 + 1)(s + 1)2(s + 2)

=
−1

s + 2
+

2

s + 1
− 2

(s + 1)2
− s

s2 + 1
+

2

s2 + 1

y(t) = −e−2t + 2e−t − 2te−t − cos t + 2 sin t
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Example

dx
dt − 6x + 3y = 8et
dy
dt − 2x − y = 4et

x(0) = −1, y(0) = 0

In Laplace domain :

sX + 1− 6X + 3Y = 8
s−1

sY − 2X − Y = 4
s−1

(s − 6)X + 3Y = −s+9
s−1

−2X + (s − 1)Y = 4
s−1
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Continued from the previous page

(s − 6)X + 3Y = −s+9
s−1

−2X + (s − 1)Y = 4
s−1

In matrix notation:[
s − 6 3
−2 s − 1

] [
X
Y

]
=

[ −s+9
s−1

4
s−1

]

X =
−s + 7

(s − 1)(s − 4)
, Y =

2

(s − 1)(s − 4)

↔ x(t) = −2et + e4t , y(t) =
−2

3
et +

2

3
e4t
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The Laplace Transform: Theory and Applications, Joel L.
Schiff
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Time Domain Function Laplace Transform

1 1
s

eat 1
s−a

sin(bt) b
s2+b2

cos(bt) s
s2+b2

tn(n = 1, 2, . . .) n!
sn+1

tneat(n = 1, 2, . . .) n!
(s−a)n+1

t sin(bt) 2bs
(s2+b2)2

t cos(bt) s2−b2

(s2+b2)2

e−at sin(bt) b
(s+a)2+b2

e−at cos(bt) s+a
(s+a)2+b2

ua(t) e−as

s

Table: Laplace Transforms table
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Example

Consider
tÿ + ẏ + 2y = 0, y(0) = 1

Let us transform the equation into the Laplace domain. We first
do it for the first term. The properties

ÿ ↔ s2Y − sy(0)− ẏ(0)

and

L{tnf (t)} = (−1)n
dn

dsn
[F (s)]

imply

tÿ ↔ (−1)1 d1

ds1
[s2Y − sy(0)− ẏ(0)]→ −s2Ẏ − 2sY + 1

The given d.e. thus have the Laplace domain representation:

(−s2Ẏ − 2sY + 1) + (sY − 1) + 2Y = 0
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Continued from the previous page

The given d.e. thus have the Laplace domain representation:

(−s2Ẏ − 2sY + 1) + (sY − 1) + 2Y = 0

Ẏ +

(
1

s
− 2

s2

)
Y = 0

This is a 1st order linear differential equation in independent

variable s. Its integrating factor is µ(s) = e
∫ (

1
s
− 2

s2

)
ds

= se
2
s

Recall that for the 1st order linear d.e.’s we have

[e
∫
P(x)dxy ]′ = e

∫
P(x)dxQ(x) (cf. 30)

Thus [
Y (s)se

2
s

]′
= 0→ Y (s) =

Ce−
2
s

s
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Continued from the previous page

Y (s) =
Ce−

2
s

s

Use Maclaurin expansion of the exponential term to obtain:

Y (s) = C
∞∑
n=0

(−1)n2n

n!sn+1
= C

(
1

s
− 2

s2
+

2

s3
− 4

3s4
+ . . .

)
Now take the inverse Laplace transform:

y(t) = C
∞∑
n=0

(−1)n2ntn

(n!)2
= C

(
1− 2t + t2 − 2

9
t3 + . . .

)
The condition y(0) = 1 gives C = 1. Thus the result is

y(t) =
∞∑
n=0

(−1)n2ntn

(n!)2
= 1− 2t + t2 − 2

9
t3 + . . .
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The matrix method

Consider the linear system of the form

dx1
dt = a11x1 + a12x2 + · · ·+ a1nxn
dx2
dt = a21x1 + a22x2 + · · ·+ a2nxn
...

dxn
dt = an1x1 + an2x2 + · · ·+ annxn

(88)

Define

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann

 ; X =


x1

x2
...
xn

 ;
dX

dt
=


dx1
dt
dx2
dt
...

dxn
dt


Now (88) can be written as

dX

dt
= AX (89)
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Definition

By a solution of the system (88), that is, of the vector differential
equation (89), we mean an n × 1 column vector function

φ =


φ1

φ2
...
φn


whose components φ1, φ2, . . ., φn have a continuous derivative on
the real interval a ≤ t ≤ b, and which is such that

dφ1
dt = a11φ1 + a12φ2 + · · ·+ a1nφn
dφ2
dt = a21φ1 + a22φ2 + · · ·+ a2nφn
...

dφn
dt = an1φ1 + an2φ2 + · · ·+ annφn

for all t such that a ≤ t ≤ b.
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Theorem

Any linear combination of the solutions of the homogeneous linear
system (88) is itself a solution of the system (88).

