Mathematical Modeling and

Engineering Problem solving
Chapter 1

*Requires understanding of engineering
systems
—By observation and experiment

—Theoretical analysis and generalization
*Computers are great tools, however,
without fundamental understanding of
engineering problems, they will be useless.

THEORY

Problem
definition

Mathematical
model

Problem-solving tools:
computers, statistics,
numerical methods,
graphics, etc.

Numeric or
graphic results

Sacietal interfaces:
scheduling, optimization,
communication,
public interaction,
etc.

Implementation

DATA

* A mathematical model 1s represented as a functional
relationship of the form

Dependent
Variable

f

independent
variables,

o

,)
forcing

parameters, functions
_/

» Dependent variable: Characteristic that usually reflects the
state of the system

 Independent variables: Dimensions such as time ans space
along which the systems behavior 1s being determined

« Parameters: reflect the system’s properties or composition
 Forcing functions: external influences acting upon the system

» States that “the time rate change of momentum
of a body Is equal to the resulting force acting
on It.”

e The model 1s formulated as
F=ma
F=net force acting on the body (N)
m=mass of the object (kg)

a=its acceleration (m/s?)

"

« Formulation of Newton’s 2™ law has several
characteristics that are typical of mathematical
models of the physical world:

— It describes a natural process or system in
mathematical terms

— It represents an 1dealization and simplification of
reality

— Finally, it yields reproducible results,
consequently, can be used for predictive purposes.

* Some mathematical models of physical phenomena
may be much more complex.

* Complex models may not be solved exactly or
require more sophisticated mathematical techniques
than simple algebra for their solution

Eirnm“]r\ 1/‘\/‘\/\/1/\111/\[\' 'p
— L.AALLIPIC, 1110UUC1111 E vl a

dv F

dt m

Force due to gravity

— — FD + FUF Upward force due to air resistance

-, =mg
:U = —CV c: a constant (drag coefficient in kg/s)
dv. mg-cv

dt m

dv ¢C
dt m
* This 1s a differential equation and 1s written in

terms of the differential rate of change dv/dt of the
variable that we are interested in predicting.

 [If the parachutist 1s initially at rest (v=0 at t=0),
using calculus

\/
vV

0
J

Independent variable
v(t) = P (1 e“”?”)/
/ C \

Dependent variable

: : Parameters
Forcing function

Analytical Solution to the Falling Parachutist Problem

Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient

is equal to 12.5 kg/s.
Solution. Inserting the parameters into Eqg. (1.10) yields
B1{68.1
() = 981(}{] — e (125/6300) — 5344 (] — ¢ 0183

12.5
which can be used to compute

f, s v, mfs
o 0.00
2 146.42
4 27 .80
& J5.48
8 41.14

10 A4 97

12 A7 .54
= 53.44

According to the model. the parachutist accelerates rapidly (Fig. 1.3). A velocity of 44.92
m/s is attained after 10 s. Note also that after a sufficiently long time, a constant veloc-
ity, called the terminal velocity, of 53.44 m/s 1s reached. This velocity 1s constant because,
eventually, the force of gravity will be in balance with the air resistance. Thus. the net

force 15 zero and acceleration has ceased.

Programming and Software
Chapter 2

* Objective 1s how to use the computer as a tool
to obtain numerical solutions to a given
engineering model. There are two ways 1n
using computers:

— Use available software

— Or, write computer programs to extend the
capabilities of available software, such as Excel
and Matlab.

* Engineers should not be tool limited, 1t 1s
important that they should be able to do both!

10

« Computer programs are set of instructions that direct the
computer to perform a certain task.

* To be able to perform engineering-oriented numerical
calculations, you should be familiar with the following
programming topics:

Simple information representation (constants, variables, and type
declaration)

Advanced information representation (data structure, arrays, and
records)

Mathematical formulas (assignment, priority rules, and intrinsic
functions)

Input/Output
Logical representation (sequence, selection, and repetition)
Modular programming (functions and subroutines)

« We will focus the last two topics, assuming that you have
some prior exposure to programming.

11

J

LV aWa L Vel 2% W 2% W I 2 Waa J

QY™ 4 P
DLLUCLUICU I'1l Ugl auuluug

o Structured programming is a set of rules that
prescribe god style habits for programmer.
— An organized, well structured code
— Easily sharable
— Easy to debug and test
— Requires shorter time to develop, test, and update

* The key i1dea 1s that any numerical algorithm can be

composed of using the three fundamental structures:

— Sequence, selection, and repetition

12

FIGURE 2.1
Symbols used in flowcharts.

SYMBOL

D
e N
]
-
<@
O
.
a

NAME

Terminal

Flowlines

Process

Input/output

Decision

Junction

Off-page
connector

Count-controlled
loop

FUNCTION

Represents the beginning or end of a program.

