Optimization
Part 4

* Root finding and optimization are related, both
involve guessing and searching for a point on a

function.
 Fundamental difference is:

— Root finding is searching for zeros of a function or
functions

— Optimization 1s finding the minimum or the
maximum of a function of several variables.



F(x) =0
') <0

o

Maximum

fx)

Root Root

Minimum

A function of a single variable illustrating the difference between roots and optima.
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* An optimization or mathematical programming
problem generally be stated as:

Find x, which minimizes or maximizes f(x) subject to
d(x)<a i=12,...m*
e(x)=b, i=12,...,p*
Where x is an n-dimensional design vector, f(x) 1s
the objective function, d,(x) are inequality

constraints, e,(x) are equality constraints, and a,
and b, are constants
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basis of the form of f(x)

— If f(x) and the constraints are linear, we have linear
programming.

— If f(x) 1s quadratic and the constraints are linear,
we have quadratic programming.

— If f(x) 1s not linear or quadratic and/or the
constraints are nonlinear, we have nonlinear
programiming.

 When equations(*) are included, we have a
constrained optimization problem; otherwise,
it 1s unconstrained optimization problem.
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One-Dimensional Unconstrained
Optimization
Chapter 13

e In multimodal functions,

both local and global
optima can occur. In
almost all cases, we are
interested in finding the

absolute |

nighest or

lowest value of a

function.

FIGURE 13.1
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A function that asymptotically approaches zero at plus and minus oo and has two maximum and
two minimum points in the vicinity of the origin. The two points to the right are local optima,

whereas the two to

the left are global.



How do we distinguish global optimum
from a local one?

* By graphing to gain insight into the behavior
of the function.

« Using randomly generated starting guesses and
picking the largest of the optima as global.

* Perturbing the starting point to see if the
routine returns a better point or the same local
minimum.
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Golden-Section Se:

* A unimodal function has a single maximum or a
minimum in the a given interval. For a unimodal
function:

— First pick two points that will bracket your extremum [x;, x,].

— Pick an additional third point within this interval to determine
whether a maximum occurred.

— Then pick a fourth point to determine whether the maximum
has occurred within the first three or last three points.

— The key 1s making this approach efficient by choosing
intermediate points wisely thus minimizing the function
evaluations by replacing the old values with new values.
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The initial step of the golden-section search algorithm involves choosing two interior points
according fo the golden ratio.
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 The first condition specifies that the sum of the two sub
lengths /, and /, must equal the original interval length.

 The second say that the ratio of the lengths must be equal

—1+1-4(-1
d :l—2 R:l—2 1+R:l R+R-1=0 R= A )=O.61803; —1.61803

h L
I+

1+ 1-4(-1
7 S —S-1=0 S= 24( )=1.61803; —0.61803
TS
\/_

R=(small)/(big)=0.61803 or S=(big)/(small)=1.61803 0

Golden Ratio:
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FIGURE 13.4

(a) The initial step of the golden-section search algorithm involves choosing two interior points ac-
cording to the golden rafio. (b The second step involves defining a new interval that includes the 10
optimum.



Golden-Section Search Method:

The method starts with two 1nitial guesses, x; and x,,
that bracket one local extremum of f(x):

» Next two interior points x; and x, are chosen according
to the golden ratio

d: 2 (xu_‘xl)
X, =x,+d
X, =x,—d

» The function is evaluated at these two interior points.

11



Two results can occur:

* If f(x,)>f(x,) then the domain of x to the left of x, from
x,; to x,, can be eliminated because it does not contain
the maximum. Then, x, becomes the new Xx, for the next
round.

* If f(x,)>f(x,), then the domain of x to the right of x,
from x, to x,, would have been eliminated. In this case,
x, becomes the new x, for the next round.

New x, ; 's determined as before

J5-1

X =X, T 5 (x, —Xx;)
12




* The real benefit from the use of golden ratio 1s
because the original x, and x, were chosen using
golden ratio, we do not need to recalculate all the
function values for the next iteration.

HOMEWORK:

See the Pseudocode for Golden-Section search
algorithm 1n page 362. Write your MATLAB codes
to test this algorithm with Example 13.1 1n page 360.

362

360

EXAMPLE 13.1
Algorithm for the golden-section

search. 13



Parabolic Interpolation

Parabolic interpolation

takes advantage of the fact Parabolic
approximation
that a second-order True maximum of maximum

polynomial often provides T | True function \.;/Parabolic
\' - R function

a good approximation to -
the shape of f(x) near an
optimum.

FIGURE 13.6

Graphical description of parabolic interpolation.
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Parabolic Interpolation

Just as there 1s only one

straight line connecting Parabolic
approximation
two points, there is On[y True maximum of maximum

one quadratic polynomial f® | True function \ Parabolic
\v" < function

or parabola connecting
three points. Thus, 1f we
have three points that
jointly bracket an
optimum, we can fit a |
parabola to the points. PR Y, X

_ ) (6 = ) + fe) (3 — x5) + flx) (g — x7)
Zf(-’flj)(l'] — Xp) + 2f{1]){12 — Xp) T 2‘}['[,1‘2){_1'0 — X1)

where xg. x,. and x, are the initial guesses. and x5 1s the value of x that corresponds to
the maximum value of the parabolic fit to the guesses.