Definition

There exist sets of n linearly independent solutions of the
homogeneous linear system (88). Every solution of system (88)
can be written as a linear combination of any n linearly
independent solutions of (88).
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Definition

Let

Φ1 =


φ11

φ21
...
φn1

 ; Φ2 =


φ12

φ22
...
φn2

 ; · · · ; Φn =


φ1n

φ2n
...
φnn


be n linearly independent solutions of the homogeneous linear
system (88). Let c1, c2, . . . , cn be n arbitrary constants. Then the
solution

X = c1Φ1(t) + c2Φ2(t) + · · ·+ cnΦn(t)

is called a general solution of the system (88).

A. Karamancıoğlu Advanced Calculus



Definition

Consider the n vector functions Φ1,Φ2, . . . ,Φn defined
respectively, by

Φ1 =


φ11

φ21
...
φn1

 ; Φ2 =


φ12

φ22
...
φn2

 ; · · · ; Φn =


φ1n

φ2n
...
φnn


The n × n determinant∣∣∣∣∣∣∣∣∣

φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n
...
φn1 φn2 . . . φnn

∣∣∣∣∣∣∣∣∣
is called Wronskian of the n vector functions Φ1,Φ2, . . . ,Φn. We
will denote its value at t by W (Φ1(t),Φ2(t), . . . ,Φn(t)).
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Theorem

n solutions Φ1,Φ2, . . . ,Φn of the homogeneous linear system (88)
are linearly independent on an interval a ≤ t ≤ b if and only if
W (Φ1(t),Φ2(t), . . . ,Φn(t)) 6= 0 for all t ∈ [a, b].
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Theorem

Let Φ1,Φ2, . . . ,Φn be n solutions of the homogeneous linear
differential equation (88) on an interval a ≤ t ≤ b. Then either
W (Φ1(t),Φ2(t), . . . ,Φn(t)) = 0 for all t ∈ [a, b] or
W (Φ1(t),Φ2(t), . . . ,Φn(t)) = 0 for no t ∈ [a, b].
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Define v =


v1

v2
...
vn

 then we assume the solutions of (88) have the

form X = veλt . Recalling

dX

dt
= AX (89)

substitute X = veλt into (89) to obtain

λveλt = Aveλt

→ Av = λv
→ Av = λIv

(A− λI )v = 0
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(A− λI )v = 0 (90)

which is an algebraic equation in the explicit form

(a11 − λ)v1 + a12v2 + · · ·+ a1nvn = 0
a21v1 + (a22 − λ)v2 + · · ·+ a2nvn = 0

...
an1v1 + an2v2 + · · ·+ (ann − λ)vn = 0

This can be written in a matrix notation as follows:
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


a11 a12 · · · a1n

a21 a22 · · · a2n
...

an1 an2 · · · ann

− λ


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1





v1

v2
...
vn

 =


0
0
...
0




a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
an1 an2 · · · ann − λ




v1

v2
...
vn

 =


0
0
...
0



This equation holds only for certain λ and


v1

v2
...
vn

 pairs.
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This equation set has a non trivial solution if and only if∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣ = 0,

or in matrix notation |A− λI | = 0. This is called characteristic
equation for system (89). The λ values satisfying the characteristic
equation are called characteristic values of (89). Solutions of (90)
corresponding to characteristic values are called characteristic
vectors of (89). Recall that

dX

dt
= AX (89)

(A− λI )v = 0 (90)
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Case of n distinct characteristic values

Suppose that each of the n characteristic values λ1, λ2, . . . , λn of
the n × n square coefficient matrix A of the vector differential
equation is distinct and let v (1), v (2), . . . , v (n) be a set of n
respective corresponding characteristic vectors of A. Then the n
distinct vector functions x1, x2, . . . , xn defined respectively by

x1(t) = v (1)eλ1t , x2(t) = v (2)eλ2t , . . . , xn(t) = v (n)eλnt

are solutions of the vector differential equation (89) on every real
interval [a, b]. This can be verified by direct substitution.
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Now consider the Wronskian of the n solutions x1, x2, . . . , xn:∣∣∣∣∣∣∣∣∣
v11e

λ1t v12e
λ2t · · · v1ne

λnt

v21e
λ1t v22e

λ2t · · · v2ne
λnt

...
...

vn1e
λ1t vn2e

λ2t · · · vnne
λnt

∣∣∣∣∣∣∣∣∣

= e(λ1+λ2+···+λn)t

∣∣∣∣∣∣∣∣∣
v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
vn1 vn2 · · · vnn

∣∣∣∣∣∣∣∣∣ 6= 0

Since exponential functions never result in zero, and from linear
algebra eigenvectors corresponding to distinct eigenvalues are
linearly independent which makes the determinant above nonzero.
The n solutions x1, x2, . . . , xn are linearly independent.

