
Introd ction to MATLABIntroduction to MATLAB
part-1: basic operationsp p

1

The MATLAB EnvironmentThe MATLAB Environment

• MATLAB uses three primary windows-
 Command window - used to enterCommand window used to enter

commands and data
 Graphics window(s) used to display plots Graphics window(s) - used to display plots

and graphics
Edi i d d d di M Edit window - used to create and edit M-
files (programs)

2

Calculator ModeCalculator Mode

• The MATLAB command widow can be used
as a calculator where you can type in y yp
commands line by line.

• Whenever a calculation is performed• Whenever a calculation is performed,
MATLAB will assign the result to the built-in

i blvariable ans
• Example:Example:

>> 55 - 16
ans =ans =

39 3

MATLAB VariablesMATLAB Variables
Whil i h i bl b f l f• While using the ans variable may be useful for
performing quick calculations, its transient nature
makes it less useful for programmingmakes it less useful for programming.

• MATLAB allows you to assign values to variable
names This results in the storage of values tonames. This results in the storage of values to
memory locations corresponding to the variable
namename.

• MATLAB can store individual values as well as
arrays; it can store numerical data and text (which isarrays; it can store numerical data and text (which is
actually stored numerically as well).

• MATLAB does not require that you pre-initialize aMATLAB does not require that you pre initialize a
variable; if it does not exist, MATLAB will create it
for you.

4

ScalarsScalars

• To assign a single value to a variable, simply
type the variable name, the = sign, and the yp , g ,
value:
>> a = 4>> a 4
a =

44

• Note that variable names must start with a
letter, though they can contain letters,
numbers, and the underscore () symbolnumbers, and the underscore (_) symbol

5

Scalars (cont)Scalars (cont)

• You can tell MATLAB not to report the result
of a calculation by appending the semi-colon y pp g
(;) to the end of a line. The calculation is still
performedperformed.

• You can ask MATLAB to report the value
stored in a variable by typing its name:
>> a
a =

44
6

Scalars (cont)Scalars (cont)
Y h l i bl i (j)• You can use the complex variable i (or j) to
represent the unit imaginary number.
Y ll MATLAB h l b k• You can tell MATLAB to report the values back
using several different formats using the format
command Note that the values are still stored thecommand. Note that the values are still stored the
same way, they are just displayed on the screen
differently Some examples are:differently. Some examples are:
– short - scaled fixed-point format with 5 digits
– long - scaled fixed-point format with 15 digits for double o g sca ed ed po t o at w t 5 d g ts o doub e

and 7 digits for single
– short eng - engineering format with at least 5 digits and

a power that is a multiple of 3 (useful for SI prefixes)
7

Format ExamplesFormat Examples
f h i• >> format short; pi

ans =
3 14163.1416

>> format long; pi
ans =ans

3.14159265358979
>> format short eng; pig p
ans =

3.1416e+000
>> pi*10000
ans =

31 4159 +00331.4159e+003
• Note - the format remains the same unless another format

command is issued
8

Arrays Vectors and MatricesArrays, Vectors, and Matrices

i ll h dl• MATLAB can automatically handle
rectangular arrays of data - one-dimensional
arrays are called vectors and two-dimensional
arrays are called matrices.

• Arrays are set off using square brackets [and]
in MATLAB

• Entries within a row are separated by spaces or
commascommas

• Rows are separated by semicolons

9

Array ExamplesArray Examples
• >> a = [1 2 3 4 5]
a =

1 2 3 4 5
>> b = [2;4;6;8;10]>> b = [2;4;6;8;10]
b =

22
4
6
8
10

• Note 1 - MATLAB does not display the brackets
• Note 2 - if you are using a monospaced font, such as Courier, the

di l d l h ld li ldisplayed values should line up properly
10

MatricesMatrices

• A 2-D array, or matrix, of data is entered row
by row, with spaces (or commas) separating y , p () p g
entries within the row and semicolons
separating the rows:separating the rows:
>> A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 97 8 9

11

Useful Array CommandsUseful Array Commands

• The transpose operator (apostrophe) can be used to
flip an array over its own diagonal. For example, if b
is a row vector, b’ is a column vector containing the
complex conjugate of b.

• The command window will allow you to separate
rows by hitting the Enter key - script files and
functions will allow you to put rows on new lines as
well.

• The who command will report back used variable
names; whos will also give you the size, memory, ; g y , y,
and data types for the arrays. 12

Accessing Array EntriesAccessing Array Entries
I di id l i i hi b b h d d• Individual entries within a array can be both read and
set using either the index of the location in the array
or the row and columnor the row and column.

• The index value starts with 1 for the entry in the top
left corner of an array and increases down a columnleft corner of an array and increases down a column -
the following shows the indices for a 4 row, 3 column
matrix:matrix:

1 5 91 5 9
2 6 10
3 7 11
4 8 12

13

Accessing Array Entries (cont)Accessing Array Entries (cont)
• Assuming some matrix C:g
C =

2 4 9
3 3 163 3 16
3 0 8
10 13 17

• C(2) would report 3
• C(4) would report 10
• C(13) would report an error!
• Entries can also be access using the row and column:

(2 1) ld t 3• C(2,1) would report 3
• C(3,2) would report 0
• C(5 1) would report an error!• C(5,1) would report an error!

