Curve Fitting
Part S

* Describes techniques to fit curves (curve fitting) to
discrete data to obtain intermediate estimates.

e There are two general approaches two curve fitting:

— Data exhibit a significant degree of scatter. The strategy is to
derive a single curve that represents the general trend of the data.

— Data is very precise. The strategy is to pass a curve or a series of
curves through each of the points.
* In engineering two types of applications are encountered:

— Trend analysis. Predicting values of dependent variable, may
include extrapolation beyond data points or interpolation
between data points.

— Hypothesis testing. Comparing existing mathematical model
with measured data.
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FIGURE PT5.1
Three attempts to fit a “best” curve through five data points. (a) leastsquares regression, (b linear 2
interpolation, and (¢) curvilinear interpolation.
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Simple Statistics:

* In course of engineering study, 1f several measurements
are made of a particular quantity, additional insight can
be gained by summarizing the data in one or more well
chosen statistics that convey as much information as
possible about specific characteristics of the data set.

* These descriptive statistics are most often selected to
represent
— The location of the center of the distribution of the data,
— The degree of spread of the data.



Suppose that 24 measurements made of the coefficient of thermal
expansion of a structural steel.

6.495 |6.995 |6.615 |[6.635 |6.485 |6.555
6.665 |[6.505 |6.435 [6.625 |6.715 |6.655
6.755 |6.625 |6.715 |6.575 |6.655 |[6.605
6.565 |[6.515 [6.555 [6.395 |6.775 |6.685

Values change from 6.395 to 6.775. But we may use some statictical
information about this data. These descriptive statistics are often selected to
represent 1) the location of the center of the distribution of the data 2) the
degree of spread of the data set.



o Arithmetic mean. The sum of the individual data
points (y;) divided by the number of points (n).

Dy,

n

y =
i=1,....n

o Standard deviation. The most common measure of a
spread for a sample.

Sy= St or Szzzyiz_(Zyi)z/n
7 -1

n—1

S, =3, - N

Variance



* Variance. Representation of spread by the square of
the standard deviation.

—\2
Z%%/ degrees of freedom

» Coefficient of variation. Has the utility to quantify the
spread of data.
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Example: continued

i Yi (Viry)?

1 6.395 0.042025
2 6.435 0.027225
3 6.485 0.013225
4 6.495 0.011025
5 6.505 0.009025
6 6.515 0.007225
7 6.555 0.002025
8 6.555 0.002025
9 6.565 0.001225
10 6.575 0.000625
11 6.595 0.000025
12 6.605 0.000025
13 6.615 0.000225
14 6.625 0.000625
15 6.625 0.000625
16 6.635 0.001225
17 6.655 0.003025
18 6.655 0.003025
19 6.665 0.004225
20 6.685 0.007225
21 6.715 0.013225
22 6.715 0.013225
23 6.755 0.024025
24 6.775 0.030625

_ 1584
T
2. (7, =5)"=0217
0.217
24-1

s2 =0.009435
_0.097133

6.6

=0.097133

C.V.

100% =1.47%



Frequency

FIGURE PT5.2
A histogram used to depict the distribution of data. As the number of dafa points increases, the
histogram could approach the smooth, bellshaped curve called the normal distribution.



Distribution of
means of y, y

(a)

(D)

FIGURE PT5.3

A two-sided confidence interval. The abscissa scale in (a] is written in the natural units of the ran-
dom variable y. The normalized version of the abscissa in (b) has the mean at the origin and
scales the axis so that the standard deviation corresponds to a unit value.