Represents the flow of logic. The humps on the horizontal arrow indicate that
it passes over and does not connect with the vertical flowlines.

Represents calculations or data manipulations.

Represents inputs or outputs of data and information.

Represents a comparison, question, or decision that determines alternative
paths to be followed.

Represents the confluence of flowlines.

Represents a break that is continued on another page.

Used for loops which repeat a prespecified number of iterations.

13

Fig.2.2
* Sequence. Computer code

must be implemented one

instruction at a time, unless Instruction,
you instruct otherwise. The ’
structure can be expressed as . _
flowchart docod Instruction, Instruction;
a flowchart or pseudocode. ; Instruction,
Instructions
Instruction, Instruction,

!

Instruction,

(a) Flowchart (b) Pseudocode

Pseudocode is an informal high-level description of the
operating principle of a computer program or other algorithm.

14

Selection.

Splits the program’s
flow into branches
based on outcome of a
logical condition.

One or a number of
statements 1s executed
depending on the state
of the program. This 1s
usually expressed with
keywords such as

if..then..else..endif
FIGURE 2.3

Flowchart and pseudocode for
simple selection constructs.

Flowchart

!

-
f‘&

.~ _True
ndltmnf\j
r

e
-

Qo

.

False

True Block

—

(a) Single-alternative structure (IF/THEN)

Condi

False Block

[a) Single-aliernative selection

(IF/THEN) and (b) double-
alternative selection

(IF/ THEMN/ELSE).

I_,fr_l

(b) Double-alternative structure (IF/ THEN/ELSE)

T
~._ Irue

tiyj

True Block

Pseudocode

IF condition THEN
True block
ENOIF

IF condition THEN
True block
ELSE
False block
ENDIF

15

Repetition (Or iteration) means to implement instructions repeatedly.

FIGURE 2.4
Flowchart and pseudocode for supplementary selection or branching constructs. {a) Multiple-
alternative selection (IF/THEN/ELSEIF) and [b) CASE construct.

Flowchart Pseudocode

IF condition; THEN
Block;

ELSEIF condition;
Elock,

ELSEIF condition,
Blocks

£1.SE
Block,

ENDIF

(a) Multialternative structure (IF/THEN/ELSEIF)

SELECT CASE Test Expression
CASE Value,
Block;
CASE Value,
Block,
Else‘ CASE Values
Block;
Block, Block, Block, Block, {,ASBE; EiSE
0CKy
I I I | END SELECT

!

(h) CASE structure (SELECT or SWITCH) 16

Test
expression

Value,y Value, Value, ¢

FIGURE 2.5
The DOEXIT or break loop.

Flowchart

Block,

Condition

Pseudocode

Do
Block;
IF condition EXIT
Block,

ENDDO

17

Flowchart Pseudocode

!

i+step

DOFOR 1 = start, finish, step

False Block
ENDDO
FIGURE 2.6
The countcontrolled or DOFOR
consfruct.

[terations are usually expressed with keywords such as while,

repeat, for or do..until
18

N

Modula

I Programn |ii"|g
e The computer programs can be divided into
subprograms, or modules, that can be developed and

tested separately.

* Modules should be as independent and self contained
as possible.

» Advantages to modular design are:

— It 1s easier to understand the underlying logic of smaller
modules

— They are easier to debug and test
— Facilitate program maintenance and modification

— Allow you to maintain your own library of modules for
later use

19

FIGURE 2.7

Pseudocode for a function that
solves a differential equation
using Euler’s method.

FUNCTION Euler(dt, ti, tf, yi)
t=ti
y =y
h = dt
0o
IF t + dt = tf THEN
h=1tf -1t
ENDIF
dydt = dy(t, y)
y =y + dydt * h
t=t+ h
IF t = tf EXIT
ENDDO
Euler = y
END Euler

20

C\vrCl
/N L_L_

Is a spreadsheet that allow the user to enter and perform
calculations on rows and columns of data.

When any value on the sheet 1s changed, entire calculation 1s
updated, therefore, spreadsheets are 1deal for “what 1f?” sorts
of analysis.

Excel has some built in numerical capabilities including
equation solving, curve fitting and optimization.

It also includes VBA as a macro language that can be used to
implement numerical calculations.

It has several visualization tools, such as graphs and three
dimensional plots.

21

FIGURE 2.8

The fundamental contral
shuctures in [g) pssudocode
and [b] Excel VBA.