14

Array Creation Built InArray Creation - Built In

h l b il i f i• There are several built-in functions to create
arrays:
– zeros(r,c) will create an r row by c column

matrix of zeros
– zeros(n) will create an n by n matrix of zeros
– ones(r,c) will create an r row by c column y

matrix of ones
– ones(n) will create an n by n matrix one onesy

• help elmat has, among other things, a list
of the elementary matricesof the elementary matrices

15

Array Creation Colon OperatorArray Creation - Colon Operator
Th l i f l i l I• The colon operator : is useful in several contexts. It
can be used to create a linearly spaced array of points
using the notationusing the notation
start:diffval:limit
where start is the first value in the arraywhere start is the first value in the array,
diffval is the difference between successive
values in the array, and limit is the boundary for y, y
the last value (though not necessarily the last value).
>>1:0.6:3
ans =

1.0000 1.6000 2.2000
2 80002.8000

16

Colon Operator NotesColon Operator - Notes
• If diffval is omitted, the default value is 1:
>>3:6>>3:6
ans =

3 4 5 6
• To create a decreasing series, diffval must be negative:
>> 5:-1.2:2
ansans =

5.0000 3.8000 2.6000
• If start+diffval>limit for an increasing series orIf start diffval limit for an increasing series or
start+diffval<limit for a decreasing series, an empty
matrix is returned:
>>5 2>>5:2
ans =

Empty matrix: 1-by-0
• To create a column, transpose the output of the colon operator, not

the limit value; that is, (3:6)’ not 3:6’
17

Array Creation linspaceArray Creation - linspace

• To create a row vector with a specific number of linearly
spaced points between two numbers, use the linspace
commandcommand.

• linspace(x1, x2, n) will create a linearly spaced array
of n points between x1 and x2of n points between x1 and x2
>>linspace(0, 1, 6)
ans =

0 0.2000 0.4000 0.6000 0.8000
1.0000

• If n is omitted, 100 points are created.
• To generate a column, transpose the output of the linspace

dcommand.
18

Array Creation logspaceArray Creation - logspace

• To create a row vector with a specific number of
logarithmically spaced points between two numbers, use the
logspace commandlogspace command.

• logspace(x1, x2, n) will create a logarithmically
spaced array of n points between 10x1 and 10x2spaced array of n points between 10 and 10
>>logspace(-1, 2, 4)
ans =

0.1000 1.0000 10.0000 100.0000
• If n is omitted, 50 points are created.
• To generate a column, transpose the output of the logspace

command.

19

Character Strings & Ellipsis
• Alphanumeric constants are enclosed by apostrophes (')
>> f = ‘My name is ';

>> ‘B d'>> s = ‘Bond'

• Concatenation: pasting together of strings
>> x = [f s]
x =
My name is Bond

• Ellipsis (): Used to continue long lines• Ellipsis (...): Used to continue long lines
>> a = [1 2 3 4 5 ...
6 7 8]
a =

1 2 3 4 5 6 7 8

• You cannot use an ellipsis within single quotes to continue a string. But you can piece p g q g y p
together shorter strings with ellipsis
>> quote = ['Any fool can make a rule,' ...
' and any fool will mind it'] and any fool will mind it]
quote =

Any fool can make a rule, and any fool will mind it
20

Mathematical OperationsMathematical Operations
• Mathematical operations in MATLAB can be

f d b h l dperformed on both scalars and arrays.
• The common operators, in order of priority, are:The common operators, in order of priority, are:

^ Exponentiation 4^2 = 16Exponentiation 4 2 = 16
- Negation

(unary operation)
-8 = -8

*

/

Multiplication and
Division

2*pi = 6.2832
pi/4 = 0.7854

/
\ Left Division 6\2 = 0.3333
+ Addition and 3+5 = 8

-
Subtraction 3-5 = -2

21

Order of OperationsOrder of Operations

• The order of operations is set first by
parentheses, then by the default order given p , y g
above:
 y = 4 ^ 2 gives y = 16 y = -4 2 gives y = -16

since the exponentiation happens first due to its
hi h d f lt i it b thigher default priority, but
 y = (-4) ^ 2 gives y = 16

since the negation operation on the 4 takes place
first

22

Complex Numbersp
• All the operations above can be used with complex

quantities (i.e. values containing an imaginary partquantities (i.e. values containing an imaginary part
entered using i or j and displayed using i)

>> x = 2+i*4; (or 2+4i, or 2+j*4, or 2+4j)

>> y = 16;

>> 3 * x
ans =

6 0000 +12 0000i6.0000 +12.0000i
>> x+y
ans =

18 0000 4 0000i18.0000 + 4.0000i

>> x'
ans =ans =

2.0000 - 4.0000i 23

Vector Matrix CalculationsVector-Matrix Calculations
MATLAB l f i d• MATLAB can also perform operations on vectors and
matrices.

• The * operator for matrices is defined as the outer product orThe operator for matrices is defined as the outer product or
what is commonly called “matrix multiplication.”
 The number of columns of the first matrix must match the number of

i h d irows in the second matrix.
 The size of the result will have as many rows as the first matrix and as

many columns as the second matrix.
 The exception to this is multiplication by a 1×1 matrix, which is

actually an array operation.
• The ^ operator for matrices results in the matrix being matrix-The operator for matrices results in the matrix being matrix

multiplied by itself a specified number of times.
 Note - in this case, the matrix must be square!

24

Element by Element CalculationsElement-by-Element Calculations
• At times, you will want to carry out calculations item by item

in a matrix or vector. The MATLAB manual calls these array
operations They are also often referred to as element byoperations. They are also often referred to as element-by-
element operations.

