
Curve Fittingg
Part 5

D ib t h i t fit ( fitti ) t• Describes techniques to fit curves (curve fitting) to 
discrete data to obtain intermediate estimates.

• There are two general approaches two curve fitting:There are two general approaches two curve fitting:
– Data exhibit a significant degree of scatter. The strategy is to 

derive a single curve that represents the general trend of the data.
Data is very precise The strategy is to pass a curve or a series of– Data is very precise. The strategy is to pass a curve or a series of 
curves through each of the points.

• In engineering two types of applications are encountered:
– Trend analysis. Predicting values of dependent variable, may 

include extrapolation beyond data points or interpolation 
between data points.p

– Hypothesis testing. Comparing existing mathematical model 
with measured data.
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Mathematical BackgroundMathematical Background
Si l S i iSimple Statistics:
• In course of engineering study, if several measurements 

d f i l i ddi i l i i hare made of a particular quantity, additional insight can 
be gained by summarizing the data in one or more well 
chosen statistics that convey as much information aschosen statistics that convey as much information as 
possible about specific characteristics of the data set.

• These descriptive statistics are most often selected to• These descriptive statistics are most often selected to 
represent
– The location of the center of the distribution of the data– The location of the center of the distribution of the data,
– The degree of spread of the data.
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ExampleExample

• Suppose that 24 measurements made of the coefficient of thermal
expansion of a structural steel. 

6.495 6.595 6.615 6.635 6.485 6.555

6.665 6.505 6.435 6.625 6.715 6.655
6 6 62 6 1 6 6 6 6 606.755 6.625 6.715 6.575 6.655 6.605
6.565 6.515 6.555 6.395 6.775 6.685

Values change from 6.395 to 6.775. But we may use some statictical
information about this data. These descriptive statistics are often selected to
represent 1) the location of the center of the distribution of the data 2) the
degree of spread of the data set. 



• Arithmetic mean. The sum of the individual data 
points (yi) divided by the number of points (n).
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• Standard deviation. The most common measure of a 
spread for a sample.
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V i R i f d b h f• Variance. Representation of spread by the square of 
the standard deviation.
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• Coefficient of variation Has the utility to quantify the

1−ny

• Coefficient of variation. Has the utility to quantify the 
spread of data.
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Example: continuedp
i yi (yi-y)2

1 6.395 0.042025

2 6.435 0.027225

41583 6.485 0.013225

4 6.495 0.011025

5 6.505 0.009025

6 6.515 0.007225
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7 6.555 0.002025

8 6.555 0.002025

9 6.565 0.001225

10 6.575 0.000625 0971330217.0
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11 6.595 0.000025

12 6.605 0.000025

13 6.615 0.000225

14 6 625 0 000625

009435.0

097133.0
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14 6.625 0.000625

15 6.625 0.000625

16 6.635 0.001225

17 6.655 0.003025

%47.1%100
6.6

097133.0.. ==vc
18 6.655 0.003025

19 6.665 0.004225

20 6.685 0.007225

21 6.715 0.013225

22 6.715 0.013225

23 6.755 0.024025

24 6.775 0.030625
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Least Squares Regressionq g
Chapter 17

Linear Regression
• Fitting a straight line to a set of pairedFitting a straight line to a set of paired 

observations: (x1, y1), (x2, y2),…,(xn, yn).
y=a +a x+ey=a0+a1x+e
a1: slope
a0: intercept
e: errore: error 
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Criteria for a “best” Fit/Criteria for a best  Fit/
• Strategy-1: Minimize the sum of the residual errors 

for all available data:for all available data:
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• Strategy-2:  minimize the sum of the absolute values
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• Strategy-3: minimize the sum of the squares of theStrategy 3: minimize the sum of the squares of the 
residuals between the measured y and the y calculated 
with the linear model:with the linear model:
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 
= == i i

iiii
i

ir yyy
1 1

10
1

)()(

distance that an individual point falls from the line.
• This is the best strategy but it is not suitable in thegy

existance of an outlier, that is a single point with a 
large error. g
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We need to find unknowns a0 and a1 to determine the line.
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Least-Squares Fit of a Straight Line/
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Examplep

y=a0+a1x

15



MATLAB implementation withp

x=[1;3;5;7;10;12;13;16;18;20];x [1;3;5;7;10;12;13;16;18;20];
y=[4;5;6;5;8;7;6;9;12;11];
p=polyfit(x,y,1)
yapp=p(2)+p(1)*xyapp=p(2)+p(1)*x
plot(x,y,'ro')
grid
h ldhold on
plot(x,yapp)
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Error minimization (which one is the best fit?)( )
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“Goodness” of our fit/
If
• Total sum of the squares around the mean for the• Total sum of the squares around the mean for the 

dependent variable, y, is St

S m of the sq ares of resid als aro nd the regression• Sum of the squares of residuals around the regression 
line is Sr

ifi h i d i• St−Sr quantifies the improvement or error reduction 
due to describing data in terms of a straight line rather 
h lthan as an average value.

rt SS −2 r2: coefficient of determination
t

rt

S
r =2 r : coefficient of determination

sqrt(r2) : correlation coefficient
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• For a perfect fit: S =0 and r=r2=1 signifying that the• For a perfect fit: Sr=0 and r=r2=1, signifying that the 
line explains 100 percent of the variability of the data.
F 2 0 S S h fi i• For r=r2=0, Sr=St, the fit represents no improvement.

