

Tln N

N NT
11T IVI/M\ |

m\7s

1 AND C rvrArnrmMant
L/\D LIIVII L

o fa)
UILIHTITI]

« MATLAB uses three primary windows-

= Command window - used to enter
commands and data

= Graphics window(s) - used to display plots
and graphics

= Edit window - used to create and edit M-
files (programs)

lArvilatAavrr N A
iLuiadtul

Ya
IVIUU

f\r\ e MNT N n

CadiCuidto c

« The MATLAB command widow can be used
as a calculator where you can type in

commands line by line.

 Whenever a calculation 1s performed,

MATLAB will assign the result to the built-in
variable ans

* Example:

>> 55 - 16
ans =
39

NAAN 1 AD Arinhlace
IVIMA\1 LLAAD vAal idauliIto
While using the ans variable may be useful for
performing quick calculations, its transient nature

makes 1t less useful for programming.

MATLAB allows you to assign values to variable
names. This results in the storage of values to
memory locations corresponding to the variable
name.

MATLAB can store individual values as well as
arrays; 1t can store numerical data and text (which 1s
actually stored numerically as well).

MATLAB does not require that you pre-initialize a
variable; 1f 1t does not exist, MATLAB will create 1t
for you.

Cf\f\lﬂ o
Jvadial o

* To assign a single value to a variable, simply
type the variable name, the = sign, and the

value:
>> g = 4
a —

N

Ll.

 Note that varial

ble names must start with a

letter, though they can contain letters,

numbers, and t

ne underscore () symbol

Cralare (cant)
SCaiars (Cont)
* You can tell MATLAB not to report the result

of a calculation by appending the semi-colon
(;) to the end of a line. The calculation is still

performed.

* You can ask MATLAB to report the value

stored 1n a variable by typing its name:
>> g

a =
A

Chralave fAANT)

SCaiars (Cont)

* You can use the complex variable 1 (or) to
represent the unit imaginary number.

* You can tell MATLAB to report the values back
using several different formats using the format
command. Note that the values are still stored the
same way, they are just displayed on the screen
differently. Some examples are:

— short - scaled fixed-point format with 5 digits

— long - scaled fixed-point format with 15 digits for double
and 7 digits for single

— short eng - engineering format with at least 5 digits and

a power that 1s a multiple of 3 (useful for SI prefixes)
7

CAvrrmnant N / mnlace
FOINTiatl CAaAlfipics
e >> format short; pi
ans =
3.1416
>> format long; pi
ans =
3.14159265358979
>> format short eng; pl
ans =
3.1416e+000
>> p1*10000
ans =
31.4159e+003

« Note - the format remains the same unless another format ¢

pnmmanr‘] 1.Q iQQ]IPA

N\ v aVs \/

la¥as dal =
AIrrays, vecuoi

nA N
U

Cc N Aty
S, anad wviatl

O ICES
MATLAB can automatically handle
rectangular arrays of data - one-dimensional
arrays are called vectors and two-dimensional

arrays are called matrices.

Arrays are set off using square brackets [and |
in MATLAB

Entries within a row are separated by spaces or
commas

Rows are separated by semicolons

N viiavs Evarmnlace
M\11 y LA |||J|CD
e>> a=1]J12345]
a =
1 2 3 4 9
>> pb = [2;4;6;8;10]
b =
2
4
6
8
10

* Note 1 - MATLAB does not display the brackets

* Note 2 - if you are using a monospaced font, such as Courier, the
displayed values should line up properly

10

N

Aty
IViall

Ices
* A 2-D array, or matrix, of data is entered row
by row, with spaces (or commas) separating

entries within the row and semicolons
separating the rows:

> A =112 3; 45 6; 7 8 9]
A =
1 2 3
4) 6
4 8 9

| | I\'IFIII N\ v n\lr\ A

o hAﬁ
UoC Uuo

Array comman

» The transpose operator (apostrophe) can be used to
flip an array over its own diagonal. For example, if b

1s a row vector, b~ 1s a column vector containing the
complex conjugate of b.

* The command window will allow you to separate
rows by hitting the Enter key - script files and

functions will allow you to put rows on new lines as
well.

» The who command will report back used variable
names; Whos will also give you the size, memory,

and data types for the arrays. 12

A WaYa e o\ Nt
I\ ¥ |U y |l.

f\l'\
1ES
* Individual entries within a array can be both read and

set using either the index of the location in the array
or the row and column.

* The index value starts with 1 for the entry 1n the top
left corner of an array and increases down a column -
the following shows the indices for a 4 row, 3 column
matrix:

1 S 9
2 6 10
3 ! 11
4 8 12

13

AVWaYa 2 Ya \ s c [~ \
M\LL Iy y I \ N)
Assummg some matrix C:
C =
2 4 9
3 3 16
3 O 8

10 13 17
C(2) would report 3
C(4) would report 10
C(13) would report an error!
Entries can also be access using the row and column:
C(2,1) would report 3
C(3,2) would report 0

C(5,1) would report an error!
14

m

+1 1 Dinl+)
H y LIVIII = DUl

|
L1l

 There are several built-in functions to create
arrays:

—zeros(r,c) will create an r row by C column
matrix of zeros

—zeros(n) will create an N by N matrix of zeros

—ones(r,c) will create an r row by C column
matrix of ones

—ones(n) will create an N by N matrix one ones

e help elmat has, among other things, a list
of the elementary matrices

15

N\ v~ "

+1 nlA n 2t dal =
Array C Lion - Coion alol

If'\
Upe
* The colon operator : 1s useful in several contexts. It
can be used to create a linearly spaced array of points
using the notation
start:diffval:limit
where start is the first value in the array,
diffval is the difference between successive

values in the array, and 1 Imit is the boundary for
the last value (though not necessarily the last value).
>>1:0.6:3
ans =

1.0000 1.6000 2.2000
2.8000

16

aAlA @AY aYa) -I-r\ v NlAntne
\/UI | UIJ ALlUI = INULCO
If diffval is omitted, the default value is 1:
>>3:6
ans =
3 4 5 6

To create a decreasing series, d 1 Ffval must be negative:
>> 5:-1.2:2
ans =

5.0000 3.8000 2 .6000

If start+diffval>11mit for an increasing series or
start+diffval<limit for a decreasing series, an empty
matrix 1s returned:
>>5:2
ans =

Empty matrix: 1-by-0
To create a column, transpose the output of the colon operator, not
the limit value; that i is, (3:6)” not 3:6~

N i

rvravs (vraontin N
i1 N1 CALIVII ™ B

NAarro
IIOPQ\JC

* To create a row vector with a specific number of linearly
spaced points between two numbers, use the 1 Inspace

command.
e linspace(x1l, x2, n) will create a linearly spaced array
of N points between X1 and X2
>>li1nspace(0, 1, 6)
ans =
O 0.2000 0.4000 0.6000 0.8000
1.0000

* If n1s omitted, 100 points are created.

