
Interpolationp
Chapter 18

E ti ti i t di t l• Estimating intermediate values 
between precise data points

• We first fit a function that exactly y
passes through the given data 
points and then evaluate 
intermediate values using this g
function

• Polynomial interpolation: A 
unique nth order polynomialunique nth order polynomial 
passes through n points

• Spline interpolation: Pass 
diff t ( tl 3 ddifferent curves (mostly 3rd 
order) through different subsets 
of data points
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Interpolationp
Chapter 18

Th h d i l i l• The most common method is polynomial
interpolation:

n
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• Although there is one and only one nth-order 
polynomial that fits n+1 points, there are a variety of 

h i l f i hi h hi l i l bmathematical formats in which this polynomial can be 
expressed:

Th N t l i l– The Newton polynomial
– The Lagrange polynomial
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Newton’s Divided-Difference 
Interpolating Polynomials

Linear Interpolation/
• Is the simplest form of interpolation, connecting two data points 

ith t i ht liwith a straight line.
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• f1(x) designates that this is a first-order interpolating polynomial.



Similar triangles are shown in the 
figure. The ratio is:
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Example 18.1:
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Quadratic Interpolation/Q p
• If three data points are available, the estimate is improved by 

introducing some curvature into the line connecting the points.

second order interpolating polynomial
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second order interpolating polynomial.

• If we know three points (x0,y0), (x1,y1) and (x2,y2), the 
following simple procedure can be used to determine thefollowing simple procedure can be used to determine the 
values of the coefficients:
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Homework:

Modify the MATLAB code given in the previous example for quadratic interpolation and 
try it with the given initial values and some extra initial values.

Answer:
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Which one has less error – linear or quadratic interpolation?
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General Form of Newton’s Interpolating Polynomials/
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Finite divided differences used in the Newton’s interpolating 
polynomials can be represented in a table form. This makes the 

l l ti h i lcalculations much simpler.

In practice, the numbers generally decrease as we go right in the 
table. This means that the contribution of the higher order terms 

l th th t ib ti f l d t
12

are less than the contribution of lower order terms.



A MATLAB algorithm to implement Newton’s Interpolating Polynomials
Example 18 2 is tested with the following code Note that the code gives just b coefficientsExample 18.2 is tested with the following code. Note that, the code gives just b coefficients 
and the interpolated value of the function at some input xx.
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Homework:
Implement the previous code in MATLAB and try it with the Example 18.5 
in your textbook. In each case, calculate the relative percent error. Compare 

lt ith th t tb kyour results with the textbook.
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Errors of Newton’s Interpolating Polynomials/Errors of Newton s Interpolating Polynomials/
• Structure of interpolating polynomials is similar to the Taylor 

series expansion in the sense that finite divided differences areseries expansion in the sense that finite divided differences are 
added sequentially to capture the higher order derivatives.

• For an nth-order interpolating polynomial, an analogous p g p y , g
relationship for the error is:
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(i.e. between xi and xi+1)

• For non differentiable functions, if an additional point f(xn+1)
is available, an alternative formula can be used that does not 
require prior knowledge of the function:
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Lagrange Interpolating PolynomialsLagrange Interpolating Polynomials
• The Lagrange interpolating polynomial is simply aThe Lagrange interpolating polynomial is simply a 

reformulation of the Newton’s polynomial that 
avoids the computation of divided differences. Theavoids the computation of divided differences. The 
nth order approximation can be represented as:
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• As with Newton’s method, the Lagrange version has anAs with Newton s method, the Lagrange version has an 
estimated error of:
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A MATLAB algorithm to implement Lagrange Interpolating Polynomials
Example 18 5 is tested with the following code Note that the code gives just theExample 18.5 is tested with the following code. Note that, the code gives just the 
interpolated value of the function at some input xx.
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ExampleExample



Coefficients of an Interpolating 
Polynomial

• Although both the Newton and Lagrange 
polynomials are well suited for determining 
intermediate values between points, they do not 
provide a polynomial in conventional form:

n
x xaxaxaaxf ++++= 2
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• Since n+1 data points are required to determine n+1
coefficients simultaneous linear systems ofcoefficients, simultaneous linear systems of 
equations can be used to calculate “a”s.
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where “xi”s are the knowns and “ai”s are the unknowns.
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Interpolation with equally spaced dataInterpolation with equally spaced data
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Interpolation with equally spaced dataInterpolation with equally spaced data
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Interpolation with equally spaced dataInterpolation with equally spaced data

Prior to the advent of digital computers, these techniques had great g p , q g
utility for interpolation from tables with equally spaced arguments. 
In fact, a computational framework known as a divided-difference 

25
table was developed to facilitate the implementation of these 
techniques.