X3



* A similar approach to Newton- Raphson method can
be used to find an optimum of f(x) by defining a new
function g(x)=f '(x). Thus because the same optimal
value x* satisfies both
J'(x*)=g(x*)=0
We can use the following as a technique to the
extremum of f(x).

xi+1 — xi f//(x )
i

16
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* Modity the m-file written for Newton- Raphson
method (p2 NewtonRaphson basic algorithm.m ) for
the Newton’s method and test your code for Example
13.3 page 365.

17



MATLAB: Finding the minimum of a single
variable function

MATLAB Function: fminbnd

>>» help fminbnd
fminbnd - Find minimum of single-variable function on fixed interval

This MATLAE function returns a walue x that is a local minimizer of the function
that 1s described in fun in the interval =1 < = < =x2.

fminbnd (fun,=zl1,=x2)
fminbnd (fun, x1,x2, options)

¥, fval] = fminbnd({...)
¥x,fval,exitflag] = fminbnd(...)

¥, fval,exitflag,output] = fminbnd(...)

X
X
[
[
[

FEeference page for fminbnd

See also fminsearch, function handle, fzero, optimset

Other functions named fminbnd
optim/ fminbnd
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MATLAB: Finding the minimum of a
multivariable function
MATLAB Function: fminsearch

»>» help fminsearch
fminsearch - Find minimum of unconstrained multivariable function using derivative—-free method

This MATLAE function starts at the point =0 and returns a wvalue x that is a
local minimizer of the function described in fun.

% = fminsearch (fun,=z0)

¥ = fminsearch (fun,=0,options)

[, fwval] = fminsearchi...)

(%, fval,exitflag] = fminsearch(...)

(%, fval,exitflag,output] = fminsearch(...)

FEeference page for fminsearch

See also fminbnd, function handle, optimset

>> f=@(x) 24x (1) -x(2)+2*x (1) "2+2*x (1) *x(2) +x(2) *2;
>> [x,fval]l =fminsearch(f, [-0.5,0.5])

X =
-1.0000 1.5000

fval = 19
0.7500



Optimization
Chapter 14

» Techniques to find minimum and maximum of
a function of several variables are described.

* These techniques are classified as:

— That require derivative evaluation

» Gradient or descent (or ascent) methods

— That do not require derivative evaluation

* Non-gradient or direct methods.

20
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FIGURE 14.1 The most tangible way to visualize two-dimensional searches is in the context
of ascending a mountain (maximization) or descending into a valley (minimization).
(a) A 2-D topographic map that corresponds to the 3-D mountain in (b).
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DIRECT METHODS
Random Search

* Based on evaluation of the function randomly
at selected values of the independent variables.

« [If a sufficient number of samples are
conducted, the optimum will be eventually
located.

VQmﬂ]Q' MAVIMITIM N
A(«llllt}l\./- 111AaAA1111IUlll U

(X, V) =y-x-2x°-2xy-y
can be found using a random number
generator.

2
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Maximum

FIGURE 14.2
Equation (E14.1.1) showing the maximum at x = —1 and y = 1.5.
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Advantages/
e Works even for discontinuous and
nondifferentiable functions.

* Always finds the global optimum rather than
the global minimum.

Disadvantages/

* As the number of independent variables grows,
the task can become onerous.

* Not efficient, it does not account for the
behavior of underlying function.

24
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 More efficient than random search and still
doesn’t require derivative evaluation.

* The basic strategy 1s:

— Change one variable at a time while the other
variables are held constant.

— Thus problem 1s reduced to a sequence of one-
dimensional searches that can be solved by variety
of methods.

— The search becomes less efficient as you approach
the maximum.

25



FIGURE 14.3

A graphical depiction of how a univariate search is conducted.
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» Pattern directions can be used to shoot directly
along the ridge towards maximum.

s
7 \/

FIGURE 14.4

Conjugate directions.

Y
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* Best known algorithm,
Powell’s method, 1s based
on the observation that 1f
points 1 and 2 are obtained
by one-dimensional
searches 1n the same
direction but from different h,
starting points, then, the line
formed by 1 and 2 will be
directed toward the
maximum. Such lines are

called conjugate directions.
FIGURE 14.5

Powell's method.
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GRADIENT METHODS
Gradients and Hessians

The Gradient:

* If f(x,y) 1s a two dimensional function, the gradient
vector tells us
— What direction 1s the steepest ascend?

— How much we will gain by taking that step?

. o,

Vf=—"1+—>2 or del
T J\f
Directional derivative

of f(x,y) at point x=a
and y=b 29
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FIGURE 14.6

The directional gradient is defined along an axis h that forms an angle 8 with the x axis. 30
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For one dimensional functions both first and second
derivatives valuable information for searching out
optima.