» To generate a column, transpose the output of the I INnSpace

command.
18

NNcNaAaro
H pabc

* To create a row vector with a specific number of
logarithmically spaced points between two numbers, use the
logspace command.

e logspace(x1l, X2, n) will create a logarithmically
spaced array of n points between 10%! and 10*?
>>logspace(-1, 2, 4)
ans =

0.1000 1.0000 10.0000 100.0000

« If n1s omitted, 50 points are created.

» To generate a column, transpose the output of the logspace
command.

19

Character Strings & Ellipsis

Alphanumeric constants are enclosed by apostrophes (')

>> f = “My name is °;
>> s = “Bond”
Concatenation: pasting together of strings
>> x = [T s]
X =
My name 1s Bond

Ellipsis (...): Used to continue long lines
> a=[12345 ...

6 7 8]

a =

1 2 3 4) 6 I 8

You cannot use an ellipsis within single quotes to continue a string. But you can piece
together shorter strings with ellipsis

>> quote = ["Any fool can make a rule,” ...
* and any fool will mind 1t"]
guote =
Any fool can make a rule, and any fool will mind 1t

20

Mathematical Operations
« Mathematical operations in MATLAB can be
performed on both scalars and arrays.

+inal N
tival

 The common operators, 1n order of priority, are:

A Exponentiation 472 =16

- | Negation -8 =-8
(unary operation)

*| Multiplication and | 2*pi = 6.2832

Division pi/4 = 0.7854
/
\ | Left Division 6\2 = 0.3333
+| Addition and 3+5=8

Subtraction 3-5=-2

N\vdav nf MnAn -I- Ne
Uraer or uperations

* The order of operations is set first by
parentheses, then by the default order given
above:

ny = -4 N 2 givesy = -160

since the exponentiation happens first due to its
higher default priority, but

y = (-4) N 2 givesy = 16
since the negation operation on the 4 takes place
first

22

Complex Numbers

 All the operations above can be used with complex
quantities (1.e. values containing an imaginary part
entered using 1 or J and displayed using 1)

>> X = 2+i*4; (or 2+4i, or 2+j*4, or 2+4j)
>> y = 16;

>> 3 * X
ans =

6.0000 +12.0000t+
>> Xty
ans =

18.0000 + 4_.00001
>> X"
ans

2.0000 - 4.00001 23

\/nntAnv NA v/ NANC
V CULULUI Ul 1O

Aty At
=iIviall | 1AL

f\nr\ ~
waivuia

o
U

MATLAB can also perform operations on vectors and
matrices.

The * operator for matrices is defined as the outer product or
what 1s commonly called “matrix multiplication.”

= The number of columns of the first matrix must match the number of
rows 1n the second matrix.

= The size of the result will have as many rows as the first matrix and as
many columns as the second matrix.

= The exception to this 1s multiplication by a 1x1 matrix, which is
actually an array operation.

The * operator for matrices results in the matrix being matrix-
multiplied by itself a specified number of times.
= Note - in this case, the matrix must be square!

24

m

m\ o
Ullo

am) \l

lement- y

nnnt At
IIC 1L | 1AL

— (Al n

— waivuia

« At times, you will want to carry out calculations item by item
in a matrix or vector. The MATLAB manual calls these array
operations. They are also often referred to as element-by-

element operations.
« MATLAB defines .* and ./ (note the dots) as the array
multiplication and array division operators.

= For array operations, both matrices must be the same size or one of the
matrices must be 1x1

« Array exponentiation (raising each element to a corresponding
power 1n another matrix) 1s performed with .

= Again, for array operations, both matrices must be the same size or one
of the matrices must be 1x1

25

rn 4+ M D NnANC
1L I Ul 1o

i ~t
=111 IUL

D
D

* There are several built-in functions you can use to create and
manipulate data.

* The built-in help function can give you information about both
what exists and how those functions are used:

= help elmat will list the elementary matrix creation and
manipulation functions, including functions to get information about
matrices.

= help elfun will list the elementary math functions, including trig,
exponential, complex, rounding, and remainder functions.

* The built-in lookfor command will search help files for

occurrences of text and can be useful if you know a function’s
purpose but not i1ts name

26

Cranh
Graphic

« MATLAB has a powertful suite of built-in graphics
functions.

» Two of the primary functions are plot (for plotting
2-D data) and plot3 (for plotting 3-D data).

 In addition to the plotting commands, MATLAB
allows you to label and annotate your graphs using

the title, xlabel, ylabel, and legend
commands.

27

DiAnttin~n N I
I 1TULLI Iy LA
Tt = [0:2:20]";
g = 9.81; 68.1; cd = 0.25
v = sgrt(g*m/cd) * tanh(sqrt(g*cd/m)*t)
plot(t, v)
1 /I-hff_ﬂ__
40 ’/{/
30| ___r’:j.
20| ;
’I
10 ff'f

28

DilAnttinn \ nnnt
r|Ul.l.|| |U Hl || IUL

~
a

+
L

title("Plot of v versus t

xlabel("Values of t")
ylabel ("Values of v*©)
grid

Flot of v versus t

v O

m

-
LA

I

I I I I
0 2 4 B g

I
10

I
12

Walues of t

'CS

29

DIln
I 1V

7

N CXntinn
IU IJl.IU

* When plotting data, MATLAB can use several
different colors, point styles, and line styles. These
are specified at the end of the plot command using
plot specifiers. More details: >>help LineSpec

» The default case for a single data set 1s to create a
blue line with no points. If a line style 1s specified
with no point style, no point will be drawn at the
individual points; similarly, if a point style 1s
specified with no point style, no line will be drawn.