ExtrapolationExtrapolation
• Extrapolation is the process of estimating a value ofExtrapolation is the process of estimating a value of 
f(x) that lies outside the range of the known base points, 
x0, x1, . . . , xn.x0, x1, . . . , xn.
• The most accurate interpolation is usually obtained 
when the unknown lies near the center of the base points. w e t e u ow es ea t e ce te o t e base po ts.
• Obviously, this is violated when the unknown lies 
outside the range, and consequently, the error in ou s de e ge, d co seque y, e e o
extrapolation can be very large. 
• Extreme care should, therefore, be exercised whenever , ,
a case arises where one must extrapolate.
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Spline InterpolationSpline Interpolation
Th h l i l l d t• There are cases where polynomials can lead to 
erroneous results because of round off error and 

hovershoot.
• Alternative approach is to apply lower-order 

polynomials to subsets of data points. Such 
connecting polynomials are called spline functions.g p y p f

• Instead of using a single high-order polynomial that 
passes through the data points we can use differentpasses through the data points, we can use different 
low-order polynomials between each data pair.
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a linear spline

29



30



third-order curves employed to 
connect each pair of data points are 
called cubic splines Most widelycalled cubic splines. Most widely 
used splines are these types.
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Linear Splines/Linear Splines/

• The simplest connection between two points is a straight line.The simplest connection between two points is a straight line. 
The first-order splines for a group of ordered data points can 
be defined as a set of linear functions:
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Example:
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Quadratic Splines/Quadratic Splines/

• Every pair of points are connected by quadratic functions.Every pair of points are connected  by quadratic functions. 
• For n+1 data points, there are n splines and 3n unknowns.
• We need 3n equations to solve themWe need 3n equations to solve them.
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Quadratic Splines/Quadratic Splines/

These 3n equations can be found as given in the following:These 3n equations can be found as given in the following:
1. The function values of adjacent polynomials must be equal at 

the interior knots. 
2. The first and last functions must pass through the end points.
3. The first derivatives at the interior knots must be equal.q

The first 3 conditions supply 3n–1 equations. The last equation can be chosen 
through an arbitrary assumption:

4. Assume that the second derivative is zero at the first point.

The visual interpretation of this condition is that the first two points will be 
connected by a straight line.
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Example:
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Example - continued:
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Cubic Splines/
• The objective in cubic splines is to derive a third-order 

Cubic Splines/

polynomial for each interval between knots.

• Thus, for n+1 data points (i = 0, 1, 2, . . . , n), there are n intervals 
and, consequently, 4n unknown constants to evaluate:

1. The function values must be equal at the interior knots (2n–2 conditions)1. The function values must be equal at the interior knots (2n 2 conditions).
2. The first and last functions must pass through the end points (2 conditions).
3. The first derivatives at the interior knots must be equal (n–1 conditions).q ( )

4. The second derivatives at the interior knots must be equal (n–1 conditions).
5. The second derivatives at the end knots are zero (2 conditions).
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Cubic Splines/
• The above five types of conditions provide the total of 4n

Cubic Splines/

equations required to solve for the 4n coefficients.  This is a 
costly procedure.

• Whereas there is an alternative technique that requires the 
solution of only n–1 equations.
Th fi t t i th d i ti i b d th b ti th t• The first step in the derivation is based on the observation that 
because each pair of knots is connected by a cubic, the second 
derivative within each interval is a straight linederivative within each interval is a straight line. 

• On this basis, the second derivatives can be represented by a first-
order Lagrange interpolating polynomial:g g p g p y

39Let’s integrate this twice to yield an expression for fi(x).



Cubic Splines/Cubic Splines/

This equation contains only two unknowns, the second derivatives at the end of 
h i l Th k b l d i h f ll i ieach interval. These unknowns can be evaluated using the following equation:

40
If this equation is written for all interior points, n–1 simultaneous equations 
result with n–1 unknowns. The second derivatives at the end points are zero.
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Homework:
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Multidimensional Interpolation/
• The interpolation methods for one-dimensional problems can be 

Multidimensional Interpolation/

extended to multidimensional interpolation. 
• The simplest case is two-dimensional interpolation in Cartesian 

coordinates.
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Fourier Approximationpp
Chapter 19

• Engineers often deal with systems that 
oscillate or vibrate. 

• Therefore trigonometric functions play a 
fundamental role in modeling such problemsfundamental role in modeling such problems. 