A. Karamancıoğlu Advanced Calculus



Theorem

Consider the homogeneous linear system
dx1
dt
dx2
dt
...

dxn
dt

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
... · · · · · ·

...
an1 an2 · · · ann




x1

x2
...
xn


That is, the vector differential equation

dX

dt
= AX

with obvious definitions. Suppose each of the n characteristic
values λ1, λ2, . . . , λn of A is distinct; and let v (1), v (2), . . . , v (n) be
a set of respective corresponding characteristic vectors of A.
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Continued from the previous page

Then on every real interval, the n vector functions defined by

v (1)eλ1t , v (2)eλ2t , . . . , v (n)eλnt

form a linearly independent set of solutions of (88), that is (89),
and

X = c1v
(1)eλ1t + c2v

(2)eλ2t + . . .+ cnv
(n)eλnt ,

where c1, c2, . . . , cn are n arbitrary constants, is a general solution
of (88).
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Example

Consider  dx1
dt
dx2
dt
dx3
dt

 =

 7 −1 6
−10 4 −12
−2 1 −1

 x1

x2

x3


or in vector-matrix notation

dX

dt
= AX
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→ |A− λI | =

∣∣∣∣∣∣
7− λ −1 6
−10 4− λ −12
−2 1 −1− λ

∣∣∣∣∣∣ = λ3 − 10λ2 + 31λ− 30

Characteristic values are obtained by equating characteristic
expression above to zero:

λ1 = 2, λ2 = 3, λ3 = 5

Let us find characteristic vectors for each characteristic value. To
find a characteristic vector for λ1 = 2, we need to solve

(A−λ1I )v = 0 or

 7− λ1 −1 6
−10 4− λ1 −12
−2 1 −1− λ1

 v1

v2

v3

 =

 0
0
0


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Continued from the previous page 7− λ1 −1 6
−10 4− λ1 −12
−2 1 −1− λ1

 v1

v2

v3

 =

 0
0
0


 7− 2 −1 6
−10 4− 2 −12
−2 1 −1− 2

 v1

v2

v3

 =

 0
0
0


 5 −1 6
−10 2 −12
−2 1 −3

 v1

v2

v3

 =

 0
0
0

 →︸︷︷︸
GaussianElim.

v (1) =

 1
−1
−1


Next find a characteristic vector for λ2 = 3
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Continued from the previous page 7− λ2 −1 6
−10 4− λ2 −12
−2 1 −1− λ2

 v1

v2

v3

 =

 0
0
0


 7− 3 −1 6
−10 4− 3 −12
−2 1 −1− 3

 v1

v2

v3

 =

 0
0
0


 4 −1 6
−10 1 −12
−2 1 −4

 v1

v2

v3

 =

 0
0
0

 →︸︷︷︸
GaussianElim.

v (2) =

 1
−2
−1


Next find a characteristic vector for λ3 = 5
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Continued from the previous page 7− λ3 −1 6
−10 4− λ3 −12
−2 1 −1− λ3

 v1

v2

v3

 =

 0
0
0


 7− 5 −1 6
−10 4− 5 −12
−2 1 −1− 5

 v1

v2

v3

 =

 0
0
0


 2 −1 6
−10 −1 −12
−2 1 −6

 v1

v2

v3

 =

 0
0
0

 →︸︷︷︸
GaussianElim.

v (3) =

 3
−6
−2


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For λ = λ1 = 2→ v (1) =

 1
−1
−1


For λ = λ2 = 3→ v (2) =

 1
−2
−1


For λ = λ3 = 5→ v (3) =

 3
−6
−2

 We have distinct characteristic

values and corresponding characteristic vectors. For a general
solution, we use them in the solution formula:

X = c1

 1
−1
−1

 e2t + c2

 1
−2
−1

 e3t + c3

 3
−6
−2

 e5t
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Case of repeated characteristic values

We again consider the vector differential equation

dX

dt
= AX

where A is an n× n real constant matrix. We suppose that A has a
real characteristic value λ1 of multiplicity m, where 1 < m ≤ n,
and that all the other characteristic values λm+1, λm+2, . . . , λn (if
there are any) are distinct.

Example

Let 6× 6 matrix A have the characteristic equation
(λ− 7)4(λ− 2)(λ− 5) = 0. Here λ1 = 7 repeated 4 times; λ5 = 2
and λ6 = 5 are distinct. Linear algebra says we obtain 4 or less
linearly independent characteristic vectors for λ1 = 7, depending
on the matrix A.

A. Karamancıoğlu Advanced Calculus



We know that the repeated characteristic value λ1 of multiplicity m
has p linearly independent characteristic vectors, where 1 ≤ p ≤ m.
Now we consider two subcases (1) p = m and (2) p < m.