« Examples of plot specifiers:
— ‘ro:’ - red dotted line with circles at the points

— ‘gd’ - green diamonds at the points with no line -
— ‘m--’ - magenta dashed line with no point symbols

N+h

Other Plot

5)
)
-l
N

|g mim

= hold onand hold off

= hold on tells MATLAB to keep the current data plotted

and add the results of any further plot commands to the
graph. This continues until the hold off command,

which tells MATLAB to clear the graph and start over 1f
another plotting command is given. hold on should be

used after the first plot in a series is made.
= subplot(m, n, p)
» subplot splits the figure window into an mxn array of
small axes and makes the p™ one active. Note - the first
subplot 1s at the top left, then the numbering continues

across the row. This 1s different from how elements are

numbered within a matrix!
31

of\ml\ Iﬂ | " W Tl ﬂﬂ+ A\If\lﬁﬂlﬂl\ﬂ ‘f\lﬁ ﬂ+ IJI\ +ﬂl
S0ime noime MI dCtiCe exercises 10r stuaents:

Problem-1: 2.4 The following matrix is entered in MATLAB:
>> A=[3 2 1;0:0.5:1;1linspace(6, 8, 3)]

(a) Write out the resulting matrix.

(b) Use colon notation to write a single-line MATLAB com-
mand to multiply the second row by the third column
and assign the result to the variable C

Solution is given in the next slide

32

@

>> A=[3 2 1;0:0.5:1;linspace(6, 8, 3)]

A =
3.0000 2.0000 1.0000
o) 0.5000 1.0000

6.0000 7.0000 8.0000

(b)

>> C=A(2,:)*A(:,3)

o1 |l

C
8.

33

S0iMe No0Me practic

\V 4

Ce ex

| I | r

Aan~ AL ~F A~ A A
OCO IUTI stUuucltiIL.

Erc

Problem-2: 2.5 The following equation can be used to compute values
of y as a function of x:

y = be % sin(bx)(0.012x* — 0.15x° 4+ 0.075x% + 2.5x)

where a and b are parameters. Write the equation for imple-
mentation with MATLAB, where a =2, b = 5, and x 1s a
vector holding values from 0 to m/2 in increments of
Ax = /40, Employ the minimum number of periods (i.e.,
dot notation) so that your formulation yields a vector for y.
In addition, compute the vector z = y* where each element
holds the square of each element of y. Combine x, y, and Z
into a matrix w, where each column holds one of the vari-
ables, and display w using the short g format. In addition,
generate a labeled plot of y and z versus x. Include a legend
on the plot (use help to understand how to do this). For vy,
use a l.5-point, dashdotted red line with [4-point, red-
edged, white-faced pentagram-shaped markers. For z, use a
standard-sized (i.e., default) solid blue line with standard-
sized, blue-edged, green-faced square markers.

Solution is given in the next slide

2.5

format short ¢

a=2;b=5;

x=0:p1/40:pi1/2;

y=b*exp(-a*x) .*sin(b*x).*(0.012*x."M-0.15*x."3+0.075*X . "2+2_.5*%X) ;
z=y."N2;

w = [x" y" z"]
plot(X,y,"-.pr*,"LineWidth",1.5, "MarkerSize* ,14, . ..
"MarkerEdgeColor®, "r*, "MarkerFaceColor*®, “"w")

hold on

plot(x,z,"-sb", "MarkerFaceColor®,"g")

xlabel("x"); ylabel("y, z"); legend(°y","z")

hold off

35

0 0 0
0.07854 0.32172 0.10351
0.15708 1.0174 1.0351
0.23562 1.705 2.9071
0.31416 2.1027 4.4212

0.3927 2.0735 4.2996
0.47124 1.6252 2.0411
0.254978 0.87506 0.763573
0.62832 2.7275e-01le 7.4392e-032
0.70686 -0.81663 0.66689

0.7854 -1.427 2.0365
0.86394 -1.7446 3.0437
0.94248 -1.7512 3.0667

1.021 -1.4891 2.2173

1.0996 -1.0421 1.0859

1.1781 -0.51272 0.26288

1.2566 -2.9683e-016 8.811e-032

1.3332 0.41762 0.1744

1.4137 0.69202 0.4789

1.4923 0.80787 0.65265

1.5708 0.7786606 0.606031

36

Problem-3: 2.7 The standard normal probability density function is a
bell-shaped curve that can be represented as

1

V21

2
Ezﬂ

f(2) =

Use MATLAB to generate a plot of this function from
z = —5 to 5. Label the ordinate as frequency and the ab-
scissa as Z.

Solution is given in the next slide

38

2.7

>>
>>
>>
>>
>>

Z =

T = 1/sqgre(2*pi)*exp(-z."2/2);

linspace(-4,4);

plot(z,T)
xlabel("z")

ylabel (" frequency")

frequency

0.4

0.35

0.3

=

.

o
T

=
N
T

=

=

n
T

o
—
T

0.05

S -

39

of\ml\ Iﬂ | " W Tl AA 7\’ f\lﬁﬂ laYaYe) "f\lﬁ ﬂ+l IIJA +ﬂl
S0ime noime Miall I € eXEercCises 10r stuaents.

Problem-4: 2.13 Here are some wind tunnel data for force (F) versus
velocity (v):

v,m/s 10 20 30 40 50 60 70 80
F,N 25 /0 380 550 610 1220 830 1450

These data can be described by the following function:

F = 0.2741p"9842

Use MATLAB to create a plot displaying both the data (using
circular magenta symbols) and the function (using a black
dash-dotted line). Plot the function for v = 0 to 100 m/s and
label the plot’s axes.