• MATLAB defines * and / (note the dots) as the arrayMATLAB defines . and ./ (note the dots) as the array
multiplication and array division operators.
 For array operations, both matrices must be the same size or one of the

matrices must be 1×1

• Array exponentiation (raising each element to a corresponding
i th t i) i f d ith ^power in another matrix) is performed with .^

 Again, for array operations, both matrices must be the same size or one
of the matrices must be 1×1o t e at ces ust be

25

Built In FunctionsBuilt-In Functions
• There are several built-in functions you can use to create and

manipulate data.
Th b ilt i h l f ti i i f ti b t b th• The built-in help function can give you information about both
what exists and how those functions are used:
 help elmat will list the elementary matrix creation andhelp elmat will list the elementary matrix creation and

manipulation functions, including functions to get information about
matrices.

ill li h l h f i i l di i help elfun will list the elementary math functions, including trig,
exponential, complex, rounding, and remainder functions.

• The built-in lookfor command will search help files forThe built in lookfor command will search help files for
occurrences of text and can be useful if you know a function’s
purpose but not its name

26

GraphicsGraphics

• MATLAB has a powerful suite of built-in graphics
functions.

• Two of the primary functions are plot (for plotting
2-D data) and plot3 (for plotting 3-D data).

• In addition to the plotting commands, MATLAB
allows you to label and annotate your graphs usingallows you to label and annotate your graphs using
the title, xlabel, ylabel, and legend
commands.commands.

27

Plotting ExamplePlotting Example
[0 2 20]t = [0:2:20]’;

g = 9.81; m = 68.1; cd = 0.25;
v = sqrt(g*m/cd) * tanh(sqrt(g*cd/m)*t);
plot(t, v)

28

Plotting Annotation ExamplePlotting Annotation Example
title('Plot of v versus t')
xlabel('Values of t')xlabel('Values of t')
ylabel('Values of v')
gridg

29

Plotting OptionsPlotting Options
Wh l i d MATLAB l• When plotting data, MATLAB can use several
different colors, point styles, and line styles. These
are specified at the end of the plot command usingare specified at the end of the plot command using
plot specifiers. More details: >>help LineSpec

• The default case for a single data set is to create a• The default case for a single data set is to create a
blue line with no points. If a line style is specified
with no point style no point will be drawn at thewith no point style, no point will be drawn at the
individual points; similarly, if a point style is
specified with no point style, no line will be drawn.p p y ,

• Examples of plot specifiers:
– ‘ro:’ - red dotted line with circles at the pointsp
– ‘gd’ - green diamonds at the points with no line
– ‘m--’ - magenta dashed line with no point symbols

30

Other Plotting CommandsOther Plotting Commands
d hold on and hold off

 hold on tells MATLAB to keep the current data plotted
and add the results of any further plot commands to theand add the results of any further plot commands to the
graph. This continues until the hold off command,
which tells MATLAB to clear the graph and start over if
another plotting command is given. hold on should be
used after the first plot in a series is made.

 b l t() subplot(m, n, p)
 subplot splits the figure window into an mxn array of

small axes and makes the pth one active Note - the firstsmall axes and makes the p one active. Note the first
subplot is at the top left, then the numbering continues
across the row. This is different from how elements are

b d i hi i !numbered within a matrix!
31

Some home practice exercises for students:Some home practice exercises for students:

Problem-1:

Solution is given in the next slide

32

2.4

(a)

>> A=[3 2 1;0:0.5:1;linspace(6, 8, 3)]

A =
3.0000 2.0000 1.0000
0 0.5000 1.0000
6.0000 7.0000 8.0000

(b)

>> C=A(2,:)*A(:,3)

C =
8.5

33

Some home practice exercises for students:Some home practice exercises for students:
Problem-2:

Solution is given in the next slide
34

2.5

format short g
a=2;b=5;
x=0:pi/40:pi/2;
b* (*) * i (b*) *(0 012* ^4 0 15* ^3+0 075* ^2+2 5*)y=b*exp(-a*x).*sin(b*x).*(0.012*x.^4-0.15*x.^3+0.075*x.^2+2.5*x);

z=y.^2;
w = [x' y' z']
plot(x y ' pr' 'LineWidth' 1 5 'MarkerSize' 14plot(x,y,'-.pr','LineWidth',1.5,'MarkerSize',14,...
'MarkerEdgeColor','r','MarkerFaceColor','w')
hold on
plot(x z '-sb' 'MarkerFaceColor' 'g')plot(x,z, sb , MarkerFaceColor , g)
xlabel('x'); ylabel('y, z'); legend('y','z')
hold off

35

36

37

Some home practice exercises for students:Some home practice exercises for students:

Problem-3:

Solution is given in the next slide

38

>> z = linspace(-4,4);

2.7

p
>> f = 1/sqrt(2*pi)*exp(-z.^2/2);
>> plot(z,f)
>> xlabel('z')
>> ylabel('frequency')

39

Some home practice exercises for students:Some home practice exercises for students:

Problem-4:

S l i i i i h lidSolution is given in the next slide
40

2.13

>> v = 10:10:80;
>> F = [25 70 380 550 610 1220 830 1450];
>> vf = 0:100;
>> Ff = 0.2741*vf.^1.9842;
>> plot(v,F,'om',vf,Ff,'-.k')

l b l(' ') l b l(' ')>> xlabel('v');ylabel('F');

41

42

Some home practice exercises for students:Some home practice exercises for students:

Problem-5:

S l i i i i h lidSolution is given in the next slide
43

>> x = linspace(0,3*pi/2);

2.15

 x linspace(0,3 pi/2);
>> c = cos(x);
>> cf = 1-x.^2/2+x.^4/factorial(4)-
x.^6/factorial(6)+x.^8/factorial(8);
>> plot(x,c,x,cf,'k--')

44

Introd ction to MATLABIntroduction to MATLAB
part-2: functions, scriptsp , p

45

M filesM-files

• While commands can be entered directly to the
command window, MATLAB also allows you , y
to put commands in text files called M-files.
M-files are so named because the files areM files are so named because the files are
stored with a .m extension.