• Usually an r value close to 1 represents a good fit. But 
be careful and always plot the data points and the
regression line together to see what is going on.
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Homework:Homework:
• The followingg

pseudocode is an 
algorithm for linear

i I l tregression. Implement
this algorithm by
using MATLAB andusing MATLAB and
try it with the data of 
the previous example
(the example which
we used the polyfit

d)command).
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Linearization of nonlinear behaviorLinearization of nonlinear behavior

• Linear regression is useful to represent a linear relationship.
• If the relation is nonlinear either another technique can be q

used or the data can be transformed so that linear
regression can still be used. The latter technique is g q
frequently used to fit the the following nonlinear equations
to a set of data.

 :equation lExponentia 1
1eAy xB=

)/(:equationrategrowth-Saturation
  :equationPower 

33

2
2

xBxAy
xAy B

+=
=

)/(:equationrategrowth Saturation 33 xBxAy +



a. EXPONENTIAL EQUATIONa. EXPONENTIAL EQUATION

Example: Fit an exponential model to the following dataExample:  Fit an exponential model to the following data

Create the following table



Procedure: 

•Fit a straight line to this new data set. Be careful with the notation.    

• You can define z=ln y.

• Calculate a0=6.25 and a1=0.841. Straight line is lny=6.25+0.841x0 1

• Switch back to the original equation. A1=ea0=518,  B1=a1=0.841

Th ti l ti i 518 0 841x• The exponential equation is y=518 e0.841x

• Check this solution with couple of data points.  

• For example y(1.2)=518 e0.841(1.2)=1421

• y(2 3)= 518 e0.841(2.3)=3584• y(2.3)= 518 e0.841(2.3)=3584



b. POWER EQUATIONb. POWER EQUATION

Example: Fit a power equation to the following data set



c. SATURATION-GROWTH RATE EQUATION

Example: Fit a saturation-growth rate equation to the following data set 



Polynomial RegressionPolynomial Regression

• Some engineering data 
is poorly represented 
by a straight line. For 
these cases a curve is 
better suited to fit the 
data. The least squares 
method can readily be 
extended to fit the data 
to higher order 
polynomials.
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Polynomial Regression
• Used to find a best-fit line for a nonlinear behavior.

Polynomial Regression

Example for a second order polynomial regression:
ei= yi−a0 −a1 xi −a2 xi2 Error (deviation) for the ith data point

29
To minimize Sr, solve these

equations to determine a0, a1, and a2



Example:p
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Homework:Homework:
• Try the following pseudocode by using MATLAB with someTry the following pseudocode by using MATLAB with some

arbitrary examples and compare the results on the same examples
with polyfit command.
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MULTIPLE LINEAR REGRESSION

• A useful extension of linear regression is the• A useful extension of linear regression is the 
case where y is a linear function of two or 

i d d t i bl F lmore independent variables. For example, y
might be a linear function of 2 variables: x1
and x2, as in

• For this two-dimensional case, the regression 
“line” becomes a “plane”.

33

line  becomes a plane .



MULTIPLE LINEAR REGRESSION
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MULTIPLE LINEAR REGRESSION
As with the previous cases, the “best” values of the coefficients are 
determined by setting up the sum of the squares of the residuals:determined by setting up the sum of the squares of the residuals:
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Example:p
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MULTIPLE LINEAR REGRESSION
The foregoing two-dimensional case can be easily extended to m
dimensionsdimensions,

Although there may be certain cases where a variable is linearly 
related to two or more other variables, multiple linear regression 
has additional utility in the derivation of power equations of thehas additional utility in the derivation of power equations of the 
general form:
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MULTIPLE LINEAR REGRESSION
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General Linear Least Squaresq
• In the preceding pages, we have introduced three 

types of regression: 
– simple linear, 
– polynomial,  
– multiple linear. 

• In fact, all three belong to the following general 
linear least-squares model:q
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General Linear Least Squaresq
0 0 1 1 2 2 m my a z a z a z a z e= + + + + +

{ } [ ]{ } { }
can be expressed in vector-matrix notations:
Y Z A E= +{ } [ ]{ } { }

[ ] matrix of the calculated values of the basis functions 
at the measured values of the independent variable

Z −

{ }
at the measured values of the independent variable

Y observed valued −

{ }
of the dependent variable

A k ffi i{ }
{ }
A unknown coefficients

E residuals
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jijir zayS coefficients and setting the 
resulting equation equal to zero