Solution is given in the next slide
40

2.13

>>
>>
>>
>>
>>
>>

v = 10:10:80;
F = [25 70 380 550 610 1220 830 1450];
vF = 0:100;

FF = 0.2741*vF."1.9842;
plot(v,F,"om" ,vf,Ff,"-_ k")
xlabel ("v");ylabel ("F");

41

3000

2500 -

2000+

w 1500

1000 -

500

42

of\ ~ Iﬂ | " W Tl AA+ 7\ f\lﬁﬂlﬂl\ﬂ
S0ime noime MI dCtliCe exercises

| " "

, ¥
I

o
=
w
—
C
Q.
D
—+
w

Problem-5: 2.15 The Maclaurin series expansion for the cosine is

cosyr=l-—+——-——=+4+—=—---

Use MATLAB to create a plot of the sine (solid line) along
with a plot of the series expansion (black dashed line) up
to and including the term x®/8!. Use the built-in function
factorial in computing the series expansion. Make the
range of the abscissa from x = 0 to 37 /2.

Solution is given in the next slide
43

2.15

>> X Iinspace(0,3*pi1/2);
>> ¢ = cos(X);

>> cf = 1-x."2/2+x."M/Tfactorial (4)-
x."6/factorial (6)+x."8/factori1al(8);
>> plot(x,c,x,cf,"k--")

1.5

44

part-2: functions, scripts

MATLAB

45

N £
=111

'aYeg
1Vl CO

 While commands can be entered directly to the

command window, MATLAB also allows you

to put commands 1n text files cal

led M-files.

M-files are so named because the files are

stored with a . m extension.

 There are two main kinds of M-ftile

» Script files

= Function files

46

Qerrint Eile
Script File

« A script file is merely a set of MATLAB commands
that are saved on a file - when MATLAB runs a script
file, 1t 1s as 1f you typed the characters stored in the
file on the command window.

* Scripts can be executed either by typing their name
(without the .m) in the command window, by
selecting the Debug, Run (or Save and Run)
command in the editing window, or by hitting the F5
key while 1n the editing window. Note that the latter
two options will save any edits you have made, while
the former will run the file as it exists on the drive.

47

Cirinp
I A

tion Files

 Function files serve an entirely different
purpose from script files. Function files can
accept input arguments from and return
outputs to the command window, but variables
created and manipulated within the function do

not impact the command window.

48

Fl Ta

~tinn il
ICUIVUIT T

n C
CJ

* The general syntax for a function is:

function outvar = funcname(arglist)
% helpcomments

statements

outvar = value;

where
— vutvar . output variable name
— funcname: function’s name

— arg 1 1St: inputargument list; comma-delimited list of what the
function calls values passed to it

— helpcomments: texttoshow with help funcname

— statements: MATLAB commands for the function
49

CiihfiinArtinne
JUMI ILLIVI IO
A function file can contain a single function, but it

can also contain a primary function and one or more
subfunctions

» The primary function 1s whatever function is listed
first in the M-file - its function name should be the
same as the file name.

* Subfunctions are listed below the primary function.
Note that they are only accessible by the main
function and subfunctions within the same M-file and
not by the command window or any other functions
or scripts.

50

FaYaSBEs
||||JUL

* The easiest way to get a value from the user 1s the
input command:
o result = 1nput(prompt)
displays the prompt string on the screen, waits for input

from the keyboard, evaluates any expressions in the input,
and returns the result.

o str = 1nput(prompt, "s*®)
returns the entered text as a MATLAB string, without
evaluating expressions.

51

'AY
U

tput

* The easiest way to display the value of a
matrix 1s to type its name, but that will not
work 1n function or script files. Instead, use
the d1Sp command

disp(value)

will show the value on the screen.

 If value is a string, enclose it in single
quotes.

52

T Avrm
I Ul

~++
I1IAALL

N nl |
U U

N mi

ed Outpu

* For formatted output, or for output generated by
combining variable values with literal text, use the
fprintf command:

fprintf("format™, X, y,--.)

where Fformat 1s a string specifying how you want
the value of the variables X, y, and more to be
displayed - including literal text to be printed along
with the values.

 The values in the variables are formatted based on
format codes.

53

(~Antrnl (AN
WUILILTLUI UUUIC
» Within the Format string, the following format

define how a numerical value 1s displayed:

%d - integer format

%e - scientific format with lowercase e

%E - scientific format with uppercase E

%f - decidmal format

%g - the more compact of %e or %f

* The following control codes produce special results
within the Format string:

\n - start a new line
\t - tab
\\ - print the \ character

» To print a' put a pair of ' in the Format string

l s
I U

o O

odes

o4

n A
U

'O e e IAWaTa Pt
Cl |y Na ACC ||g
MATLAB has a built-in file format that may be used
to save and load the values 1in variables.

save Firlename varl var?2 ... varn

saves the listed variables into a file named
Ti1lename.mat. If no variable is listed, all

variables are saved.

.hf\A 'F: lf\hﬁmt\ \Iﬁlf"l \Iﬁlf'f) \ m

10a0 TEenamne varli VvVarz .. .vain

loads the listed variables from a file named
T1lename.mat. If no variable i1s listed, all

variables 1n the file are loaded.
Note - these are not text files!

95

AL Cilace
MO THITO

* To create user-readable files, append the flag
—asci 1 to the end of a save command. This will

save the data to a text file in the same way that d1sp
sends the data to a screen.

* Note that in this case, MATLAB does not append
anything to the file name so you may want to add an
extension such as .txt or .dat.

* To load a rectangular array from a text file, simply
use the load command and the file name. The data
will be stored in a matrix with the same name as the
file (but without any extension).

56

Structured Pro ogrami ||iﬂg
 Structured programming allows MATLAB to
make decisions or selections based on

conditions of the program.

* Decisions in MATLAB are based on the result
of logical and relational operations and are
implemented with 1¥, 1f..else, and
1T. .elself structures.

e Selections iIn MATLAB are based on

comparisons with a test expression and are
implemented with Switch structures.