• There are two main kinds of M-file
 Script filesp
 Function files

46

Script FilesScript Files
A f l i l f MATLAB d• A script file is merely a set of MATLAB commands
that are saved on a file - when MATLAB runs a script
file it is as if you typed the characters stored in thefile, it is as if you typed the characters stored in the
file on the command window.

• Scripts can be executed either by typing their name• Scripts can be executed either by typing their name
(without the .m) in the command window, by
selecting the Debug, Run (or Save and Run)selecting the Debug, Run (or Save and Run)
command in the editing window, or by hitting the F5
key while in the editing window. Note that the latter y g
two options will save any edits you have made, while
the former will run the file as it exists on the drive.

47

Function FilesFunction Files

• Function files serve an entirely different
purpose from script files. Function files can p p p
accept input arguments from and return
outputs to the command window but variablesoutputs to the command window, but variables
created and manipulated within the function do

t i t th d i dnot impact the command window.

48

Function File SyntaxFunction File Syntax
Th l t f f ti i• The general syntax for a function is:

function outvar = funcname(arglist)g
% helpcomments
statements
outvar = value;

where
t t t i bl– outvar: output variable name

– funcname: function’s name

– arglist: input argument list; comma-delimited list of what thearglist: input argument list; comma-delimited list of what the
function calls values passed to it

– helpcomments: text to show with help funcname
– statements: MATLAB commands for the function

49

SubfunctionsSubfunctions
A f i fil i i l f i b i• A function file can contain a single function, but it
can also contain a primary function and one or more
subfunctionssubfunctions

• The primary function is whatever function is listed
first in the M file its function name should be thefirst in the M-file - its function name should be the
same as the file name.

• Subfunctions are listed below the primary function• Subfunctions are listed below the primary function.
Note that they are only accessible by the main
function and subfunctions within the same M-file andfunction and subfunctions within the same M file and
not by the command window or any other functions
or scripts.p

50

InputInput

• The easiest way to get a value from the user is the
input command:
◦ result = input(prompt)

displays the prompt string on the screen, waits for input
from the keyboard, evaluates any expressions in the input,
and returns the result.

i◦ str = input(prompt,'s')
returns the entered text as a MATLAB string, without
e al ating e pressionsevaluating expressions.

51

OutputOutput

• The easiest way to display the value of a
matrix is to type its name, but that will not yp ,
work in function or script files. Instead, use
the disp commandthe disp command

disp(value)disp(value)

will show the value on the screenwill show the value on the screen.
• If value is a string, enclose it in single

quotes.
52

Formatted OutputFormatted Output
F f tt d t t f t t t d b• For formatted output, or for output generated by
combining variable values with literal text, use the
fprintf command:fprintf command:

fprintf('format', x, y,...)

where format is a string specifying how you want
th l f th i bl d t bthe value of the variables x, y, and more to be
displayed - including literal text to be printed along
with the values.with the values.

• The values in the variables are formatted based on
format codes.

53

Format and Control CodesFormat and Control Codes
• Within the format string, the following format codes

d fi h i l l i di l ddefine how a numerical value is displayed:
%d - integer format
%e scientific format with lowercase e%e - scientific format with lowercase e
%E - scientific format with uppercase E
%f - decidmal format%f decidmal format
%g - the more compact of %e or %f

• The following control codes produce special resultsThe following control codes produce special results
within the format string:
\n - start a new line
\t - tab
\\ - print the \ character

• To print a ' put a pair of ' in the format string
54

Creating and Accessing FilesCreating and Accessing Files
MATLAB h b il i fil f h b d• MATLAB has a built-in file format that may be used
to save and load the values in variables.

fil 1 2 save filename var1 var2 ... varn
saves the listed variables into a file named
filename mat If no variable is listed allfilename.mat. If no variable is listed, all
variables are saved.

 load filename var1 var2 varn load filename var1 var2 ...varn
loads the listed variables from a file named
filename.mat. If no variable is listed, allfilename.mat. If no variable is listed, all
variables in the file are loaded.

• Note - these are not text files!Note these are not text files!
55

ASCII FilesASCII Files
T d bl fil d h fl• To create user-readable files, append the flag
-ascii to the end of a save command. This will
save the data to a text file in the same way that dispsave the data to a text file in the same way that disp
sends the data to a screen.

• Note that in this case MATLAB does not append• Note that in this case, MATLAB does not append
anything to the file name so you may want to add an
extension such as txt or datextension such as .txt or .dat.

• To load a rectangular array from a text file, simply
use the load command and the file name The datause the load command and the file name. The data
will be stored in a matrix with the same name as the
file (but without any extension).(y)

56

Structured ProgrammingStructured Programming

d i ll• Structured programming allows MATLAB to
make decisions or selections based on
conditions of the program.