Case 1 If p = m then we will have totally n linearly independent
characteristic vectors for the matrix A. In this case the general
solution has the form that is the same as the one for all distinct
characteristic values. The next example illustrates this:
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Example

Consider

dX

dt
=

 3 1 −1
1 3 −1
3 3 −1

X

or in vector-matrix notation

dX

dt
= AX

→ |A− λI | =

∣∣∣∣∣∣
3− λ 1 −1

1 3− λ −1
3 3 −1− λ

∣∣∣∣∣∣ = λ3 − 5λ2 + 8λ− 4

Characteristic values are obtained by equating characteristic
equation to zero:

λ1 = 1︸ ︷︷ ︸
distinct

, λ2 = 2, λ3 = 2︸ ︷︷ ︸
repeated
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Evaluate Av = λv at the characteristic values:
At λ = 1

v (1) =

 1
1
3


is a characteristic vector.
At λ = 2

v (2) =

 1
−1
0

 , v (3) =

 1
0
1


are characteristic vectors. v (2) and v (3) are linearly independent.
General solution is

X (t) = c1

 1
1
3

 et + c2

 1
−1
0

 e2t + c3

 1
0
1

 e2t
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Case (2), p < m: In this case there are less than m linearly
independent characteristic vectors v (1) corresponding to the
characteristic value λ1 of multiplicity m. Hence there are less than
m linearly independent solutions of system (88) of the form
v (1)eλ1t corresponding to λ1. Thus there is not a full set of n
linearly independent solutions of (88) of basic exponential form
v (k)eλk t .
Clearly we must seek linearly independent solutions of another
form.
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Continued from the previous page

Let λ be a characteristic value of multiplicity m = 2. Suppose
p = 1 < m, so that there is only one type of characteristic vector v
and hence only one type of solution of the basic exponential form
veλt corresponding to λ. We need two linearly independent
solutions in order to write the general solution. The second
solution is of the form

(vt + w)eλt

together with veλt form a linearly independent set of two solutions.
Let us substitute this in the differential equation

dX

dt
= AX
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(vt + w)λeλt + veλt = A(vt + w)eλt

Dividing throughout by eλt and rearranging, this can be written as

(λv − Av)t + (λw + v − Aw) = 0

This implies
(A− λI )v = 0

λw + v − Aw = 0

We already know the v satisfying the first equation. From the
second equation we want to find w :

(A− λI )w = v

Upon finding w , the general solution will be

X (t) = c1ve
λt + c2(vt + w)eλt
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Continued from the previous page

Now let λ be a characteristic value of multiplicity m = 3, and
suppose p < m. Here there are two possibilities: p = 1 and p = 2.
If p = 1, there is only one type of characteristic vector v and hence
only one type of solution of the form

veλt

corresponding to λ. Then a second solution corresponding to λ is
of the form

(vt + w)eλt

Substitute this in the d.e. dX
dt = AX
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(vt + w)λeλt + veλt = A(vt + w)eλt

Dividing throughout by eλt and rearranging, this can be written as

(λv − Av)t + (λw + v − Aw) = 0

This implies
(A− λI )v = 0

λw + v − Aw = 0

We already know the v satisfying the first equation. From the
second equation we want to find w :

(A− λI )w = v

Upon finding w , an already found part of the general solution will
be

X (t) = c1ve
λt + c2(vt + w)eλt
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In this case the third solution corresponding to λ is of the form

(v
t2

2
+ wt + z)eλt

Upon substituting this in the d.e. dX
dt = AX we observe that z

satisfies
(A− λI )z = w

z obtained from this is used in the third solution. These three
solutions obtained are linearly independent. The general solution
will be

X (t) = c1ve
λt + c2(vt + w)eλt + c3(v

t2

2
+ wt + z)eλt
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If p = 2, there are two linearly independent characteristic vectors
v (1) and v (2) corresponding to λ and hence there are two linearly
independent solutions of the form

v (1)eλt and v (2)eλt

Then a third solution corresponding to λ is of the form

(vt + w)eλt

where v satisfies
(A− λI )v = 0 (91)

and w satisfies
(A− λI )w = v (92)

The v in (91) is defined by k1v
(1) + k2v

(2). We need to determine
k1 and k2 which satisfy (92).
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Example

Consider

dX

dt
=

 4 3 1
−4 −4 −2
8 12 6

X

or in vector-matrix notation

dX

dt
= AX

→ |A− λI | =

∣∣∣∣∣∣
4− λ 3 1
−4 −4− λ −2
8 12 6− λ

∣∣∣∣∣∣ = λ3 − 6λ2 + 12λ− 8

Characteristic values are obtained by equating characteristic
equation to zero:

λ1 = λ2 = λ3 = 2
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Evaluate Av = λv at the characteristic value. We obtain two
linearly independent characteristic vectors:

→ v (1) =

 1
0
−2

 , v (2) =

 0
1
−3


For the third solution we solve

(A− λI )w = v

with

v = k1v
(1) + k2v

(2) =

 k1

k2

−2k1 − 3k2


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(A− 2I )w = v →

 2 3 1
−4 −6 −2
8 12 4

 w1

w2

w3

 =

 k1

k2

−2k1 − 3k2


Notice that rows on the lefthand side of the equality are
proportional. For consistency we must have k2 = −2k1. Select

k1 = 1, k2 = −2→ v =

 1
−2
4

 Solving for w we obtain

w =

 0
0
1

 . Thus the general solution is X (t) =

c1

 1
0
−2

 e2t + c2

 0
1
−3

 e2t + c3

 1
−2
4

 t +

 0
0
1

 e2t
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Sturm-Liouville Boundary Value Problems

Definition

Sturm-Liouville BVP is boundary value problem which consists of
(a) A second order homogeneous linear d.e. of the form

d

dx

[
p(x)

dy

dx

]
+ [q(x) + λr(x)] y = 0 (93)

where p, q, and r are real functions such that p has a continuous
derivative, q and r are continuous, and p(x) > 0 and r(x) > 0 for
all x on a real interval a ≤ x ≤ b; and λ is a parameter
independent of x ; and
(b) two supplementary conditions

A1y(a) + A2y
′(a) = 0

B1y(b) + B2y
′(b) = 0

(94)

where A1,A2,B1 and B2 are real constants such that A1 and A2

are not both zero, and B1 and B2 are not both zero.
This type of problem is is called Sturm-Liouville problem.A. Karamancıoğlu Advanced Calculus



Example

d2y

dx2
+ λy = 0

y(0) = 0, y(π) = 0

is a Sturm Liouville problem. The differential equation may be
written as

d

dx

 1︸︷︷︸
p(x)

·dy
dx

+

 0︸︷︷︸
q(x)

+λ · 1︸︷︷︸
r(x)

 y = 0

y( 0︸︷︷︸
a

) = 0

y( π︸︷︷︸
b

) = 0

This verifies the claim.
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Example

The boundary value problem

d

dx

[
x
dy

dx

]
+
[
2x2 + λx3

]
y = 0

3y(1) + 4y ′(1) = 0
5y(2)− 3y ′(2) = 0

is a Sturm-Liouville problem.

A. Karamancıoğlu Advanced Calculus



Example

Find nontrivial solutions of the Sturm-Liouville problem

d2y

dx2
+ λy = 0

y(0) = 0, y(π) = 0

Solution
We consider three cases λ = 0, λ < 0, and λ > 0.
Case 1: λ = 0 reduces the the problem to

d2y

dx2
= 0

The general solution is

y = c1 + c2x

The first condition y(0) = 0 yields c1 = 0. The second condition
y(π) = c1 + c2π = 0 yields c2 = 0.
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Thus, when λ = 0 the only solution is the trivial solution.
Case 2: For the d.e

d2y

dx2
+ λy = 0, y(0) = 0, y(π) = 0

when λ < 0, the characteristic equation is

m2 + λ = 0

Its roots ±
√
−λ are real and unequal. The corresponding general

solution is
y = c1e

αx + c2e
−αx

where α =
√
−λ. Apply the conditions y(0) = 0 and y(π) = 0:

c1 + c2 = 0, c1e
απ + c2e

−απ = 0
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Solve the equations arising from applying the condition:

c1 + c2 = 0
c1e

απ + c2e
−απ = 0

The only solution is c1 = c2 = 0
∴ When λ < 0 we have only the trivial solution.
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Case 3: λ > 0 implies that the characteristic equation has the
roots ±i

√
λ.This leads to the general solution

y = c1 sin
√
λx + c2 cos

√
λx

Now apply the condition y(0) = 0 :

c1 sin 0 + c2 cos 0 = 0

This results in c2 = 0. The other condition y(π) = 0 yields:

c1 sin
√
λπ + c2 cos

√
λπ = 0

Because c2 = 0, this reduces to

c1 sin
√
λπ = 0

If we let c1 = 0, then we get a trivial solution. This is not desired.
Therefore we make sin

√
λπ = 0
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The general solution corresponding to λ > 0 from the previous
slide:

y = c1 sin
√
λx +���

���:
0

c2 cos
√
λx

Continued from the previous page

sin
√
λπ = 0 is satisfied if

√
λ = n, or equivalently,λ = n2. In other

words, λ must be a member of the infinite sequence

1, 4, 9, 16, . . .