Y

]

>0 &2 ==28& 1>7 | ~('b">"'d")
F & T & F | =6
F & F |

M <

Substitute constants

Evaluate mathematical
expressions

Evaluate relational
expressions

Evaluate compound
expressions

58

DalatiAranal MnAn o
I\CTIAlLIVUIl | | UIJ 19

 Summary of relational operators in MATLAB:

Example Operator Relationship

X == == Equal

unit ~= “m’ ~= Not equal

a<~o < Less than

s >t > Greater than

3.9 <= a/3 <= Less than or equal to

r >= 0 >= Greater than or equal to

59

Logical Operators
= ~X (Not): true 1f X 1s false (or zero); false
otherwise
* X & Y (And): true if both X and Yy are true (or
Nnon-zero)

* X | Yy (Or): true if either X or Yy are true (or
Nnon-zero)

60

lf\lf'\('\

Nvdnavr nf Nn
Urraer Ol UIJCI atioOnsS

Priority can be set using parentheses. After that,
Mathematical expressions are highest priority,
followed by relational operators, followed by logical
operators. All things being equal, expressions are
performed from left to right.

Not is the highest priority logical operator, followed
by And and finally Or

» Generally, do not combine two relational operators!
If X=5, 3<x<4 should be false (mathematically), but

it 1s calculated as an expression in MATLAB as:
3<5<4, which leads to true<4 at which point
true is converted to 1, and 1<4 1s true!

Use (3<x)&(Xx<4) to properly evaluate.

m

m\ o
Ullo

RYaYall<
L/JTUIO

* Decisions are made in MATLAB using 1 T structures,
which may also include several e se 1T branches
and possibly a catch-all e l se branch.

* Deciding which branch runs 1s based on the result of
conditions which are either true or false.

» [fan 1T tree hits a true condition, that branch (and that
branch only) runs, then the tree terminates.

» [fan 1T tree gets to an e l se statement without running
any prior branch, that branch will run.

* Note - if the condition is a matrix, it 1s considered
true 1f and only if all entries are true (or non-zero).

62

Calartinnce

SCICCUOIS

* Selections are made in MATLAB using switch
structures, which may also include a catch-all

otherwise choice.

* Deciding which branch runs 1s based on
comparing the value in some test expression
with values attached to different cases.

= [f the test expression matches the value attached to
a case, that case’s branch will run.

= [f no cases match and there i1s an otherwise
statement, that branch will run.

63

|Op

* Another programming structure involves
loops, where the same lines of code are run
several times. There are two types of loop:

= A for loop ends after a specified number of
repetltlons estabhshed by the number of columns
given to a X

= A while loop ends on the basis of a logical
condition.

64

fnAr | nnNc

1 U1 I_UUPD

* One common way to use a for..end structure
1S:

for Index = start:step:finish
statements
end

where the index variable takes on successive
values 1n the vector created using the :

operator.
65

\/

Nt
VCUL

AViITA
Ul lLQA

m

+1n
LIVUII

e Sometimes, 1t 1S more efficient to have

MATLAB perform calculations on an entire
array rather than processing an array element

by element. This can be done through

vectorization.

= 0:0.02:50
i 1 + 1;

y(1) = cos(t);
end

for ioop Vectorization
1 = 0; t = 0:0.02:50;
fOr T y = cos(t);

66

* A while loop 1s fundamentally different from a for loop
since while loops can run an indeterminate number of

times. The general syntax 1s

while condition
statements

end

where the condition is alogical expression. If the
condrtion is true, the statements will run and

when that is finished, the loop will again check on the
condition.

* Note - though the condition may become false as the
statements are running, the only time 1t matters 1s

after all the statements have run.
67

C A \ITI\
N y 1 C

rm-h

inatiAn
1111 1AL

Ta
1UI1]

* Sometimes 1t will be useful to break out of a for or
while loop early - this can be done using a break
statement, generally in conjunction with an 1f
structure.

« Example:
X = 24
while (1)
X =X -5
iIT X < 0, break, end
end

will produce x values of 24, 19, 14, 9, 4, and -1, then
stop.

68

MmiIiyrm

N " ~t
/\111111IAL

m

Ta'
1UI1]

Two ways to animate plots in MATLAB:
» Using looping with simple plotting functions
* This approach merely replots the graph over and over again.

* Important to use the ax1s command so that the plots scales
are fixed.

» Using special function: getframe and movie

» This allows you to capture a sequence of plots (getframe)
and then play them back (movie).

69

* The (X, y) coordinates of a projectile can be
generated as a function of time, t,with the
following parametric equations

X =V, cos(f, 1)
y =V, sin(g, t) — 0.5 gt?

where V,, = initial velocity (m/s)
@, = initial angle (radians)

g = gravitational constant (= 9.81 m/s?)

70

Script

« The following code illustrates both approaches:

clc,clf,clear
g=9.81; theta0=45*pi1/180; vO0=5;
t(1)=0;x=0;y=0;
plot(x,y, 0", "MarkerFaceColor®,"b", "MarkerSize~",8)
axis(JO 3 0 0.8]))
M(1)=getframe;
dt=1/128;
for jJ = 2:1000
t()=t(g-1)+dt;
x=vO*cos(theta0)*t();
y=vO*sin(theta0)*t(j)-0.5*g*t()"2;
plot(x,y, 0", "MarkerFaceColor","b", "MarkerSize~",8)
axis(JO 3 0 0.8])
M(J)=getframe;
1T y<=0, break, end
end
pause
movie(M,1)

71

7

nA 1TnA
U U

Nt
111 L

fa) +1ANn
Clli L

ntin
aLivl i

|g N

» Structures can be placed within other
structures. For example, the statements

portion of a For loop can be comprised of an
1T. . _elseif. . _else structure.
 For clarity of reading, the statements of a

structure are generally indented to show which
lines of controlled are under the control of
which structure.

73

m

'al ale
Ullo

m

N\ N | O | o
111IC

m- /7rm o _ I I:Illf'\
ANoO [y'll uo & 111 I

~t
1IUL

« Anonymous functions allow you to create a simple
function without creating an M-file.

fhandle = @(argl, arg2, ...) expression

Inline functions are essentially the same as

anonymous functions, but with a different syntax:
fhandle = Inline("expression®, "argl-”,
Targ2t,...)

Anonymous functions can access the values of
variables 1n the workspace upon creation, while

inlines cannot.

74

NnArftiAaNne

I_UI IbLIUI ! I_UI ILLIVIIO
Function functions: functions that operate on other functions passed as

arguments.

Input argument: anonymous, inline function, the name of a built-in
function, or the name of a M-file function.

Allows more dynamic programming.