• Fourier approximation represents a systemic 
framework for using trigonometric series for 
this purpose.this purpose.
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Curve Fitting with Sinusoidal 
Functions

A i di f ti f(t) i f hi h• A periodic function f(t) is one for which

)()( Ttftf +=
where T is a constant called the period that is the smallest 
value for which this equation holds.
A f h b d ib d i i i• Any waveform that can be described as a sine or cosine is 
called sinusoid:

)cos()( θω ++= tCAtf

Four parameters serve to characterize the sinusoid. The 
l A t th h i ht b th b i

)cos()( 010 θω ++= tCAtf

mean value A0 sets the average height above the abscissa. 
The amplitude C1 specifies the height of the oscillation. The 
angular frequency ω0 characterizes how often the cycles 

Th h l h hif θ i h
47

occur. The phase angle, or phase shift, θ parameterizes the 
extent which the sinusoid is shifted horizontally.



Addition of these 3 function gives
the function shown in (a)the function shown in (a)

48



49



• An alternative model that still requires four• An alternative model that still requires four 
parameters but that is cast in the format of a general 
linear model can be obtained by invoking thelinear model can be obtained by invoking the 
trigonometric identity:
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Least squares Fit of a Sinusoid/Least-squares Fit of a Sinusoid/
• Sinusoid equation can be thought of as a linear least-

d lsquares model
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• Thus our goal is to determine coefficient values that 
minimize
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Least squares Fit of a Sinusoid/Least-squares Fit of a Sinusoid/
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E lExample:
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Continuous Fourier SeriesContinuous Fourier Series

• In course of studying heat-flow problems, Fourier 
showed that an arbitrary periodic function can be 
represented by an infinite series of sinusoids of 
harmonically related frequencies. 

• For a function with period T, a continuous Fourier 
series can be written:
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Wh 2 /T i ll d f d l f d• Where ω0=2π/T is called fundamental frequency and 
its constant multiples 2ω0, 3ω0, etc., are called 
h iharmonics. 

• The coefficients of the equation can be calculated as 
follows:
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Frequency and Time DomainsFrequency and Time Domains

• Although it is not as familiar, the frequency domain
provides an alternative perspective for characterizing 
the behavior of oscillating functions.

• Just as an amplitude can be plotted versus time, it can p p
also be plotted against frequency. In such a plot, the 
magnitude or amplitude of the curve, f(t), is the 
dependent variable and time t and frequency f=ω0/2π
are independent variables. Thus, the amplitude and 
time axis form a time plane, and the amplitude and 
the frequency axes form a frequency plane.
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Fourier Integral and TransformFourier Integral and Transform

• Although the Fourier series is useful tool for 
investigating the spectrum of a periodic g g p p
function, there are many waveforms that do 
not repeat themselves regularly such as anot repeat themselves regularly, such as a 
signal produced by a lightning bolt. 

• Such a nonrecurring signal exhibits a 
continuous frequency spectrum and the q y p
Fourier integral is the primary tool available 
for this purpose.
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for this purpose.
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• The transition from a periodic to a nonperiodic function can be 
affected by allowing the period to approach infinity In other wordsaffected by allowing the period to approach infinity. In other words, 
as T becomes infinite, the function never repeats itself and thus 
becomes aperiodic. Then the Fourier series reduces to:p
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Distinction between Fourier Series 
and Fourier Transform

• each applies to a different class of functions
– the series to periodic and 

th t f t i di f– the transform to nonperiodic waveforms
• The two approaches differ in how they move between 

the time and the frequency domainsthe time and the frequency domains. 
– The Fourier series converts a continuous, periodic time-

domain function to frequencydomain magnitudes at discretedomain function to frequencydomain magnitudes at discrete 
frequencies. 

– The Fourier transform converts a continuous time-domain 
function to a continuous frequency-domain function.

• The discrete frequency spectrum generated by the 
Fourier series; a continuous frequency spectrum 
generated by the Fourier transform. 60



Discrete Fourier Transform (DFT)Discrete Fourier Transform (DFT)

• In engineering, functions are often represented 
by finite sets of discrete values and data is y
often collected in or converted to such a 
discrete formatdiscrete format.

• An interval from 0 to t can be divided into N 
equispaced subintervals with widths of 
Δt=T/N. 
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For such a sampled functions fn, a discrete Fourier transform can be 
written aswritten as
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Fast Fourier Transform (FFT)Fast Fourier Transform (FFT)
FFT i l i h h h b d l d h• FFT is an algorithm that has been developed to compute the 
DFT in an extremely economical (fast) fashion by using the 
results of previous computations to reduce the number of p p
operations.

• FFT exploits the periodicity and symmetry of trigonometric 
functions to compute the transform with approximately N log2
N operations Thus for N=50 samples the FFT is 10 timesN operations. Thus for N 50 samples, the FFT is 10 times 
faster than the standard DFT. For N=1000, it is about 100 
times faster.
– Sande-Tukey Algorithm
– Cooley-Tukey Algorithm
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Homework: Try the following MATLAB code at home 
and try to understand what’s going on at each step.
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