Least Squares Regression
Chapter 17

Linear Regression

 Fitting a straight line to a set of paired

observations: (x,, v,), (X5, ¥5),-.,(X,, ¥,).
y=a,ta;x+e
a,: slope ’

a,. mtercept Y

eiI dpgt a1 X

e. CITor
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o Strategy-1:. Minimize the sum of the residual errors
for all available data:

Zei = Z(yi —a,—ax;)
i=1 i=1
n = total number of points

o Strategy-2:. minimize the sum of the absolute values

n n

Se=3

i
i=1 i=1

Vi —dy —adX;
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residuals between the measured y and the y calculated
with the linear model:

S, = ;ef = Zl(yl.,measured—yl.,model)2 = Zl(yi —a, — azlxl.)2

I

* The line 1s chosen that minimizes the maximum
distance that an individual point falls from the line.

* This is the best strategy but it 1s not suitable 1n the
existance of an outlier, that is a single point with a
large error.

S, = Z(yi —d, _alxi)z
i=1

. . 12
We need to find unknowns a, and a, to determine the line.



(a)

()

® Outlier

(c)

FIGURE 17.2

Examples of some criteria for “best fit" that are inadequate for regression: (a)] minimizes the sum
of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c] minimizes

the maximum error of any individual point.
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Least-Squares Fit of a Straight Line/

oS
Best strategy: find the - = —22 (y,—a,—ax,)=0

J
unknowns a, and a, by 5
. . oS
minimizing S, : o= 2> [x(y,—a,—ax,)]=0
&

_N . 2
Sr _;(yi d al'xi) 0 = Zyi _Zao _zalxi
O=Zyl. i—Zanl. —Zale

Zao = na,
na, + (z X, \)al = Zyl.

Normal equations, can be solved simultaneously

Solution: Llne
4 :nzxiyi_zxizyi y:Cl0‘|‘Cl].X
1 n )Cl.2 —( X; )2 Mean values

—«/ 14

a,=y—ax



Example

Use least-squares regression to fit a straight line to

X 1 3 7 10 12 13 16 18 20

y 4 5 5 8 7 6 9 12 11

n=10

2% =105 L NGy -F XY, 10°906-105*73
Sy, =73 oy x2-Ox)*  10*1477-105
X =10.5

y=7.3 a, =7.3 - 0.3725*10.5 = 3.3888

> x? =1477

2 x;y; =906 y=a,tax

=0.3725

15



MATLAB implementation with polyfit

polyfit - Polynomial curve fitting

This MATLABE function finds the coefficients of a polynomial p(x) of degree n
that fits the data, p(x(i)) to y(i), in a least sguares sense.

p = polyfit(x,y,n)
(p,35] = polyfiti(x,v,n) 12 [ T g T T T T T @
[ ! ! ! ! ! ! ! !

p,S,mu] = polyfit(x,y,n)
11

10
x=[1;3;5;7;10;12;13;16;18;20];
y=14;5;6;5;8;7;6;9;12;11; 9
p=polyfit(x,y,1) : ;
yapp=p(2)+p(1)*x -;-
plot(x,y,'r0") i
. 6 .
grid 5
hold on °
plot(x,yapp) 4 ;

e T

16



Measurement
Yi
ao + (Il.»\if-
=
X; X
FIGURE 17.3

The residual in linear regression represents the vertical distance between a data point and the
straight line. 17



Error minimization (which one 1is the best fit?)

(a) (b)

FIGURE 17.4

Regression data showing (a) the spread of the data around the mean of the dependent variable
and (b) the spread of the data around the bestit line. The reduction in the spread in going from
(a) fo [b), as indicated by the bellshaped curves at the right, represents the improvement due to
linear regression.
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(a)

(b)

FIGURE 17.5

Examples of linear regression with (a) small and (b} large residual errors.

19



“Goodness” of our fit/
If

* Total sum of the squares around the mean for the
dependent variable, y, 1s S,

* Sum of the squares of residuals around the regression
lineis S,
* §—S§, quantifies the improvement or error reduction

due to describing data in terms of a straight line rather
than as an average value.

2 _ 5, =9, r?: coefficient of determination

S

v
t sqrt(#?) : correlation coefficient

20
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FUI d pCI wu lll D U dIlU I/ﬁl/'“il blg[llllelg LIldL L1C
line explains 100 percent of the Var1ab111ty of the data.