Example:

vel=0(t) sqrt(9.81*68.1/0.25)*tanh

(sgrt(9.81*0.25/68.1)* t); \\\\\

To generate a plot fromt =0 to 12:

Velocity of a bungee jumper
with respect to time

[gm [gcCq
v(t) = | =—tanh(| =—)
V' cq NV m

fplot(vel,[O0 12])

75

Upward force
due to air 60 I T
resistance

Downward
force due
to gravity

A plot of velocity versus time generated with the fplot function.

76

 Another simple way of plotting the same job is to use array operations
with plot command.

« Example:
t=0:0.01:12;
v=sgrt(9.81*68.1/0.25)*tanh(sqgrt(9.81*0.25/68.1)
*t) ;
plot(t,v, k", "LineWidth",2)

3 !

black Line width equal to 2

77

CAwr~n A

o0Mme nome

pr

AA 7\’ f\lﬁﬂ laYaYe) ‘f\lﬁ ﬂ+l lf\lf\lﬂ+ﬂl
all I € eXEercCises 10r stuaents.

Problem-6: 3.1 Figure P3.1 shows a cylindrical tank with a conical

base. If the liquid level is quite low, in the conical part, the
volume is simply the conical volume of liquid. If the liquid
level 1s midrange in the cylindrical part, the total volume of
liquid includes the filled conical part and the partially filled
cylindrical part.

Use decisional structures to write an M-file to compute
the tank’s volume as a function of given values of R and d.
Design the function so that it returns the volume for all cases

where the depth is less than 3R. Return an error message
—— = ("Overtop”) if you overtop the tank—that is, d > 3R. Test it

with the following data:

2R

AV

0.9
]

S
RO L

Solution is given in the next slide

78

O

>> tankvolume(0.9,1)
>> tankvolume(1.5,1.25)
>> tankvolume(1.3,3.8)
>> tankvolume(1.3,4)

function Vol = tankvolume(R, d)
ifd<R
Vol=p1 *d*3/3;
elseifd <=3 * R
Vi=pi*R"3/3;
V2=pi *R"2*(d-R);

Vol =V1 +V2;
clse

Vol = 'overtop';
end

79

of\ml\ Iﬂ | " W Tl AA+ 'a A\ V42l = Iﬂl\ﬂ "f\lﬁ ﬂ+ IJA +ﬂl

S0ime noime M1 dCliCe exercises 101 Stuaents.
3.6 Two distances are required to specify the location of a

Problem-7: point relative to an origin in two-dimensional space

(Fig. P3.6):

o

o

* The horizontal and vertical distances (x, y) in Cartesian
coordinates.
» The radius and angle (r, #) in polar coordinates.

It is relatively straightforward to compute Cartesian coordi-
nates (x, v) on the basis of polar coordinates (r,). The
reverse process is not so simple. The radius can be computed
by the following formula:

.*":\/-F}’;l

If the coordinates lie within the first and fourth coordi-
nates (i.e., x > 0), then a simple formula can be used to
compute 6:

80
0 = tan") (z)
X

Problem-7:

The difficulty arises for the other cases. The following table
summarizes the possibilities:

X y 0

<0 =0 tan~'(y/x) +
<0 <0 tan~'y/x) —
<0 =0 T

=0 =0 0
Write a well-structured M-file using 1f. . .elseif struc-

tures to calculate r and 6 as a function of x and y. Express the
final results for & in degrees. Test your program by evaluat-

ing some values

Solution is given in the next slide 81

P. 3.6

]

IV

function [r, th] = polar(x, y)
r=sqrt(x A2 +y N 2);
ifx>0
th = atan(y/x);
elseif x <0
ify>0
th = atan(y / x) + pi;
elseif y <0
th = atan(y / x) - pi;
else

th = pi;
end
else
ify>0
th=pi/2;
elseif y <0
th=-p1/2;
else
th = 0;
end
end

th =th * 180 / pi;

Example: [r,th]=polar(2,0)

82

" | I | L
I

S0ime noime MI ract I C)\Ulblbﬂb Ul stuuclils.

Problem-8: 3.10 A simply supported beam is loaded as shown in

Fig. P3.10. Using singularity functions, the displacement
along the beam can be expressed by the equation:

-5 15
y(x) = —=[(x - 0)* — (x —5)* 1+ —{x - 8)

2 57 3
+75(x = 7)% + —=x — 238.25x

20 kips/ft
150 kip-ft :
I ' | | — 15 kips
o)
“
| s =

83

of\ ~ Iﬂ | " W Tl AA+ 7\ f\lﬁﬂlﬂl\ﬂ
S0ime noime MI dCtliCe exercises

| " "

, ¥
I

o
=
w
—
C
Q.
D
—+
w

Problem-8: By definition, the singularity function can be expressed as
follows:

y {(x—a)” whenx:}a}
(x —a)” =

whenx <a

Develop an M-file that creates a plot of displacement
(dashed line) versus distance along the beam, x. Note that
x = 0 at the left end of the beam.

Solution is given in the next slide
84

function beamProb(x)
xx = linspace(0,x);

n=lenoth(xx):

P.3.10

for i=1'n
uy(1) = -5/6.*(sing(xx(1),0,4)-sing(xx(1),5,4));
uy(1) = uy(i) + 15/6.*sing(xx(1),8,3) + 75*sing(xx(1),7,2);
uy(i) =uy(i) + 57/6.*xx(1)"3 - 238.25.*%xx(1);

end

clf,plot(xx,uy,'--')

0
100}
function s = sing(xxx,a,n) -200}
if xxx>a
s = (XxXx - a).”\n; 300}
else
s=0;
’ -400}
end

500}

>> beamProb(10) --Eﬂﬂu 1 4 5 ﬂ % 10

S0me home practic

AI\ \V 4

e ex

| I | r

oOCo 1UI stulcii

Erc

Problem-9: 3.21 Based on Example 3.6, develop a script to produce an
animation of a bouncing ball where v, = 5 m/s and 6, = 50°.
To do this, you must be able to predict exactly when the ball
hits the ground. At this point, the direction changes (the new
angle will equal the negative of the angle at impact), and the
velocity will decrease in magnitude to reflect energy loss
due to the collision of the ball with the ground. The change
in velocity can be quantified by the coefficient of restitution
Cp which is equal to the ratio of the velocity after to the ve-

