Chapter 5

f(x) 1s given

f(x)

te nf LI nn 4—
L Ul al

ks b
Chapter 5

D[\l’\ :) 2 W Q|
AINUVU 111D

*Roots of a quadric equation:

—bhxb* =4
ax’ +bx+c=0 = x= b-H/b ac

2a

But how to find the roots of:

ax’ +bx* +cx’ +dx’ +tex+ =0 =>x=2
sinx+x=0 =x=?

onlinear Equation
Solvers

[Bracketing J [Graphical } [Open Methods}

Bisection Newton Raphson
False Position
(Regula-Falsi) Secant

*Bracketing Methods (Need two 1nitial estimates that will bracket the
root. Always converge.)
*Bisection Method
*False-Position Method
*Open Methods (Need one or two initial estimates. May diverge.)
*Simple One-Point Iteration
*Newton-Raphson Method (Needs the derivative of the function.)
Secant method >

Graphical Methods

Two 1nitial guesses for the root

are required. These guesses
must “bracket” or be on either
side of the root.

If one root of a real and
continuous function, f(x)=0, 1s
bounded by values x=x,, x =x,

than
uivii

f(x 1)*f(x,) <O. (The function changes

sign on opposite sides of the root at least
one tlme)

9.81{6&11(

C

"| 21’ = n
“}3 5’ :}qJ

_ o (c/68.)10)

flc) =

— 40

fe) 4

40

20

—14

=

MATLAB code:
¢=0:0.01:20;
f=(9.81*68.1./c).*(1-exp(-
10*¢./68.1))-40;

plot(c,f)
grid

The gruphmml approach for determining the roots of an equation.

f(x)

I ——

f(x)

Case 1: If f(x;)*f(x,)<0, then there are odd number of roots

f(x)

f(x)

f(x)

-

fix)

>
=

=
=
=

Case 2: If f(x,)*f(x,)>0, then there are:
i) even number of roots, ii) no roots

J
!
l
|
|

IL xu
I T
1 '|| I X
|

Violations: i) multiple roots ii) discontinuities

. _— FIGURE 5.2 _ £ I
i - llustration of @ number of

l : general ways that a root may

oceur in an interval prescribed

by a lower bound x;and an
* upper bound x,. Parts [a) and
(c) indicate that if both f{x] and
flx,) have the same sign, either
there will be no roots or there
will be an even number of roots
within the interval. Parts (b) and ey
(d) indicate that if the function
has different signs af the end
points, there will be an odd
number of roofs in the interval.

Fix)

(@)

1
1
1
i
(@ |
:
1
|
]
1

\/

-

Silxy

(b)
Six) FIGURE 5.3

lllustration of some exceptions to the general cases depicted in
Fig. 5.2. (a) Multiple root that occurs when the function is tangen-
tial to the x axis. For this case, although the end points are of op-
posite signs, there are an even number of axis infersections for
the interval. {b) Disconfinuous function where end points of oppo-
site sign bracket an even number of roots. Special strategies are
required for defermining the roofs for these cases.

7

FIGURE 5.4 Several roots example
The progressive enlargement of fx) = sin 10x + cos 3x by the computer. Such interactive graphics
permits the analyst fo determine that two distinct roots exist between x = 4.2 and x = 4.3.

oL 1 N | 1|
0 2.5 5 4
X X
(a) (b)
15
Y D¥_,
sl
4.2 4.25 4.3
X

"Ml Drcantzn N N Al
1 11T leCLllU 1 1VICul lUU

For the arbitrary equation of one variable, f(x)=0

1. Pick x; and x, such that they bound the root of
interest, check 1f f(x,).f(x,) <O0.

2. Estimate the root by evaluating f[(x+x,)/2].

3. Find the pair

o If f(x). fl(x+x,)/2]<0, root lies 1in the lower interval,
then x,=(x;+x,)/2 and go to step 2.

o I 1(x). 1l(x+x,)/2]>0, root lies in the upper interval,
then x= [(x+x,)/2, go to step 2. o

/1~ /N

o If f{x). fl(x+x,)/2]=0, then root 1s (x;+x,)/
and terminate.