— First derivative provides (a) the steepest trajectory of the

function and (b) tells us that we have reached the
maximum.

— Second derivative tells us that whether we are a maximum
Oor minimuin.
For two dimensional functions whether a maximum
or a minimum occurs involves not only the partial
derivatives w.r.t. x and y but also the second partials
w.r.t. x and y.

31



FIGURE 14.7 _

The arrow follows the direction of steepest ascent calculated with the gradient.
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FIGURE 14.8

A saddle point (x = @ and y = b). Notice that when the curve is viewed along the x and y
directions, the function appears to go through a minimum (positive second derivative), whereas 32
when viewed along an axis x = v, it is concave downward (negatfive second derivative).
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If [H| < 0, then f(x, y) has a saddle point

If ‘H‘ > 0 and > 0, then (X, y) has a local minimum

If [H| > 0 and < 0, then f(x, y) has a local minimum

The quantity [H] 1s equal to the determinant of a

matrix made up of second derivatives
33



Thaoa Qtann .

1 11T O P ﬂb

e Start at an 1nitial point
(x,,y,), determine the
direction of steepest
ascend, that 1s, the
gradient. Then search
along the direction of
the gradient, £, until
we find maximum.
Process 1s then

Y

repeated.
FIGURE 14.9

A graphical depiction of the method of steepest ascent. 24



The problem has two parts
— Determining the “best direction” and

— Determining the “best value” along that search direction.

Steepest ascent method uses the gradient approach as
its choice for the “best” direction.

To transform a function of x and y into a function of %
along the gradient section:

_|_ ai \ h 1s distance

along the h axis

X =

35



e Ifx =1andy =2
Vi =3i+4j

x=1+3h
y=2+4h

FIGURE 14.10
The relationship between an arbitrary direction h and x and y coordinates.
36



Constrained Optimization
Chapter 15

LINEAR PROGRAMMING

* An optimization approach that deals with
meeting a desired objective such as
maximizing profit or minimizing cost in
presence of constraints such as limited
resources

« Mathematical functions representing both the
objective and the constraints are linear.

37



Standard Form:

» Basic linear programming problem consists of two
major parts:
— The objective function
— A set of constraints

* For maximization problem, the objective function 1s
generally expressed as

Maximize Z=cx, +c,x, +---+c x,

¢;= payoft of each unit of the jth activity that is undertaken
x;= magnitude of the jth activity

/= total payoftf due to the total number of activities

38



The constraints can be represented generally as
a,x,+a,x,+--+a x <b,

Where a,~amount of the ith resource that 1s
consumed for each unit of the jth activity and
b~=amount of the ith resource that 1s available

The general second type of constraint specifies that
all activities must have a positive value, x>0 .
Together, the objective function and the constraints
specify the linear programming problem.

39
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Graphical solution of a linear programming problem. (a] The consiraints define a feasible
solution space. (b) The objective function can be increased until it reaches the highest value
that obeys all constraints. Graphically, the function moves up and to the right until it fouches

the feasible space at a single optimal point.
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Possible outcomes that can be generally obtained

1.

2.

in a linear programming problem/

Unique solution. The maximum objective
function intersects a single point.

Alternate solutions. Problem has an infinite
number of optima corresponding to a line
segment.

No feasible solution.

Unbounded problems. Problem 1s under-
constrained and therefore open-ended.

41



FIGURE 15.2

Aside from a single optimal solution (for example, Fig. 15.1b), there are three other possible
outcomes of a linear programming problem: (a] alternative optima, (b) no feasible solution,

and (c) an unbounded result.

42



The Simplex Method/
* Assumes that the optimal solution will be an
extreme point.

e The approach must discern whether during
problem solution an extreme point occurs.

* To do this, the constraint equations are
reformulated as equalities by introducing slack
variables.

43



1s available, e.g.,
Tx,+11x, <77
If we define a slack variable S, as the amount of raw gas that
1s not used for a particular production level (x,, x,) and add it

to the left side of the constraint, 1t makes the relationship
exact.

Tx;+ 11 x, +§, =77
If slack variable 1s positive, it means that we have some slack
that 1s we have some surplus that 1s not being used.

If 1t 1s negative, it tells us that we have exceeded the
constraint.

If 1t is zero, we have exactly met the constraint. We have used
up all the allowable resource.

44



Maximize
Z =150x, +175x,

Tx,+ 1lx,+ § =77
10x,+ 8x,+ +3, =30
X, + 9, =9
X, +S5, =6

Xi5X550159,5,894,9, 20

45



 We now have a system of linear algebraic equations.

* For even moderately sized problems, the approach
can 1nvolve solving a great number of equations. For
m equations and » unknowns, the number of
simultaneous equations to be solved are:

C" n!

m

m!(n—m)!

46



FIGURE 15.3
Graphical depiction of how the simplex method successively moves through feasible basic solu- 45
tions to arrive at the optimum in an efficient manner.