• Decisions in MATLAB are based on the result
of logical and relational operations and are
implemented with if, if…else, and p , ,
if…elseif structures.

• Selections in MATLAB are based on• Selections in MATLAB are based on
comparisons with a test expression and are
implemented with switch structuresimplemented with switch structures.

57

58

Relational OperatorsRelational Operators

• Summary of relational operators in MATLAB:

Example Operator Relationship
x == 0 == Equalx 0 Equal
unit ~= ‘m’ ~= Not equal
a < 0 < Less thana < 0 < Less than
s > t > Greater than
3 9 < a/3 <= Less than or equal to3.9 <= a/3 <= Less than or equal to
r >= 0 >= Greater than or equal to

59

Logical OperatorsLogical Operators

 ~x (Not): true if x is false (or zero); false
otherwise
 x & y (And): true if both x and y are true (or

non zero)non-zero)
 x | y (Or): true if either x or y are true (or

non-zero)

60

Order of OperationsOrder of Operations
• Priority can be set using parentheses. After that,

Mathematical expressions are highest priority,
followed by relational operators, followed by logical
operators All things being eq al e pressions areoperators. All things being equal, expressions are
performed from left to right.

• Not is the highest priority logical operator followed• Not is the highest priority logical operator, followed
by And and finally Or

• Generally do not combine two relational operators!• Generally, do not combine two relational operators!
If x=5, 3<x<4 should be false (mathematically), but
it is calculated as an expression in MATLAB as:it is calculated as an expression in MATLAB as:
3<5<4, which leads to true<4 at which point
true is converted to 1, and 1<4 is true!,

• Use (3<x)&(x<4) to properly evaluate. 61

DecisionsDecisions
D i i d i MATLAB i i• Decisions are made in MATLAB using if structures,
which may also include several elseif branches
and possibly a catch all else branchand possibly a catch-all else branch.

• Deciding which branch runs is based on the result of
conditions which are either true or falseconditions which are either true or false.
 If an if tree hits a true condition, that branch (and that

branch only) runs, then the tree terminates.branch only) runs, then the tree terminates.
 If an if tree gets to an else statement without running

any prior branch, that branch will run.
• Note - if the condition is a matrix, it is considered

true if and only if all entries are true (or non-zero).
62

SelectionsSelections

l i d i i i h• Selections are made in MATLAB using switch
structures, which may also include a catch-all
otherwise choice.

• Deciding which branch runs is based on g
comparing the value in some test expression
with values attached to different cases.w v ues c ed o d e e c ses.
 If the test expression matches the value attached to

a case, that case’s branch will run.a case, that case s branch will run.
 If no cases match and there is an otherwise

statement, that branch will run.state e t, t at b a c w u .
63

LoopsLoops

• Another programming structure involves
loops, where the same lines of code are run p ,
several times. There are two types of loop:
 A for loop ends after a specified number of A for loop ends after a specified number of

repetitions established by the number of columns
given to an index variablegiven to an index variable.
 A while loop ends on the basis of a logical

diticondition.

64

for Loopsfor Loops

• One common way to use a for…end structure
is:

for index = start:step:finish
statements

end

where the index variable takes on successive
values in the vector created using the :
operatoroperator.

65

VectorizationVectorization

• Sometimes, it is more efficient to have
MATLAB perform calculations on an entire p
array rather than processing an array element
by element This can be done throughby element. This can be done through
vectorization.
f l V t i tifor loop Vectorization
i = 0;
f t 0 0 02 50

t = 0:0.02:50;
for t = 0:0.02:50

i = i + 1;
y(i) = cos(t);

y = cos(t);

y(i) cos(t);
end 66

while Loopswhile Loops
• A while loop is fundamentally different from a for loopA while loop is fundamentally different from a for loop

since while loops can run an indeterminate number of
times. The general syntax is
while condition

statements
endend
where the condition is a logical expression. If the
condition is true, the statements will run and ,
when that is finished, the loop will again check on the
condition.

• Note - though the condition may become false as the
statements are running, the only time it matters is

ll h hafter all the statements have run.
67

Early TerminationEarly Termination
S i i ill b f l b k f f• Sometimes it will be useful to break out of a for or
while loop early - this can be done using a break
statement generally in conjunction with an ifstatement, generally in conjunction with an if
structure.

• Example:• Example:
x = 24
while (1)while (1)
x = x - 5
if x < 0, break, end

end
will produce x values of 24, 19, 14, 9, 4, and -1, then
stop.

68

AnimationAnimation

• Two ways to animate plots in MATLAB:
 Using looping with simple plotting functionsg p g p p g
 This approach merely replots the graph over and over again.
 Important to use the axis command so that the plots scalesImportant to use the axis command so that the plots scales

are fixed.
 Using special function: getframe and movieUsing special function: getframe and movie
 This allows you to capture a sequence of plots (getframe)

and then play them back (movie).p y ()

69

ExampleExample
• The (x, y) coordinates of a projectile can beThe (x, y) coordinates of a projectile can be

generated as a function of time, t,with the
following parametric equationsfollowing parametric equations

x = v0 cos(0 t)
y = v0 sin(0 t)  0.5 gt2

wherev0 = initial velocity (m/s)

 i i i l l (di)0 = initial angle (radians)
g = gravitational constant (= 9.81 m/s2)g g ()

70

Script
• The following code illustrates both approaches:

clc,clf,clear
/g=9.81; theta0=45*pi/180; v0=5;

t(1)=0;x=0;y=0;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(1)=getframe;
dt=1/128;
for j = 2:1000
t(j)=t(j-1)+dt;
x=v0*cos(theta0)*t(j);
y=v0*sin(theta0)*t(j)-0.5*g*t(j)^2;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([0 3 0 0.8])
M(j)=getframe;
if y<=0, break, end

end
pause
movie(M,1) 71

Result

72

Nesting and IndentationNesting and Indentation

• Structures can be placed within other
structures. For example, the statementsp
portion of a for loop can be comprised of an
if elseif else structureif...elseif...else structure.