(a) Psevdocode

(k) Excel VBA

|ETHEN:

IF condition THEN If b <= 0 Then
Trug Block rl = -c / b

ENDIF End If

IFMTHEN/ELSE:

IF condition THEN If a « 0 Then
Trug bilock b = Egr(kbsia)}

ELSE Else
Falsa block b = Sgria)

EMOIF End If

IETHEN/ELSEIF:

IF condition, THEN If class = 1 Then
Block x=x+ B

ELSEIF condition, ElseIf class < 1 Then
Block; x=x -8

ELSEIF condition, Els=If class < 10 Then
Blocks x =x - 32

ELSE Ela=
Block, X =X - &4

EMMF End If

CASE:

SELECT CASE Test Expression
CASE Value,

Eelect Case a + b
Case Is = -50

Block, x = =5
CASE Values Case Is = O
Block: x=-5-(a+b) /10
CASE Value, Case Is < 50
Block, x = {a+ bl /10
CASE ELSE Case Else
Blocks x =5
EMD SELECT End Select
DOEXIT:
o Do
Block; i=1i+1
IF condition EXIT If i == 10 Then Exit Do
Block; j o= i*x
EN0 Loop
COUNT-CONTROLLED LOOP:
DOFOR 7 = start, fimish, step For i = 1 To 10 Ctep 2
Block X=X + 1
EMNY Next i

22

N

AT
IVI/M\ |

1 AR

LAD

* Is a flagship software which was originally
developed as a MATrix LABoratory. A variety
of numerical functions, symbolic

computations, and visualization tools have
been added to the matrix manipulations.

« MATLAB is closely related to programming.

23

(a) Pseudocode

IFTHEN:
IF condition THEN
Trua block rl = —-c / by
EMDIF end
IFMTHEM/ELSE:
IF condition THEN if a = 0
Trug bilock b = agrti{abs{a));
ELSE elss
False block b 5 agrtial;
EMOIF end
IEFTHEM/ELSEIF:
IF condition, THEN if class == 1
Block; x =x + B;
ELSEIF condition, elseif class < 1
Block; x =x - B;
ELSEIF condifion, elssif class <« 10
Blocka x =x - 32;
ELSE elss
Block, x = x - &4;
EMOIF end
CASE:
SELECT CASE Tast Expressiom switch a + b
CASE Walue; case 1
Black, x = -25;
CASE Walues case 2
Block; x=-5 - (a+ b) / 10;
CASE Values caze 3
Black, x = {a + by / 10;
CASE ELSE ctherwise
Black, x = 5;
EMD SELECT end
DOEXIT:
0a while (1)
EIIkI i=1i+1;
IF condition EXIT if i == 10, break, end
Blockz J o= i*xy
END end
FIGURE 2.9
The fundamental control COUNT-CONTROLLED LOGP:
shuctures in [g) pﬁElleDl:Dde OOFDR i = start, fimish, step for i = 1:2:10
and (b] the MATLAR program: Block x=x + i;

ming languags. ENOD end 24

)
D

.-

S
O

[®
-
q
)
D
@)
(O
™
@)
-
qu

—
D
pC
)

O

* Maple

e Mathcad

e Fortran 90 (IMSL)

e C++

<end of Chapter 2>

25

Approximations and Round-Off Errors
Chapter 3

For many engineering problems, we cannot obtain analytical
solutions.

Numerical methods yield approximate results, results that are
close to the exact analytical solution. We cannot exactly
compute the errors associated with numerical methods.

— Only rarely given data are exact, since they originate from
measurements. Therefore there is probably error in the input
information.

— Algorithm itself usually introduces errors as well, e.g., unavoidable
round-offs, etc ...

— The output information will then contain error from both of these
sources.

How confident we are in our approximate result?

The question is “how much error Is present in our
calculation and is it tolerable?”’

26

Accuracy. How close 1s a computed or
measured value to the true value

Precision (or reproducibility). How close is a
computed or measured value to previously
computed or measured values.

Inaccuracy (or bias). A systematic deviation
from the actual value.

Imprecision (or uncertainty). Magnitude of
scatter.

27

Fig. 3.2

Increasing accuracy

(b)

Increasing precision

I () (d)

FIGURE 3.2

An example from marksmanship illustrating the concepts of accuracy and precision. () Inaccurate

and imprecise; |b) accurate and imprecise; () inaccurate and precise; |d) accurate and precise.

28

.|:
I

F

Sign Figur

« Number of significant figures indicates precision. Significant digits of a
number are those that can be used with confidence, e.g., the number of
certain digits plus one estimated digit.

53.800 How many significant figures?

5.38 x 10* 3
5.380 x 10* ot
5.3800 x 10* 5

Zeros are sometimes used to locate the decimal point not significant
figures.

0.00001753 =
0.0001753 =
0.001753 =

29

m

vy y nFf +innNnce
11UI Cl LIVUI IO

— N
—rror v

True Value = Approximation + Error

True value — Approximation (+/-)

True error

True fractional relative error =
true value

. true error
True percent relative error, & = x100%

true value

30

Calculation of Errors

Problem Statemeni. Suppose that you have the task of measuring the lengths of a
bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are
10,000 and 10 cm, respectively, compute (@) the true error and (b) the true percent rela-
tive error for each case.