+ﬂ.
L.

locity before impact. For the present case, use a value of

Cp =028,

Solution is given in the next slide

86

cle,clf,clear
maxit=1000;
£=9.81; theta0=50*pi/180; v0=5; CR=0.83;
J=Lt()=0;x=0;y=0;
XX=X;Yy=Y;
plot(x,y,'0",'MarkerFaceColor','b','MarkerSize',8)
xmax=8; axis([0 xmax 0 0.8])
M(1)=getframe;
dt=1/128;
J=1; xxx=0; iter=0;
while(1)
tt=0;
timpact=2*v0*sin(theta0)/g;
ximpact=v0*cos(theta0)*timpact;
while(1)
=L
h=dt;
if tt+th>timpact,h=timpact-tt;end
t()=tQ-1)+h;
tt=tt-+h;
x=xxx+v0*cos(theta0)*tt;
y=v0*sin(theta0)*tt-0.5*g*tt"2;
xx=[xx x];yy=[yy yl;

plot(xx,yy,'":'.x,y,'0",'MarkerFaceColor','b','MarkerSize',8)

P.3.21

axis([0 xmax 0 0.8])
M(j)=getframe;
iter=iter+1;
if tt>=timpact, break, end
end
vO=CR*v0;
XXX=X;
if x>=xmax|iter>=maxit,break,end
end
pause
clf
axis([0 xmax 0 0.8])
movie(M,1,36)

87

0.5

0.4

0.3

0.2

0.1}

88

| " "

S0ime noime MI racCticC

Af\ AV 4 | I | r~

A At 1AAREFA-
IUI SLUUCT L.

€ EXErcCiSes

Problem-10; 3.22 Develop a function to produce an animation of a parti-
cle moving in a circle in Cartesian coordinates based on ra-
dial coordinates. Assume a constant radius, r, and allow the
angle, 6, to increase from zero to 2w in equal increments.
The function’s first lines should be

function phasor(r, nt, nm)
% function to show the orbit of a phasor
% r = radius

% nt = number of increments for theta
% nm = number of movies

Test your function with

phasor (1, 256, 10)

Solution is given in the next slide
89

3.22

function phasor(r, nt, nm)

0/ £ bz b~ S]
70 1UIICLI0OI11 LO SIIOW LUIC OI

% r =radius

% nt = number of increments for theta
% nm = number of movies

4~ -
1L O1 ¢

clc;clf
dtheta=2*pi/nt;
th=0;
fac=1.2;
xx=r1;yy=0; M(1)=getframe;
for 1=1:nt+1 th=th+dtheta;
x=r*cos(th);y=r*sin(th); end
xx=[xx x];yy=[yy yI; pause
plot([0 x],[0 y].xX,yy,':',... clf
axis([-fac*r fac*r -fac*r fac*r]);
X,y,'0','MarkerFaceColor','b','MarkerSize',8) axis square
axis([-fac*r fac*r -fac*r fac*r]); movie(M,1,36)

axis square

phasor(1,256,10%¢

DI\IMI\ Iﬂ | " W Tl AA 7\’ f\lﬁﬂ laYaYe)
S0ime noime Miall I e EXErcCISEeS

fAar ctiidante:-

1UI StUucliL.

Problem-11: 3.23 Develop a script to produce a movie for the butterfly
plot from Prob. 2.22. Use a particle located at the x-y coordi-
nates to visualize how the plot evolves in time.

2.22 The butterfly curve is given by the following paramet-
ric equations:

f

x = sin(t) (Ec““ 2 cos 4t — sin’ 12)
T

y = cos(t) (e"““ 2 cos 4t — sin’ E)

Generate values of x and y for values of f from 0 to 100 with
At = 1/16. Construct plots of (a) x and y versus f and (b) v
versus x. Use subplot to stack these plots vertically and
make the plot in (b) square. Include titles and axis labels on
both plots and a legend for (a). For (a), employ a dotted line
for vy in order to distinguish it from x.

Solution is given in the next slide 91

P3.23--Butterfly

clc;clf

t=[0:1/16:128];

x(D)=sin(t(1)).*(exp(cos(t(1)))-2*cos(4*t(1))-sin(t(1)/12).75);

y(1)=cos(t(1)).*(exp(cos(t(1)))-2*cos(4*t(1))-sin(t(1)/12).75);

XX=X;Yy=Y;

plot(x,y,xx,yy,":' . x,y,'0','MarkerFaceColor','b','MarkerSize',8)

axis([-4 4 -4 4]); axis square

M(1)=getframe;

for 1 = 2:length(t)
x=sin(t(1)).*(exp(cos(t(i)))-2*cos(4*t(1))-sin(t(1)/12)."5);
y=cos(t(1)).*(exp(cos(t(1)))-2*cos(4*t(1))-sin(t(i)/12)."5);
xx=[xx x];yy=[yy yl;
plot(x,y,xx,yy,":',x,y,'0','MarkerFaceColor','b','MarkerSize',8)
axis([-4 4 -4 4]); axis square
M(1)=getframe;

end

92

93

P2.22 Butterfly curves

clf

t=[0:1/16:64];
x=s1in(t).*(exp(cos(t))-2*cos(4*t)-sin(t/12).”5);
y=cos(t).*(exp(cos(t))-2*cos(4*t)-sin(t/12).75);
subplot(2,1,1)

plot(t,x,t,y,":");title('(a)");xlabel('t");ylabel('x, y');legend('x','y")
subplot(2,1,2)

plot(x,y);axis square;title('(b)');xlabel('x");ylabel('y")

94

95

Truncation Errors and the Taylor

Series
Chapter 4

* Non-elementary functions such as trigonometric,
exponential, and others are expressed in an
approximate fashion using Taylor series when their
values, derivatives, and integrals are computed.

* Any smooth function can be approximated as a
polynomial. Taylor series provides a means to predict
the value of a function at one point in terms of the
function value and its derivatives at another point.