• For clarity of reading, the statements of a
structure are generally indented to show which
lines of controlled are under the control of
which structure.

73

Anonymous & Inline FunctionsAnonymous & Inline Functions

• Anonymous functions allow you to create a simple
function without creating an M-file.
fh dl @(1 2) ifhandle = @(arg1, arg2, ...) expression

• Inline functions are essentially the same as
f i b i h diffanonymous functions, but with a different syntax:

fhandle = inline('expression', 'arg1',
'arg2',...)arg2 ,...)

• Anonymous functions can access the values of
variables in the workspace upon creation whilevariables in the workspace upon creation, while
inlines cannot.

74

Function FunctionsFunction Functions
• Function functions: functions that operate on other functions passed as

argumentsarguments.
• input argument: anonymous, inline function, the name of a built-in

function, or the name of a M-file function.function, or the name of a M file function.
• Allows more dynamic programming.
• Example:Example:
vel=@(t) sqrt(9.81*68.1/0.25)*tanh
(sqrt(9.81*0.25/68.1)* t);q

To generate a plot from t = 0 to 12:
Velocity of a bungee jumper

with respect to timeg p f

fplot(vel,[0 12])fplot(vel,[0 12])
75

76

• Another simple way of plotting the same job is to use array operations
with plot commandwith plot command.

• Example:
t=0:0 01:12;t=0:0.01:12;
v=sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)
*t);t);
plot(t,v,'k','LineWidth',2)

black Line width equal to 2

77

Some home practice exercises for students:Some home practice exercises for students:

Problem-6:

Solution is given in the next slide
78

3.1 M-file
function Vol = tankvolume(R, d)
if d < R

Vol = pi * d ^ 3 / 3;
elseif d <= 3 * R

V1 i * R ^ 3 / 3V1 = pi * R ^ 3 / 3;
V2 = pi * R ^ 2 * (d - R);
Vol = V1 + V2;

lelse
Vol = 'overtop';

end

>> tankvolume(0.9,1)
>> tankvolume(1.5,1.25)
>> tankvolume(1.3,3.8)
>> tankvolume(1.3,4)

79

Some home practice exercises for students:Some home practice exercises for students:

Problem-7:

80

Some home practice exercises for students:Some home practice exercises for students:

Problem-7:

some values

Solution is given in the next slide 81

function [r, th] = polar(x, y)
r = sqrt(x .^ 2 + y .^ 2);
if x > 0

th = atan(y/x);
elseif x < 0

if y > 0
P. 3.6

th = atan(y / x) + pi;
elseif y < 0

th = atan(y / x) - pi;
else

th = pi;
end

lelse
if y > 0

th = pi / 2;
elseif y < 0elseif y < 0

th = -pi / 2;
else

th = 0;th = 0;
end

end
th = th * 180 / pi;th th 180 / pi;

Example: [r,th]=polar(2,0) 82

Some home practice exercises for students:Some home practice exercises for students:

Problem-8:

83

Some home practice exercises for students:Some home practice exercises for students:

Problem-8:

S l i i i i h lidSolution is given in the next slide
84

function beamProb(x)
xx = linspace(0,x);
n=length(xx);

P. 3.10
n length(xx);
for i=1:n

uy(i) = -5/6.*(sing(xx(i),0,4)-sing(xx(i),5,4));
uy(i) = uy(i) + 15/6.*sing(xx(i),8,3) + 75*sing(xx(i),7,2);uy(i) uy(i) 15/6. sing(xx(i),8,3) 75 sing(xx(i),7,2);
uy(i) = uy(i) + 57/6.*xx(i)^3 - 238.25.*xx(i);

end
clf,plot(xx,uy,'--'),p (, y,)

function s = sing(xxx,a,n)
if xxx > aif xxx > a

s = (xxx - a).^n;
else

s=0;s 0;
end

>> beamProb(10) 85

Some home practice exercises for students:Some home practice exercises for students:

Problem-9:

S l i i i i h lidSolution is given in the next slide
86

clc,clf,clear
maxit=1000;
g=9.81; theta0=50*pi/180; v0=5; CR=0.83;

P. 3.21
g p
j=1;t(j)=0;x=0;y=0;
xx=x;yy=y;
plot(x,y,'o','MarkerFaceColor','b','MarkerSize',8)
xmax=8; axis([0 xmax 0 0.8])
M(1)=getframe;
dt=1/128;

axis([0 xmax 0 0.8])
M(j)=getframe;
iter=iter+1;
if tt ti t b k dj=1; xxx=0; iter=0;

while(1)
tt=0;
ti t 2* 0* i (th t 0)/

if tt>=timpact, break, end
end
v0=CR*v0;
xxx x;timpact=2*v0*sin(theta0)/g;

ximpact=v0*cos(theta0)*timpact;
while(1)

j=j+1;

xxx=x;
if x>=xmax|iter>=maxit,break,end

end
pausej=j+1;

h=dt;
if tt+h>timpact,h=timpact-tt;end
t(j)=t(j 1)+h;

pause
clf
axis([0 xmax 0 0.8])
movie(M 1 36)t(j)=t(j-1)+h;

tt=tt+h;
x=xxx+v0*cos(theta0)*tt;
y=v0*sin(theta0)*tt-0 5*g*tt^2;

movie(M,1,36)

y v0 sin(theta0) tt 0.5 g tt 2;
xx=[xx x];yy=[yy y];
plot(xx,yy,':',x,y,'o','MarkerFaceColor','b','MarkerSize',8) 87