4 X, +X,
4. Compare £ with & T
: S a ga =
X, +x,
new old 5
X, X,
Remember: &, = — 1009 <
X, or
new old _ *u T M new __ Xl + Xu x — X, X,
X, — X, = T X, = 5 . u 9
a | |
see Fig 5.8 and 5.9 for details X, X,
& 2

5. If g,<g stop.
Otherwise repeat the process.

where &, is the prespecified stopping criterion 10

FIGURE 5.6

A graphical depiction of the
bisection method. This plot
conforms to the first three
iterations from Example 5.3.

l

Lvaiuation o1 the pisection vietnoa

Advantages Disadvantages

o Easy Slow

* Always find root * Know x,=a and x,=b

» Number of iterations that bound root
required to attain an * Multiple roots
absolute error can be » No account is taken of
computed a priori. flx)) and fix,), if fx)) is

closer to zero, it 1s likely
that root 1s closer to x; .

12

L,=b-a

* Length of the first interval

L2

LIZ

e After 1 iteration

L /4

L2:

o After 2 1terations

13

Ex: How many iterations needed in Bisection

method for the absolute magnitude of the error
to be less than 10 for a L =2.

L _
k:10g2(szlogz(b a) for €, <€
E E

S

S

Command Window

>» log2(2/0.0001)

ans =

14.2877 |:> k:15

14

¥ Asae) 9208 1 P)
T1UIIICWUI KA.

Pseudocode for the Bisection algorithm 1s
given 1n Figure 5.11 (pp.134) 1n our textbook.

Write the MATLAB code for this pseudocode.

15

ML
1 11T

Lo

r

e Ifareal rootis
bounded by x;and x, of
A(x)=0, then we can
approximate the
solution by doing a
linear interpolation
between the points [x,,
fx)] and [x,, f(x,)] to
find the x, value such
that /(x,)=0, /(x) 1s the
linear approximation

of f(x).

FIGURE 5.12

A graphical depiction of the
method of false position. Similar
friangles used fo derive the for-
mula for the method are

shaded.

Ps lnn
ISC=

fx) |

D
1 g

-

UdSIL

i @

0

) 2

1

LWV |

1V

16

False Position Method Procedu

[4 P 89 J

1. Find a pair of values of x, x; and x,, such that
f=f(x) <0 and f,=f(x,) >0.

2. Estimate the value of the root from the
following formula (Refer to Box 5.1 pp136)

— xlfu _xufl

Jo= 1

X

r

and evaluate f(x).

re

17

3. Use the new point to replace one of the
original points, keeping the two points on
opposite sides of the x axis.

If f(x)<O then x=x, ==> f=f(x,)
If f(x.)>0 then x, =x, == > f1,=f(x,)

[t f(x)=0 then you have found the root and
need go no further!

18

See 1f the new x,; and x, are close enough for
convergence to be declared. If they are not go back
to step 2.

Why this method?

— Faster
— Always converges for a single root.

=» See Sec.5.3.1, Pitfalls of the False-Position Method

Note: Always check by substituting estimated root in the
original equation to determine whether f(x,) = 0.

19

Finalizing bracketing methods

A plot of the functlon is always helpful.
to determine the number of all roots, if there are any.
to determine whether the roots are multiple or not.
to determine whether to method converges to the desired root.
to determine the initial guesses.

Incremental search technique can be used to determine the initial
guesses.

Start from one end of the region of interest.
Evaluate the function at specified intervals.
If the sign of the function changes, than there 1s a root in that interval.

Select your intervals small, otherwise you may miss some of the
roots.But if they are too small, incremental search might become too

costly.

Incremental search, just by itself, can be used as a root finding
technique with very small intervals (not efficient).

Open Methods
Chapter 6

Open methods are based on
formulas that require only a
single starting value of x or
two starting values that do
not necessarily bracket the
root. As such, they
sometimes diverge or move
away from the true root but,
when the open methods
converge, they usually do
so much more quickly than
the bracketing methods.

Figure 6.1. Graphical depiction of the fundamental difference between the

fx)

L

f(_r) A

f (/\-) A

(D)

21

(a) bracketing and (b) and (c) open methods for root location.

D A WA
) ull

-lo
-lo
i @

Qivannlan matnt Tforat
SIINPIC p oint 1tcrat
*Rearrange the function so that x 1s on the left
side of the equation:

J(x)=0 = gx)=x
=g(x,_,) x given, k=1, 2, ...

*This transformation can be accomplished
either by algebraic manipulation or by simply
adding x to both sides of the original
equation.

22

Example:

. f(X)=x"-x-2 = x=x"-2 = g(x)=x"-2

or g(x)=+x+2

or g(x):1+2
X

2. f(x)=sinx = x=x+sinx = g(x)=x+sinx

23

Crzrnla Livx TR ANE B $tnweatin
11 llljl C Irix lJ ll CI Atl1V1l

Start with an 1nitial guess x,
Calculate a new estimate for the root using x,= g(x,)

[terate like this. General formula 1s x., = g(x.)