∴ For λ = n2 (n = 1, 2, 3, . . .) we have nontrivial solutions

y = cn sin nx
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d

dx

[
p(x)

dy

dx

]
+ [q(x) + λr(x)] y = 0 (cf. 93)

A1y(a) + A2y
′(a) = 0

B1y(b) + B2y
′(b) = 0

(cf. 94)

Definition

Consider the Sturm-Liouville equation (93) and the supplementary
conditions (94). The values of the parameter λ in (93) for which
there exists nontrivial solutions of the problem are called the
characteristic values of the problem. The corresponding
nontrivial solutions themselves are called the characteristic
functions of the problem.
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Example

Find the characteristic values and characteristic functions of

d

dx

[
x
dy

dx

]
+
λ

x
y = 0

y ′(1) = 0, y ′(e2π) = 0
where we assume that the parameter λ is nonnegative.
Solution: We consider separately the cases λ = 0 and λ > 0.
Case 1: λ = 0 reduces the problem to

d

dx

[
x
dy

dx

]
= 0

Integrate twice for the general solution:

x
dy

dx
= C → dy

dx
=

C

x
→ y = C ln |x |+ C0

where C and C0 are arbitrary constants.
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Apply the supplementary conditions to this general solution:

y = C ln |x |+ C0, y
′(1) = 0, y ′(e2π) = 0

y ′(1) =
C

1
= 0→ C = 0, & y ′(e2π) =

C

e2π
= 0→ C = 0

Thus C becomes 0. There is no condition imposed on C0. Solution
becomes

y = C0

Thus λ = 0 is a characteristic value and the corresponding
characteristic functions are y = C0, where C0 is an arbitrary
nonzero constant.
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Case 2: λ > 0:
d

dx

[
x
dy

dx

]
+
λ

x
y = 0

1 · dy
dx

+ x
d2y

dx2
+
λ

x
y = 0

x · dy
dx

+ x2 d
2y

dx2
+ λy = 0

For x 6= 0, this is equivalent to the Cauchy Euler equation

x2 d
2y

dx2
+ x

dy

dx
+ λy = 0

Letting x = et , the solution is found to be

y = c1 sin
√
λt + c2 cos

√
λt.
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y = c1 sin
√
λt + c2 cos

√
λt.

Back to the x gives

y = c1 sin(
√
λ ln x) + c2 cos(

√
λ ln x).

Apply the supplementary conditions y ′(1) = 0, y ′(e2π) = 0 to the
general solution. Let us apply the first condition first:

dy

dx
=

c1

√
λ

x
cos(
√
λ ln x)− c2

√
λ

x
sin(
√
λ ln x)

y ′(1) = 0→ c1

√
λ

1
cos(
√
λ ln 1)− c2

√
λ

1
sin(
√
λ ln 1) = 0

→ c1

√
λ = 0→ c1 = 0
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Now apply the second supplementary conditions y ′(e2π) = 0 to the
general solution. This leads to

c2

√
λe−2π sin(2π

√
λ) = 0

Nontrivial solutions will require λ = n2

4 , (n = 1, 2, 3, . . .) Thus,

corresponding to the characteristic values λ = n2

4 , (n = 1, 2, 3, . . .),
with x > 0, the characteristic functions are

y = Cn cos

(
n ln x

2

)
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Theorem

Hypothesis Consider the Sturm Liouville problem consisting of
1. the differential equation

d

dx

[
p(x)

dy

dx

]
+ [q(x) + λr(x)] y = 0

where p, q, and r are real functions such that p has continuous
derivative, q and r are continuous, p(x) > 0 and r(x) > 0 for all x
on a real interval a ≤ x ≤ b, and λ is a parameter independent of
x ; and
2. the conditions

A1y(a) + A2y
′(a) = 0

B1y(b) + B2y
′(b) = 0

where A1,A2,B1, and B2 are real constants such that A1 and A2

are not both zero, and B1 and B2 are not both zero.
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Conclusions:
1. There exists an infinite number of characteristic values λn of the
given problem. These characteristic values can be arranged in a
monotonic increasing sequence

λ1 < λ2 < λ3 < . . .

and such that λn → +∞ as n→ +∞.
2.Corresponding to each characteristic value λn there exists a one
parameter family of characteristic functions φn. Each of these
characteristic functions is defined on a ≤ x ≤ b, and any two
characteristic functions corresponding to the same characteristic
value are nonzero constant multiples of each other.
3. Each characteristic function φn corresponding to the
characteristic value λn (n = 1, 2, 3, . . .) has exactly (n− 1) zeros in
the open interval a < x < b.
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Example