For r=r=0, § =S, the fit represents no improvement.

Usually an » value close to 1 represents a good fit. But
be careful and always plot the data points and the
regression line together to see what 1s going on.

B YIEX,;}-’!' — (EX,)(E}’,)
\/nEx? — (Ex,«)2 \/nEy? — (2};5)3
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* The following
pseudocode 1s an
algorithm for linear
regression. Implement
this algorithm by
using MATLAB and
try 1t with the data of
the previous example
(the example which
we used the polyfit
command).

SUB Regress(x, y, n, al, a0, syx, r2)

SUmx = sumxy = 0 st =
sumy = sumx2 = (0 sr =
DOFOR 7 = 1, n
SUMX = SUmx + X;
sumy = sumy + ;i
SUMXy = Sumxy + X;%y;
sumxZ = sumxz + X;*x;
END DO
Xm = sumx/n
ym = sumy/n

3]
L
3]
L

L T

al = (n*sumxy — sumx*sumy)/(n*sumxZ — sumx*sumx)

al = ym — al*xm
DOFOR 1 =1, n
st = st + (y; — ymF
sr=sr+ (y; — al*x; — a0)
END DO
syx = (sr/(n — 2))%*
rZ = (st — sr)/st

END Regress

FIGURE 17.6

Algorithm for linear regression.

22
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* Linear regression 1s useful to represent a linear relationship.

 If the relation is nonlinear either another technique can be
used or the data can be transformed so that linear
regression can still be used. The latter technique 1s
frequently used to fit the the following nonlinear equations
to a set of data.

Exponential equation : y = 4,e™*

Power equation: y = 4,x"

Saturation - growth rate equation : y = 4,x/(B; + x)



Linearization

|

Iny

Example: Fit an exponential model to the following data

0.4

0.8

1.2

1.6

2.0

2.3

750

1000

1400

2000

2700

3750

Create the following table

X

0.4

0.8

1.2

1.6

2.0

2.3

Iny

6.62

6.91

7.24

7.60

7.90

8.23




Procedure:
F1t a straight line to this new data set. Be careful with the notation.
* You can define z=In y.
* Calculate a,=6.25 and a,=0.841. Straight line 1s Iny=6.25+0.841x
« Switch back to the original equation. 4,=e*’=518, B,=a,=0.841
 The exponential equation is y=518 e0-841x
 Check this solution with couple of data points.

 For example y(1.2)=518 e0-841(12)=1421

« ¥(2.3)=518 e0841(2.3)=3584



logy = log A, + B, log x
Iagy ar

Linearization logy = ag + a;log x

—
z v

log x

Example: Fit a power equation to the following data set

X 2.5 3.5 5 6 7.5 10 12.5 15 17.5 20
y 7 5.5 3.9 3.6 3.1 2.8 2.6 2.4 2.3 2.3
log x | 0.398 | 0.544 | 0.699 | 0.778 | 0.875 | 1.000 | 1.097 | 1.176 | 1.243 | 1.301
logy | 0.845 | 0.740 | 0.591 | 0.556 | 0.491 | 0.447 | 0.415 | 0.380 | 0.362 | 0.362

+ Fit a straight line to this new data set. Be careful with the notation.
* Calculate a; = 1.002 and a; = -0.53. Straight lineis log y = 1.002 — 0.53 log x
» Switch back to the original equation. A, = 102 = 10.05, B, = a, = -0.53,

* Therefore the power equation is y = 10.05 x0-53, Check this solution with couple of data points. For
example  y(5) = 10.05 * 57033 = 4,28 or  y(15) = 10.05 * 15953 = 2,39, OK,



c. SATURATION-GROWTH RATE EQUATION

y

y = y=A; x [/ (B3+Xx)

Linearization

—-

11y

1!? - 1,‘{1&.3 + B3,I’A3x

ar
/1f?=an+a1{1fx}

11X

Example: Fit a saturation-growth rate equation to the following data set

X 0.75 2 2.5 4 6 8

y 0.8 1.3 1.2 1.6 1.7 1.8 1.7
1/x(1333| 05 0.4 0.25 | 0.1667 | 0.125 | 0.118
1/y | 125 | 0.769 | 0.833 | 0.625 | 0.588 | 0.556 | 0.588

» Fit a straight line to this new data set. Be careful with the notation.