88

Some home practice exercises for students:Some home practice exercises for students:

Problem-10:

S l i i i i h lidSolution is given in the next slide
89

3.22
function phasor(r, nt, nm)
% function to show the orbit of a phasor% function to show the orbit of a phasor
% r = radius
% nt = number of increments for theta
% nm = number of movies% nm = number of movies
clc;clf
dtheta=2*pi/nt;
th=0;

M(i)=getframe;
th=th+dtheta;

th 0;
fac=1.2;
xx=r;yy=0;
for i=1:nt+1 ;

end
pause
clf

x=r*cos(th);y=r*sin(th);
xx=[xx x];yy=[yy y];
plot([0 x],[0 y],xx,yy,':',...

axis([-fac*r fac*r -fac*r fac*r]);
axis square
movie(M,1,36)

p (y yy

x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([-fac*r fac*r -fac*r fac*r]);
axis square

phasor(1,256,10)90

Some home practice exercises for students:Some home practice exercises for students:

Problem-11:

Solution is given in the next slide 91

clc;clf

P3.23--Butterfly

clc;clf
t=[0:1/16:128];
x(1)=sin(t(1)).*(exp(cos(t(1)))-2*cos(4*t(1))-sin(t(1)/12).^5);
y(1)=cos(t(1)) *(exp(cos(t(1))) 2*cos(4*t(1)) sin(t(1)/12) ^5);y(1)=cos(t(1)). (exp(cos(t(1)))-2 cos(4 t(1))-sin(t(1)/12). 5);
xx=x;yy=y;
plot(x,y,xx,yy,':',x,y,'o','MarkerFaceColor','b','MarkerSize',8)
axis([-4 4 -4 4]); axis squareaxis([4 4 4 4]); axis square
M(1)=getframe;
for i = 2:length(t)

x=sin(t(i)).*(exp(cos(t(i)))-2*cos(4*t(i))-sin(t(i)/12).^5);(()) (p((())) (()) (()));
y=cos(t(i)).*(exp(cos(t(i)))-2*cos(4*t(i))-sin(t(i)/12).^5);
xx=[xx x];yy=[yy y];
plot(x,y,xx,yy,':',x,y,'o','MarkerFaceColor','b','MarkerSize',8)p (y yy y)
axis([-4 4 -4 4]); axis square
M(i)=getframe;

end

92

4

3

2

0

1

-1

0

-2

1

-3

-4 -2 0 2 4
-4 93

P2 22 Butterfly curves

clf
t=[0:1/16:64];

P2.22 Butterfly curves

[];
x=sin(t).*(exp(cos(t))-2*cos(4*t)-sin(t/12).^5);
y=cos(t).*(exp(cos(t))-2*cos(4*t)-sin(t/12).^5);
subplot(2,1,1)
plot(t,x,t,y,':');title('(a)');xlabel('t');ylabel('x, y');legend('x','y')
subplot(2,1,2)
plot(x,y);axis square;title('(b)');xlabel('x');ylabel('y')

94

4
(a)

x

0

2
x,

 y
y

-2

x

0 10 20 30 40 50 60 70
-4

t

4
(b)

0

2

y

-2

-5 0 5
-4

x
95

Truncation Errors and the Taylor
Series
Chapter 4Chapter 4

• Non-elementary functions such as trigonometric,
exponential and others are expressed in anexponential, and others are expressed in an
approximate fashion using Taylor series when their
values derivatives and integrals are computedvalues, derivatives, and integrals are computed.

• Any smooth function can be approximated as a
polynomial Taylor series provides a means to predictpolynomial. Taylor series provides a means to predict
the value of a function at one point in terms of the
function value and its derivatives at another pointfunction value and its derivatives at another point.

96

Figure 4 1Figure 4.1

97

E lExample:
To get the cos(x) for small x:


!6!4!2

1cos
642 xxxx

If x=0.5
(0 5) 1 0 125+0 0026041 0 0000127+

!6!4!2

cos(0.5) =1-0.125+0.0026041-0.0000127+ …
=0.877582

From the supporting theory, for this series, the error
is no greater than the first omitted term.

0000001.05.0
!8

8

 xforx
!8

98

A h f i b i d• Any smooth function can be approximated as a
polynomial.
f(xi+1) ≈ f(xi) zero order approximation, only

true if xi+1 and xi are very close i+1 i y
to each other.

f(xi+1) ≈ f(xi) + f′(xi) (xi+1-xi) first order
i ti i f fapproximation, in form of a

straight line

99

f 
nth order approximation

iiiiiii xxfxxxfxfxf 


 )(
!2

))(()()(2
111 

n
n

ii

n

Rxx
n

f
 )(

! 1

)(

n!
(xi+1-xi)= h step size (define first)

)1(
)1()(



 n
n

hfR 
)!1(n h

n
R

R i d t R t f ll t• Reminder term, Rn, accounts for all terms
from (n+1) to infinity.