Solution.
(a) The error for measuring the bridge is [Eq. (3.2)]
E, = 10,000 — 9999 = 1 cm

and for the rivet it is
E=10—-9=1cm
(b) The percent relative error for the bridge is [Eq. (3.3)]

1

= mmm{}% = 0.01%

&

and for the rivet it is
1

g, = —100% = 10%
10

Thus, although both measurements have an error of 1 cm, the relative error for the rivet
i1s much greater. We would conclude that we have done an adequate job of measuring
the bridge, whereas our estimate for the rivet leaves something to be desired.

3l

* For numerical methods, the true value will be known
only when we deal with functions that can be solved
analytically (stmple systems). In real world

applications, we usually not know the answer a
priorl. Then

o = Approximate error «100%

a

Approximation

* |terative approach, example Newton’s method

_ Current approximation - Previous approximation «100%

a

Current approximation
(+/-)

32

We can use absolute value of the error for termination.
Computations are repeated until stopping criterion 1s satisfied.

Pre-specified % tolerance based on
the knowledge of your solution

‘ga ‘(eg\
If the following criterion is met
_ (2-n)yo
g, =(0.5x10"")%

you can be sure that the result 1s correct to at least n
significant figures.

33

11

DA A ~FF
I\VU IU=UIl 1

CvrrAve
L1 1UID

» Numbers such as w, e, or v7 cannot be expressed
by a fixed number of significant figures.

« Computers use a base-2 representation, they cannot
precisely represent certain exact base-10 numbers.

* Fractional quantities are typically represented in
computer using “floating point” form, e.g.,

O I

Integer (or fraction) part

m.

mantissa /

beé/ exponent
~

Base of the number system
used

34

1l|]‘ 1{|J'=' 1||:-2 1t|1" 1t|1“

8 6 4 0 9

N\ NS -
0 x 10 = 0
4 x 100 = 400

(a) 6 x 1,000 = 6,000

8 % 10,000 = 80,000
86,409

1x 8=
0x 16=
1% 32= 32
(b) 0x 64= 0
1% 128 = 128
173

N N——1x 1= 1
0x 2= 0

1% 4= 4

8

0

FIGURE 3.5
How the (a] decimal (base-10) and the (b) binary (base-2) systems work. In (b), the binary num-

ber 10101101 is equivalent to the decimal number 173. 35

Integer Representation. Now that we have reviewed how base-10
numbers can be represented in binary form, it is simple to conceive of
how integers are represented on a computer. The most

straightforward approach, called the signed magnitude method,
employs the first bit of a word to indicate the sign, with a 0 for
positive and a 1 for negative. The remaining bits are used to store the
number. For example, the integer value of —173 would be stored on a
16-bit computer, as in Fig. 3.6.

1/(0|j0j0jO0jO0OjOjO|(T]|O}|T|O[T]|T |01

T Nur:rrwber
Sign

FIGURE 3.6
The representation of the decimal integer — 173 on a 16-bit computer using the signed
magnitude method.

36

riuatilly mullict ra\ctpircotliitatdivil.

FIGURE 3.7
The manner in which a floating-point number is sfored in a word.
Signed
exponent
- Mantissa -
Sign
Floating-point precisions
sgn (5bit) (10 nﬁ‘; Slglﬂl exponent (8 bits) | fraction (23 bits) |

I T |

o o o 31 30 2322 (bit index) 0

15 10 0 o

IEEE 764 . 32_'1,)1'[' Single .
16-bit. Half (binary16) (higher precision than 16-bit case)

32-bit: Single (binary32), decimal32
64-bit: Double (binary64), decimal64
128-bit: Quadruple (binary128), decimal128
37

156.78 » 0.15678x10° in a floating
point base-10 system

1 _0.029411765 ~ Suppose only 4

34 decimal places to be stored

0.0294x10°

* Normalized to remove the leading zeroes. Multiply
the mantissa by 10 and lower the exponent by 1

0.2941 x 10!

'\

Additional significant figure is retained. This representation is
a better representation than the previous case.

38

1
— < |m| <l |—> Best choice for the mantissa range

Therefore
for a base-10 system 0.1 <m<]
for a base-2 system 0.5 <m<]

* Floating point representation allows both fractions
and very large numbers to be expressed on the
computer. However,

— Floating point numbers take up more room.
— Take longer to process than integer numbers.

— Round-off errors are introduced because mantissa holds
only a finite number of significant figures.

39

Example:

n=3.14159265358 to be stored on a base-10 system
carrying 7 significant digits.

n=3.141592 chopping error £=0.00000065

If rounded

n=3.141593 £~=0.00000035

* Some machines use chopping, because rounding adds
to the computational overhead. Since number of
significant figures 1s large enough, resulting chopping
error 1s negligible.

40