Consider the Sturm Liouville problem

d2y

dx2
+ λy = 0

y(0) = 0, y(π) = 0

It has already been solved and was found that it has infinitely
many characteristic values, therefore, the 1st conclusion is valid.
Validity of the 2nd conclusion may be verified for a characteristic
function For instance, for λ = 9 corresponding solutions are
c sin 3x where c is arbitrary. Looking at some of the solutions
5 sin 3x , 12 sin 3x , −2.2 sin 3x , . . ., one observes that for the same
characteristic value, corresponding characteristic functions are
multiple of each other.
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Conclusion 3 suggests the characteristic function cn sin nx
corresponding to λ = n2 has exactly n − 1 zeros in the open
interval 0 < x < π. We know that sin nx = 0 if and only if
nx = kπ, where k is an integer. Thus the zeros of cn sin nx are
given by

x =
kπ

n
, (k = 0,±1,±2, . . .) (95)

The zeros of (95) which lie in the open interval 0 < x < π are the
ones corresponding to k = 1, 2, . . . , n − 1. Totally, there are n − 1
zeros in the interval.
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Orthogonality of Characteristic Functions

Definition

Two functions f and g are called orthogonal with respect to the
weight function r on the interval a ≤ x ≤ b if and only if∫ b

a
f (x)g(x)r(x)dx = 0

Example

The functions sin x and sin 2x are orthogonal with respect to the
weight function having the constant value 1 on the interval
0 ≤ x ≤ π: ∫ π

0
(sin x)(sin 2x)(1)dx =

2 sin3 x

3

∣∣∣∣π
0

= 0
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Definition

Let {φn}, n = 1, 2, 3, . . ., be an infinite set of functions defined on
the interval a ≤ x ≤ b. The set {φn} is called orthogonal system
with respect to the weight function r on a ≤ x ≤ b if every two
distinct functions of the set are orthogonal with respect to r on
a ≤ x ≤ b. That is, the set {φn} is orthogonal with respect to r
on a ≤ x ≤ b if∫ b

a
φm(x)φn(x)r(x)dx = 0, for m 6= n

Example

Consider the infinite set of functions {sin x , sin 2x , sin 3x , . . .} on
the interval 0 ≤ x ≤ π. Let the weight function be 1. Then this
set is orthogonal wrt this weight function:∫ π

0
(sinmx)(sin nx)(1)dx =

[
sin(m − n)x

2(m − n)
− sin(m + n)x

2(m + n

]π
0

= 0
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Theorem

Hypothesis Consider the Sturm Liouville problem consisting of
1. the differential equation

d

dx

[
p(x)

dy

dx

]
+ [q(x) + λr(x)] y = 0

where p, q, and r are real functions such that p has continuous
derivative, q and r are continuous, p(x) > 0 and r(x) > 0 for all x
on a real interval a ≤ x ≤ b, and λ is a parameter independent of
x ; and
2. the conditions

A1y(a) + A2y
′(a) = 0

B1y(b) + B2y
′(b) = 0

where A1,A2,B1, and B2 are real constants such that A1 and A2

are not both zero, and B1 and B2 are not both zero.
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Let λm and λn be two distinct characteristic values of this
problem. Let φm be a characteristic function for λm and φn be a
characteristic function for λn.
Conclusion The characteristic functions φm and φn are orthogonal
with respect to the weight function r on the interval a ≤ x ≤ b.

Example

Consider the Sturm Liouville problem
d2y
dx2 + λy = 0, y(0) = 0, y(π) = 0
where r = 1. Corresponding to each characteristic value
λ = n2 (n = 1, 2, . . .) we have characteristic functions
cn sin nx (n = 1, 2, . . .). Define φn(x) = sin nx , n = 1, 2, . . . The
set {φn}, n = 1, 2, . . ., is an orthogonal system because∫ π

0
(sinmx)(sin nx)(1)dx = 0, for m = 1, 2, . . . , n = 1, 2, . . . , m 6= n
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Polynomial Division

Theorem

Let the polynomials p(x) and d(x) 6= 0 be given. Then there exist
unique q(x) and r(x) polynomials such that

p(x) = d(x)q(x) + r(x).

Furthermore, deg d(x) ≥ 1 implies deg r(x) < deg d(x); and
deg d(x) = 0 implies r(x) = 0.

Proof We prove it by induction. We prove that it holds true firstly
for deg p(x) = 0. Then we show that if it is true for deg p(x) = k ,
then it will be true for deg p(x) = k + 1.
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” ... there exist unique q(x) and r(x) polynomials ...”
” ... deg d(x) ≥ 1 implies deg r(x) < deg d(x); and deg d(x) = 0
implies r(x) = 0” [Conclusion of the theorem].