* Calculate a5 = 0.512 and a, = 0.562. Straight lineis 1/y = 0.512 + 0.562 (1/x)
B, = a,A, = 1.097.

» Switch back to the original equation.

A, = 1/a, = 1.953,

* Therefore the saturation-growth rate equation is 1/y = 1.953 x/(1.097+x). Check this solution with
couple of data points. For example y(2) = 1.953*%2/(1.097+2) = 1.26

OK.
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* Some engineering data
is poorly represented
by a straight line. For
these cases a curve 1s
better suited to fit the
data. The least squares
method can readily be
extended to fit the data
to higher order
polynomuials.
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 Used to find a best-fit line for a nonlinear behavior.

Y

Yi

2
ap+ a; X+ a,x%

2
apt a;x +a,x

Example for a second order polynomial regression:

S _ 2
€= Vi Ay ay X; —dy X;

H

2 (vi — ag — ayx; — ax?)’

=1

To minimize S,, solve these /

equations to determine a,, a,, and a,

S, =

|
1
|
1
|
1
|
1
x

r'J(t'g

= =2 > xi(

X
y = ay + ax + (:21
Error (deviation) for the it data point
TL_S” = —22 (v; — ag — ayx; —
dd
:j; = =2 > x(y; — ap — awx; —
a8,

Vi — do — A1 X; —

+ e

ax7)

;)

X7 )
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Polynomial Regression

Problem Statement. Fit a second-order polynomial to the data

Solution.  From the given data,
m=2 >x =15 > xi =979
n==6 Dy =152.6 D xy = 585.6
Xx=25 D xi =55 D xjy; = 2488.8
y = 25.433 Ex? = 225

Therefore, the simultaneous linear equations are

6 15 55 | [ay 152.6
15 55 225 |qa; ¢ = § 5856
55 225 979 ] \a, 2488.8

ap = 247857 a, = 2.35929, and a, = 1.86071

y = 2.47857 + 2.35920x + 1.86071x 7

Yi

s oy — O | X

2.1

v
13.6
27.2
40.9
61.1
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Try the following pseudocode by using MATLAB with some

arbitrary examples and compare the results on the same examples
with polyfit command.

FIGURE 17.12

Algorithm for implementation of polynomial and multiple linear regression.

Step 1: Input order of polynomial o be fit, m.
Step 2: Input number of data points, n.
Step 3: If n < m + 1, print out an error message that regression is impossible and terminate

the process. If n = m + 1, continve.
Step 4: Compute the elements of the normal equation in the form of an augmented matrix.
Step 5: Solve the augmented matrix for the coefficients ag, a;, a, . . ., Q,, using an

elimination method.
Step 6: Print out the coefficients.

31



FIGURE 17.13
Pseudocode to assemble the
elements of the normal
equations for polynomial
regression.

DOFOR 1 = 1, order + 1
DOFOR j =1, 1
k=1+j—-2
sum = 0
DOFOR € = 1, n
sum = sum + Xxg§
END DO
d; ; = Sum
d;, s = SUM
END D0
sum= 0
DOFOR € = 1, n
sum = sum + Y - Xxp
END DO

di,order+2 — SUM
END DO

32



MULTIPLE LINEAR REGRESSION

* A useful extension of linear regression 1s the
case where y 1s a linear function of two or
more independent variables. For example, y
might be a linear function of 2 variables: x;,
and x,, as 1n

V= dy T+ a\X; T adxro + €

* For this two-dimensional case, the regression
“line” becomes a “plane™.