Xit1 — X

100 %

E[i' — .
Xi+1

Converges 1f |g'(x)|<1 1n the region of interest.

24

I Simple Fixed-Point lteration Example: l

Problem Statement. Use simple fixed-point iteration to locate the root of f(x) = ¢ * — x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

—_ —X;
Xi+1 = €

Starting with an initial guess of x, = 0, this iterative equation can be applied to compute

i X £a (%) e (%)
O O 100.0
] 1.000000 100.0 /6.3
2 0.36/8/9 1/71.8 35.1
3 0.692201 469 221
4 0.5004/3 38.3 11.8
5 0.606244 1/7.4 6.8¢
6 0.545396 11.2 3.83
7/ 0.5/96172 5.90 2.20
8 0.560115 3.48 1.24
Q 0.5/71143 1.93 0.705
10 0.5648/9 1.11 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714322%.

A © 94) o

HOIMCWOrkK.

Use MATLAB to
implement the fixed
point iteration
method whose
pseudocode 1s given
here.

FIGURE 6.4

Pseudocode for fixed-point
iteration. Nofe that other open
methods can be cast in this
general format.

FUNCTION Fixpt(x0, es, imax, iter, ea)
xr = x0
iter = 0
D0
xrold = xr
xr = g(xrold)
iter = iter + 1
IF xr # 0 THEN
Xr — xrold
Xr

ed =

END IF
IF ea < es OR iter = imax EXIT
END DO
Fixpt = xr
END Fixpt

‘-IOU

26

NI

789 ¢ “' “
INCEWIL0I1-

-
...!
}—
<
(¢,
=
=
-
=B

Raphs

* Most widely used method.

* Based on Taylor series expansion:

S (Xi) = f(xl-)Jrf'(xl-)AHf”(x,-)7+0AX3

The root 1s the value of x,,, when f(x,,)=0

Rearranging, Solve for
0= (o,)+ f 10,)3, - x,)
S (x)

I+1

I

f(x)

Newton-Raphson formula

27

A convenient method for
functions whose
derivatives can be
evaluated analytically. It
may not be convenient
for functions whose
derivatives cannot be

evaluated a

fF) 4

Slope = /"(x)

f&x) bp—————————- - —————

r f(-x;')_o

FIGURE 6.5

Craphical depiction of the
Newton-Raphson method.

A tangent fo the function of x;
[that is, f'(x]] is extrapolated
down to the x axis to provide
an estimate of the root af x. 1.

-y

28

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) =

X

e © — x, employing an initial guess of x; = 0.

Solution. The first derivative of the function can be evaluated as
flx)y=—e"*—1
which can be substituted along with the original function into Eq. (6.6) to give

e —x;
e-'ri — 1

Xiv1 = X —

Starting with an initial guess of x; = 0, this iterative equation can be applied to compute

i Xi & (%)

0 0 100

] 0.500000000 11.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 < 1078

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration

(compare with Example 6.1).
29

*Although the Newton-
Raphson method 1s often very
efficient, there are situations
where 1t performs poorly.
Examples: (a) an inflection
point [that is, f"(x)=0] occurs
in the vicinity of a root,

(b) may tend to oscillate
around a local maximum or
minimum,

(c) 1nitial guess that 1s close to
one root can jump to a location
several roots away,

(d) a zero slope [f'(x)=0] 1s
truly a disaster because it
causes division by zero in the
Newton-Raphson formula.

Jlxy ¢

Ffixy

Jix) 4

fix) 4

el

30

=
q”)
=
=
-
3
=]
<
=
o
S
S
=
=
agQ
>
=
g
>
v)
o
®
o
o
)
o
o
=
S
=
=
5.
=
O
=5
=
o

function [root,ea,iter]=newtraph(func,dfunc,xr,es, maxit, varargin)

% newtraph: Newton-Raphson root location zeroes

% [root,ea,iter] =newtraph(func,dfunc,xr,es, maxit,pl,p2,...):
% uses Newton-REaphson method to find the root of func
% input:

% func = name of function

% dfunc = name of derivative of function

% Xr = initial guess

% g3 = desired relative error (default = 0.0001%)

% maxit = maximum allowable iterations {(default = 50)

% pl,p2,... = additional parameters used by function

¥ output:

% root = real root

% ea = approximate relative error (%)

% iter = number of iterations

if nmargin<3,error('at least 3 input arguments required'),end

if nargin¢4|isemptytes],es=D.ﬁDGl;end
if nargin¢5|isemptytmaxit],maxit=50;end

iter = 0;
while (1)
xrold = xr;
Xr = xr - func(xr) /dfunc(xr) ;
iter = iter + 1;
if xr ~= 0, ea = abs|((xr - xreold)/xr) * 100; end
if 2a == es | iter == maxit, break, end
end

root = xr;

31

The Secant
\ B W A YA ¥ AL

) ¥ (2 3§ 1

”Lnfh nd
QO UALAAUNL

A slight variation of Newton’s method for
functions whose derivatives are difficult to
evaluate. For these cases the derivative can be

approximated by a backward finite divided
difference.

f,(xi)E f(xi—l)_f(xi) _ f(xi)_f(xi—l)

X, — X,

l_

X =X

l

X, — X,
X, =X, _f(xi)f(xi)—f(xi—l)

1=1,2,3,...

32

Requires two 1nitial
estimates of x , e.g, x
x,. However, because
f(x) 1s not required to
change signs between
estimates, 1t 1s not
classified as a
“bracketing’” method.

The secant method has

the same prooerties as

VALN VWL LAN t} VIJV.L VAN

Newton’s method.
Convergence 1s not

guaranteed for all x_, f(x).

Jf(x)

f(x,')

f(-xffl)

FIGURE 6.7

Graphical depiction of the se-
cant method. This fechnique is
similar fo the NewtonRaphson
technique (Fig. 6.5) in the sense
that an estimate of the root is
predicted by extrapolating a
tangent of the function to the

x axis. However, the secant
method uses a difference rather
than a derivative to estimate the
slope. 33

=¥

The Secant Method

Problem Statement. Use the secant method to estimate the root of f(x) = e * — x. Start
with initial estimates of x_; = 0 and x; = 1.0.

Solution. Recall that the true root is 0.56714329. . . .
First iteration:

x1 =0 flx_y) = 1.00000

x =1 flxg) = —0.63212

_ 20621207 D 070 — 8.0%
e 1 - (—063212) g

Second iteration:

xp =1 f(xp) = —0.63212
x; = 061270 f(x) = —0.07081

(Note that both estimates are now on the same side of the root.)

oeiago . —00T081(1 — 061270) ~osse
wew —0.63212 — (—0.07081) o=

Third iteration:
x; = 0.61270 f(x;) = —0.07081
x, = 0.56384 f(x,) = 0.00518

~ 0se3ga O00518(061270 — 0.56384) ~ oo0dse
B= —007081 — (—0.00518) g = T 34

False position Secant

VACOR fx,) fx) 4

-

Fx;)

=

F)4
() (d)
FIGURE 6.8
Comparison of the falseposition and the secant methods. The first iterations (a) and (b) for both 35

techniques are identical. However, for the second iterations (c] and (d), the points used differ. As
a consequence, the secant method can diverge, as indicated in (d).

s % 94

>
(SN
=+
=
o
<
oQ
-
=
o
(=
a
v.
g
C.
a
=
(o n
=
[
a
‘.:
C)..
'~<

be divergent, when 1t converges it
usually does so at a quicker rate 10
than the false-position method.
This figure demonstrates the
superiority of the secant method
in this regard.

101

102

True percent relative error

=
5]
1035
Q2
=
2
[Vl =
2
FIGURE 6.9 105
Comparison of the frue percent |
relative errors &; for the methods
to determine The- roots of el L1 1 I I 1 [1 1.

.,X:l = e " — X lterations

36

b

DIrenv s viectnoa

The general 1dea behind the Brent’s root finding method i1s
whenever possible to use one of the quick open methods. In
the event that these generate an unacceptable result (i.e., a root
estimate that falls outside the bracket), the algorithm reverts to
the more conservative bisection method.

« Although bisection may be slower, it generates an estimate
guaranteed to fall within the bracket. This process 1s then
repeated until the root 1s located to within an acceptable
tolerance. As might be expected, bisection typically dominates
at first but as the root 1s approached, the technique shifts to the
faster open methods.