Case of deg p(x) = 0
In this case p(x) = c. Let us denote deg d(x) by m. There are two
subcases: m = 0 and m > 0. Consider the m = 0 case first. In this
case d(x) = k. Then p(x) = k c

k + 0. ∴ The theorem holds.
In the m > 0 case choose q(x) = 0 and r(x) = c . This yields
p(x) = d(x) · 0 + c . ∴ The theorem holds.
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Case of deg p(x) = k + 1
Let us assume that the theorem holds for deg p(x) = k , we will
show that this implies it holds true for deg p(x) = k + 1.
Let p(x) have the form:

p(x) = ak+1x
k+1 + akx

k + · · ·+ a1x + a0

where ak+1 6= 0. Now we have two cases: m = 0 case and m > 0
case.
Subcase of m = 0
m = 0 implies d(x) = c . In this case choose q(x) = 1

c p(x) and
r(x) = 0. This yields
p(x) = c 1

c p(x) + 0
” ... there exist unique q(x) and r(x) polynomials ...”
” ... deg d(x) ≥ 1 implies deg r(x) < deg d(x); and deg d(x) = 0
implies r(x) = 0” [Conclusion of the theorem].
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Subcase of m > 0
Let d(x) = dmx

m + · · ·+ d1x + d0 where dm 6= 0. Notice that
ak+1

dm
6= 0. Choose p1(x) = p(x)− ak+1

dm
xk+1−md(x). This

annihilates the xk+1 term. The degree of p1(x) is k or lower. By
the hypothesis, there exist q1 and r1 satisfying the theorem for
p1(x). More explicitly,

p1(x) = d(x)q1(x) + r1(x) = p(x)− ak+1

dm
xk+1−md(x)

→ p(x) =
ak+1

dm
xk+1−md(x) + d(x)q1(x) + r1(x)

→ p(x) = d(x)

[
ak+1

dm
xk+1−m + q1(x)

]
︸ ︷︷ ︸

q(x)

+ r1(x)︸ ︷︷ ︸
r(x)

For k + 1st degree polynomial p(x) we have shown existence of q
and r satisfying the theorem.
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Now let us show that for a given p, corresponding q and r are
unique. Let

p(x) = d(x)q1(x) + r1(x) = d(x)q2(x) + r2(x)

→ d(x) [q1(x)− q2(x)] = r2(x)− r1(x)

Now there two cases: m = 0 and m > 0.
Case of m = 0:
m = 0 implies r1(x) = r2(x) = 0→ d(x) [q1(x)− q2(x)] = 0
Since d(x) 6= 0, we have [q1(x)− q2(x)] = 0, this implies
q1(x) = q2(x).
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Case of m > 0:
Suppose [q1(x)− q2(x)] 6= 0 and calculate the degrees of the
polynomials on both sides. Degree of LHS is m or larger. On the
RHS we have two polynomials where each one has degree lower
than m. Difference of them also has degree lower than m. The
degrees of LHS and RHS are equal. This is a contradiction. The
contradiction is caused by the supposition [q1(x)− q2(x)] 6= 0.
Correcting this we have q1(x) = q2(x). Also, the correction yields
r2(x)− r1(x) = 0, which implies r2(x) = r1(x).
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Numerical Solutions by ode23.m Consider the first order
differential equation

dy

dx
+

2x + 1

x
y = e−2x , y(1) = 2. (96)

We want to find a solution in the interval [1, 5]. Form two m-files:
Let their names be mymain.m and myequation.m.
mymain.m:

[t,x]=ode23(’myequation’,[1,5],2);

plot(t,x,’o’)

myequation.m:

function ydot=myequation(x,y)

ydot=-((2*x+1)/x)*y +exp(-2*x);
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Remarks

The graphics is concatenation of o characters due to the ’o’ option
in the plot command.
Save mymain.m and myequation.m files in the work folder of
MATLAB.
In the workplace of MATLAB, type mymain and press enter key.
The graphics obtained is depicted below:

Figure: Numerical solution of the 1st order differential equation
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The differential equation (96) is linear and its analytical solution is
y(x) = x

2e
−2x + 14.27

x e−2x . For the purpose of comparison with the
numerical solution we can plot this over the previous graphics by
using the following codes in the workplace of MATLAB (Figure 8):

hold on

x=1:0.1:5

y=exp(-2*x).*x/2+14.27*exp(-2*x)./x

plot(x,y)

Figure: Analytical solution of the 1st order differential equation
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Now let us modify the files mymain.m and myequation.m to solve
the following second order differential equation in the interval [0, 5]

d2y

dt2
+ 5

dy

dt
+ 4y = sin(t), y(0) = 3; ẏ(0) = 9. (97)

This can be written in the normal form as:

ẋ1 = x2

ẋ2 = −4x1 − 5x2 + sin(t)

}
x1(0) = 3; x2(0) = 9. (98)
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Corresponding m-files are shown below:
mymain.m:

[t,x]=ode23(’myequation’,[0,5],[3,9]);

plot(t,x(:,1),’o’,t,x(:,2),’o’)

myequation.m:

function xdot=myequation(t,x)

xdot=[x(2); -4*x(1)-5*x(2)+sin(t)];
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The codes above yields the following graphics:

Figure: Numerical solution of the 2nd order differential equation

A. Karamancıoğlu Advanced Calculus