100

i k l li h•  is not known exactly, lies somewhere
between xi+1> >xi .

• Need to determine f n+1(x), to do this you need
f'(x).()

• If we knew f(x), there wouldn’t be any need to
perform the Taylor series expansionperform the Taylor series expansion.

• However, R=O(hn+1), (n+1)th order, the order
f t ti i hn+1of truncation error is hn+1.

• O(h), halving the step size will halve the error.
• O(h2), halving the step size will quarter the

error.
101

• Truncation error is decreased by addition of terms to• Truncation error is decreased by addition of terms to
the Taylor series.
If h i ffi i tl ll l f t b• If h is sufficiently small, only a few terms may be
required to obtain an approximation close enough to
th t l l f ti lthe actual value for practical purposes.

Example:
Calculate series, correct to the 3 digits.Calculate series, correct to the 3 digits.


1111 
432

1

102

• Truncation error is decreased by addition of terms to• Truncation error is decreased by addition of terms to
the Taylor series.
If h i ffi i tl ll l f t b• If h is sufficiently small, only a few terms may be
required to obtain an approximation close enough to
th t l l f ti lthe actual value for practical purposes.

Example:
Calculate series, correct to the 3 digits.Calculate series, correct to the 3 digits.


1111 
432

1

103

Error PropagationError Propagation

• fl(x) refers to the floating point (or computer)
representation of the real number x. Because a p
computer can hold a finite number of
significant figures for a given number theresignificant figures for a given number, there
may be an error (round-off error) associated

ith th fl ti i t t ti Thwith the floating point representation. The
error is determined by the precision of the
computer ().

104

• Suppose that we have a function f(x) that is• Suppose that we have a function f(x) that is
dependent on a single independent variable x. fl(x) is
an approximation of x and we would like to estimatean approximation of x and we would like to estimate
the effect of discrepancy between x and fl(x) on the
value of the function:value of the function:

unknownareandf(x)both)()()(flflfl xxfxfxf 

dhi hddh
dropping),f(xnear f(x) compute toseriesTaylor Employ

unknownareand f(x)both)()()(

fl

flflfl xxfxfxf

))(()()(
sorder termhigher and secondthe

flflfl xxxfxfxf 

105

Figure 4 7Figure 4.7

106

Also, let t, the fractional relative error, be the errorAlso, let t, the fractional relative error, be the error
associated with fl(x). Then

Machine epsilon

 


tt where
x

xxfl)(Machine epsilon,
upper boundary

Rearranging, we get

x

)( t xxxfl 
)1()(

)(
 t

t

xxfl
xxxfl




)()(tf

107

• Case 1: Addition of x1 and x2 with associated errors
d i ld th f ll i ltt1 and t2 yields the following result:

fl(x1)=x1(1+t1)
fl(x2)=x2(1+t2)

fl(x1)+fl(x2)=t1 x1+t2 x2+x1+x2

22112121)()()(xxxxxflxfl ttt  

21

2211

21

2121)()()(
%100 xxxx

ff ttt







A l ld l f ddi i if d•A large error could result from addition if x1 and x2 are
almost equal magnitude but opposite sign, therefore one

h ld id b i l l bshould avoid subtracting nearly equal numbers.
108

• Generalization:
Suppose the numbers fl(x1) fl(x2) fl(x3) fl(x) areSuppose the numbers fl(x1), fl(x2), fl(x3), …, fl(xn) are
approximations to x1, x2, x3, … ,xn and that in each
case the maximum possible error is Ecase the maximum possible error is E.

fl(xi)-E ≤ xi ≤ fl(xi)+E Eti ≤E
It f ll b dditi th tIt follows by addition that

  nExflxnExfl iii)()(  nExflxnExfl iii)()(

So thatSo that

   nExflxnE ii)(

nE
Therefore, the maximum possible error in the
sum of fl(xi) is .sum of fl(xi) is .

109

• Case 2: Multiplication of x1 and x2 with associated
errors et1 and et2 results in:

221121)1()1()()(tt xxxflxfl  

21212121

)()(
)1()()(tttt

flfl
xxxflxfl  

2121
21

2121)()(
%100 tttt

t

xx
xxxflxfl 





21%100 xx

110

• Since t1, t2 are both small, the term t1t2 should beSince t1, t2 are both small, the term t1t2 should be
small relative to t1+t2. Thus the magnitude of the
error associated with one multiplication or division
step should be t1+t2.

t1 ≤ (upper bound)

• Although error of one calculation may not be
significant, if 100 calculations were done, the error is g , ,
then approximately 100. The magnitude of error
associated with a calculation is directly proportional
to the number of multiplication steps.

• Refer to Table 4.3
111

• Overflow: Any number larger than the largest number that canOverflow: Any number larger than the largest number that can
be expressed on a computer will result in an overflow.

• Underflow (Hole) : Any positive number smaller than the
smallest number that can be represented on a computer will
result an underflow.

• Stable Algorithm: In extended calculations it is likely that• Stable Algorithm: In extended calculations, it is likely that
many round-offs will be made. Each of these plays the role of
an input error for the remainder of the computation, impacting
the eventual output. Algorithms for which the cumulative
effect of all such errors are limited, so that a useful result is
generated are called “stable” algorithms When accumulationgenerated, are called stable algorithms. When accumulation
is devastating and the solution is overwhelmed by the error,
such algorithms are called unstable.

112

Figure 4.8

113