(See Fig.6.12 on pp 165)

37

MATLAB FUNCTION: fzero

The fzero function is designed to find the real root of a single equation. A simple repre-
sentation of its syntax is

fzero(function, x0)

where function is the name of the function being evaluated, and xo 1s the initial guess.
Note that two guesses that bracket the root can be passed as a vector:

fzero(function, [x0 x11)

where x0 and x1 are guesses that bracket a sign change.
Here is a simple MATLAB session that solves for the root of a simple quadratic: x* — 0.
Clearly two roots exist at —3 and 3. To find the negative root:

>> x = fzero(@(x) x*2-9,-4)

-3
If we want to find the positive root, use a guess that is near it:

>> X = fzero(@(x) x*2-9,4)

¥ =

Nz léz:rn1a DA ‘-n
iviulupic € NOOTS

A multiple root corresponds to a point where a function 1s
tangent to the x-axis. For example, a double root results from

flx)y=(x—=3)x—1)(x—1)

A triple root corresponds to the case where one x value makes
three terms 1n an equation equal to zero, as 1n:
fx)=x—3)x—1Dx—1Dx-—1)

= ' — 6 + 12 — 10x + 3.

Multiple roots pose some difficulties for many of the
numerical methods described here.

39

FIGURE 6.13

Examples of multiple roots that
are tangential to the x axis.
Notice that the function does
not cross the axis on either side
of even multiple roofs (a) and
(c), whereas it crosses the axis

for odd cases (b).

4 — Double
root

=i, |
(bH)
fix) 4
4 — Quadruple
root

40

Nz léz:rn1a DA A-n
iviulupic € NOOTS

None of the methods deal with multiple roots

efficiently, however, one way to deal with problems
1s as follows:

Set u(x,) = / (xl.) . This function has
l f ,(X,-) roots at all the same
u(x,) locations as the
original function
u'(x)

Then find x, +1=x, —

alternative form can be adopted to the

Newton-Raphson method 41

o “Multiple root” corresponds to a point where a function is

tangent to the x-axis.
Difficulties

— Function does not change sign at the multiple root,
therefore, cannot use bracketing methods.

— Both f(x) and 1 '(x)=0, division by zero with Newton’s and
Secant methods.

However, for polynomials whose coefficients are exactly
given as integers or rational numbers, there 1s an efficient
method to factorize them into factors that have only simple
roots and whose coefficients are also exactly given. This
method, called square-free factorization, 1s based on the
multiple roots of a polynomial being the roots of the greatest
common divisor of the polynomial and its derivative.

42

olyn

* Polynomials are a special type of nonlinear
algebraic equation of the general form:

Is

-i o
&D

: 9
faX) = a1 x" +ax" '+ o X7 F A X + Ay

* n:1s the order of the polynomial,
* a;: constant coefficients.

* In many (but not all) cases, the coefficients will
be real. For such cases, the roots can be real
and/or complex. In general, an n™ order

polynomial will have » roots.
43

. Using MATLAB to Manipulate Polynomials and Determine Their Roots .

Problem Statement. Use the following equation to explore how MATLAB can be em-
ployed to manipulate polynomials:

fs(x) = x> —3.5x% +2.75x3 + 2.125x? — 3.875x 4+ 1.25

Note that this polynomial has three real roots: 0.5, —1.0, and 2; and one pair of complex
roots: 1 4= 0.5i.

MATLAB Function: roots

Command Window

>>» £5=[1 -3.5 2.75 2.125 -3.875 1.253]

£5 =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

»>>» roots (£5)

ans =
2.0000 + 0.00001
-1.0000 + 0.00001
1.0000 + 0.50001
1.0000 - 0.50001
0.5000 + 0.00001

44

Problem Statement. The roots of a 3" degree polynomial are given as 1,
-1 and 2. Find the polynomial.

MATLAB Function: poly

Command Window

>> r=[-1 1 2] Roots are entered
;=
-1 1 2
>» poly(r)
ans =
1 -2 -1 2 ——> Answer: x3-2x2-x+2

Command Window

> roots([1 -2 -1 2])

1 2 -1
*» poly(rZ) ans =
ans = -1.0000
2_0000
1.0000

45

Other MATLAB Functions related with polynomials:

>>conv : Convolution and polynomial multiplication

>>polyval : Polynomial evaluation

Command Window

>» pl=poly (1)

pl =
1 -1 pl=x-1

>> p2=poly(-1)

pZ =
1 1 p2=x+1

>> p3=conv (pl,p2) p3=pl*p2=(x-1) (x+1)=x>-1

p3 = >> polyval (p3,2)
1 o -1 ans =

>> roots(p3) roots of p3 are -1 and 1 3

ans =

. 46
1