33



MULTIPLE LINEAR REGRESSION

FIGURE 17.14
Graphical depiction of multiple Yy
linear regression where y is a
linear function of x; and xs.

_______ S
/
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MULTIPLE LINEAR REGRESSION

As with the previous cases, the “best” values of the coefficients are
determined by setting up the sum of the squares of the residuals:

h

S,. — E (_".';' — dp — 1 Xy; — I_“'.‘Q,t.'g{')

=1

2

aS,
L= =2 (v — g — Ay — )
r)fr'g

aS,

S S i a0 — v — )
rJff‘l

as, -
e ) i =y — s — )
rJr:J’z

—

n X1 DX dg >y
2
2.x); X1 2 X1, ap ¢ = § 22XV
el
- 2'1‘25 z'rlf"t‘lzf E'TEE _ dy 2.1‘2;1\} 35




Problem Statement. The following data were calculated from the equation y = 5 +
4x, — 3x,:

X1 X2 g
0 0 5
2 1 10
2.5 2 Q
] 3 0
4 6 3
7 2 27

Use multiple linear regression to fit these data.

Solution.  The summations required to develop Eq. (17.22) are computed in Table 17.5.
The result 1s

6 165 14| (aq 54
165 7625 48 |qa,p = {2435
14 48 54 | \a, 100

which can be solved using a method such as Gauss elimination for

ag =5 a=4 a = -3

36
which is consistent with the original equation from which these data were derived.



MULTIPLE LINEAR REGRESSION

The foregoing two-dimensional case can be easily extended to m
dimensions,

y=ag+ ax; + ayx, +-+a,x, +e
[ S,
standard error s,/ = | |
. \ n—(m-+1)

Although there may be certain cases where a variable 1s linearly
related to two or more other variables, multiple linear regression
has additional utility in the derivation of power equations of the
general form:

a a

'-;‘-. — fl’{]ll 'rgl . 0w ,}1.”:.”

37



. MULTIPLE LINEAR REGRESSION .

FIGURE 17.15

Pseudocode to assemble the elements of the normal equations for multiple regression. Note that
aside from storing the independent variables in x; ;, x2;, etc., 1's must be sfored in xp ; for this al-
gorithm fo work.

DOFOR 7 = 1, order + 1

DOFOR j =1, 1
sum= (0
DOFOR € = 1, n
sum = sum + Xi-1.¢ - Xj-1.¢
END DO
di,.;j = Sum
a;; = sum
END DO
sum = 0
DOFOR € = 1, n
SUm = Sum + Yy + Xi_1.¢
END DO
dj,order+z = SUM
END DO

38



General Linear Least Squares

 In the preceding pages, we have introduced three
types of regression:
— simple linear,
— polynomial,
— multiple linear.

 In fact, all three belong to the following general
linear least-squares model:

V= dagZp + a13y T Ay + -+ a7, t e

m4<m

where 7y, 74, . . ., 2, are m + 1 basis functions. It can easily be seen how simple and

multiple linear regression fall within this model—that is, zo = 1, 2 = X1, 2o = X3, . . .,
Zn, = X, Further, polynomial regression is also included if the basis functions are simple

.
— = me = e - o
=L =x=x,..., = X .

0
X “m

monomials as in z; =
39



General Linear Least Squares

y=a,z,+az +a,z,++a,z +e

can be expressed 1in vector-matrix notations:

(¥} =[2}{4} +{E}

| Z | - matrix of the calculated values of the basis functions
at the measured values of the independent variable

{Y}—observed valued of the dependent variable

{ A} —unknown coefficients

{E} —residuals

. - 2 Ménirpiz@ by taking lilts ﬁa;tial
_ . erivative w.r.t. each of the
S’” o Z Vi Z aj Zji — coefficients and setting the
i=1 =0

resulting equation equal to zero 40