96

—

FIGURE 4.1
The approximation of fix) = —0.1x* — 0.15x> — 0.5x* — 0.25x + 1.2 at x = 1 by zero-order,

firstorder, and second-order Taylor series expansions.

flx) 4

1.0

0.5

flx)

Zero order

£l ,) = flx)

Flx; 4 1) =) + fx)h

fl; 1) = fx) + ')k + fg’?“} h?

f{xi+1}

L

97

Example:
To get the cos(x) for small x:

x> x* x°
cosX=l-——+———+---
21 4 6
If x=0.5
c0s(0.5) =1-0.125+0.0026041-0.0000127+ ...
=0.877582

From the supporting theory, for this series, the error
1s no greater than the first omitted term.

X8

o for x=0.5 =0.0000001

98

* Any smooth function can be approximated as a
polynomial.
f(x.,,) = f(x,) zero order approximation, only
true if x.,, and x; are very close
to each other.

f(x.,,) = f(x)+ (X)) (x;,;-Xx;) firstorder
approximation, in form of a
straight line

99

n" order approximation

1:(X|+1)N f(X)+ f (X)(X|+1_X)+_(X _Xi)z_l_"'

i+1

f (n)

(X %) R,

(x.,-x.)=h step size (define first)

R f (md (g) h(n+1)
T (n+D)!

* Reminder term, R, accounts for all terms
from (n+1) to infinity.

100

¢ 1s not known exactly, lies somewhere
between x.,,>¢ >X.
Need to determine f *"!(x), to do this you need
£'(x).

If we knew {(x), there wouldn’t be any need to
perform the Taylor series expansion.

However, R=0(h""!), (n+1)™" order, the order
of truncation error is h™t!.
O(h), halving the step size will halve the error.

O(h?), halving the step size will quarter the
error.

101

-l

T 11u1i1vaitivull C1190U1 15 J4gouicdso
the Taylor series.

 If h is sufficiently small, only a few terms may be
required to obtain an approximation close enough to
the actual value for practical purposes.

Example:
Calculate series, correct to the 3 digits.

102

L]
n4-1r\

- rT‘WTMf\ 41 /et 22 270 % ad 1.{‘1 flf\f\“ﬁf\nﬁf\
T 11ul1lvadtivll C110U1 15 Jouioasv

the Taylor series.

-l

 If h is sufficiently small, only a few terms may be
required to obtain an approximation close enough to
the actual value for practical purposes.

Example:
Calculate series, correct to the 3 digits.

1 1 1
l=—=ck==—4:
2 3 4
In (1+2x) T | — . (1)

n

n=0

n 103

vy
11

Dy
Pl

Error Propagat

 fl(x) refers to the floating point (or computer)
representation of the real number x. Because a
computer can hold a finite number of
significant figures for a given number, there
may be an error (round-off error) associated
with the floating point representation. The
error 1s determined by the precision of the

computer (€).

104

o Q111’\1’\n]"\O AY.Y72) AN A O ')
PU ll(«l Yvyv 11dave A 1uUllv

dependent on a single independent variable x. fl(x) 1s
an approximation of x and we would like to estimate
the effect of discrepancy between x and fl(x) on the
value of the function:

Af (x)=|f(X)= F(x;)| both f(x)and x, are unknown
Employ Taylor series to compute f(x) near f(x), dropping

the second and higher order terms

FO)—F(Xq)= F(X)(X=Xy)

105

True error

|

I=

f{x} A

|F(x)|Ax
Estimated error
L

Ax

106

Also, let g, the fractional relative error, be the error
a53001ated with fl(X). Then
hine epsilon
fl(x)— X -+ achie €ps ox,

H =&, Where ¢ g@/ upper boundary
X

Rearranging, we get

(X)X = &|X

U

fl(X) = X(&, +1)

107

» Case 1: Addition of x, and x, with associated errors
g,; and g, yields the following result:
fl(x,)=x,(1+¢,)
f1(x,)=x,(1+€,)

fl(x) H1(Xp) =g X Hep X, 7% 1%,

& _)+ 1) =X + X)) _ &X + EnX
100% X, + X, X, + X,

*A large error could result from addition if x, and x, are
almost equal magnitude but opposite sign, therefore one

should avoid subtracting nearly equal numbers.
108

e (Generalization:

Suppose the numbers fl(x,), fl(x,), fl(x;), ..., fl(x.) are
rr ANl P ANV 579 > \“"n/
approximations to X, X,, X, ... ,X, and that in each

case the maximum possible error 1s E.
fl(x,)-E <x; <fl(x,)+tE E. <E
It follows by addition that

> fl(x)-nE<) x, <> fl(x)+nE

So that

-nE<) x—> fl(x)<nE

Therefore, the maximum possible error 1n the
sum of fl(x;) is| nE |.

109

» Case 2: Multiplication of x, and x, with associated
errors €, and e, results 1n:

(%) T1O%) =X (1+ &) X,(1+ &)
(%) T1(X,) = XX, (e, + &y + &, +1)

& _ f|(Xl)f|(X2)—XIX2
100% X, X,

=&y TEH T E

110

* Since g, &, are both small, the term ¢,,€,, should be
small relative to ,+¢,,. Thus the magnitude of the
error associated with one multiplication or division
step should be ¢, +¢,,.

&, <€ (upper bound)

* Although error of one calculation may not be
significant, 1if 100 calculations were done, the error 1s
then approximately 100¢. The magnitude of error
associated with a calculation is directly proportional
to the number of multiplication steps.

« Referto Table 4.3

111

e Overflow: Anv number lareer than the lareest number that can

ye L‘.AJ A WA Dv A VA R W LwLo A WP ALRASS

be expressed on a omputer will result in an overflow.

« Underflow (Hole) : Any positive number smaller than the
smallest number that can be represented on a computer will
result an underflow.

« Stable Algorithm: In extended calculations, it 1s likely that
many round-offs will be made. Each of these plays the role of
an input error for the remainder of the computation, impacting
the eventual output. Algorithms for which the cumulative

effect of all such errors are limited, so that a useful result 1s
gpnprn‘rpd are called “‘stable” 9]0(\1’11‘th When accumulatio

WAL A ALV OB AL W WAL LA W O MV U AW CALL RN J.

1s devastating and the solution 1s overwhelmed by the error,
such algorithms are called unstable.

112

Figure 4.8

Point of
diminishing
returns

log error

log step size

113

