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| nter polation
Chapter 18

* The most common method is polynomial
Interpol ation:

f(X)=a, +aXx+ax’ +---+ax"

 Although thereis one and only one nth-order
polynomial that fits n+ 1 points, there are a variety of
mathematical formats in which this polynomial can be
expressed.
— The Newton polynomial
— The Lagrange polynomial



(a) (D) (c)

FIGURE 18.1

Examples of interpolating pelynomials: (a) firstorder (linear) connecting two points, (b) second-
order (quadratic or parabolic) connecting three points, and (c) third-order [cubic) connecting

four points.



Newton’s Divided-Difference
|nter polating Polynomials

Linear Interpolation/

» Isthe simplest form of interpolation, connecting two data points
with a straight line.

Slopeand a
finite divided
()= T(%) _ T(x)— (%) difference
X — X, Y — X approximation to
LR 1% derivative

f,(X)=f(x,)+ F04) = T(%) (X—X,) Linear-interpolation
S | — ' formula
b, I'Dl

» f,(x) designates that thisis afirst-order interpolating polynomial.
4




f(x) 4

Similar triangles are shown in the
figure. Theratio is:

Aol ¢ () — (%) _ F00) - F(%)
: X=X X =%
(0= (%) + D= T00) (e

f(xl) ________

ik (x(})

f () E f,(X)=a,+ax or
T i - . f,(X) =0, + B (X=X;)

First order interpolating polynomial

.

FIGURE 18.2
Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles used
to derive the linear-interpolation formula [Eq. (18.2)].



Linear Interpolation

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation.
First, perform the computation by interpolating between In 1 = 0 and In 6 = 1.791750.
Then, repeat the procedure, but use a smaller interval from In 1 to In 4 (1.386294). Note
that the true value of In 2 1s 0.6931472.

x0=1;

X1l=6;

f=0@(x) log(x);
Xx=x0:0.01:x1+0.1;
plot(x,f(x),'b"'") %function is blue
hold on

% interpolating line:

bO=f (x0);
bl=(f(xl)-£(x0))/(x1-x0);
y1=b0+bl* (x-x0) ;
plot(x,vl,'r') % line is red
hold off




Linear Interpolation

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation.

First, perform the computation by interpolating between In 1 = 0 and In 6 = 1.791750.
Then, repeat the procedure, but use a smaller interval from In 1 to In 4 (1.386294). Note

that the true value of In 2 1s 0.6931472.

x0=1;

x1=3;

=@ (x) log(x);
¥x=x0:0.01:x1+0.1;
plot(x,f(x),'b') %function is blue
hold on

% interpolating line:

b0=f (x0) ;
bl=(f(x1l)-£(x0))/(x1l-x0);
y1=b0+bl* (x-x0);
plot(x,vyl,'r') % line is red
hold off

using the shorter interval reduces the percent relative error v



Quadratic I nterpolation/

 |If three data points are available, the estimate is improved by
Introducing some curvature into the line connecting the points.

f,(X) = by +b,(X—X,) + 1, (X=X, )(X=X,)

second %er Interpolating polynomial.

 |f we know three points (X,,Yy), (X;,Y;) and (X,,Y,), the
following simple procedure can be used to determine the
values of the coefficients:

X=X b, = (%)

X=X b, = f(&)(?:;(xo)
FO)—f(x)  F(x)— (%)
X=X, h=— %=X X =%

2 =5



Homework:

Problem Statement.  Fit a second-order polynomial to the three points used in Example 18.1:
Xp = 1 flxg) =0
x, =4 f(x;) = 1.386294

X, =6 flxy) = 1791759

Modify the MATLAB code given in the previous example for quadratic interpolation and
try it with the given initial values and some extrainitial values.

Answer: A S S R B N R




FIGURE 18.4

The use of quadratic interpolation to estimate In 2. The linear interpolation from x = 1 1o 4 is

also included for comparison.

f@ 4
2 -
1 -
B Quadpratic estimate
B Linear estimate
I I | | .
0 : -
0 = 5 X
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General Form of Newton’s Interpolating Polynomials/

Fo () = (%) + (X=%0) F[X, X ]+ (X =% )(X= %) T[ X5, X, %]
o (X=X ) (X = X) -+ (X=X g) T X0 X gm0 %]

b, = (%)

b, = f[x, %]

b, = T[X,, %, %]

bn: f[xn’xn—l’“"xl’xo]

F(x)—-1(x))
@ %=X

fIx,x.]— f[X;, %] Bracketed function evaluations are
— X finite divided differences
X = X
FIX X gy X ] = F[X X oy, %]
X~ % 11




Finite divided differences used in the Newton’s interpolating
polynomials can be represented in atable form. This makes the
calculations much simpler.

i X; f(x;) First Second Third
0.\ [ 1 f r
0 o ————— i[x), ] ————> x5, X1, xg] ———>[x2, x93, X1, X5
0 Xq ol —— r[x: ) - _ l [%5, X1, o] — ¥ e x Xo]
1 X ) =——2 ilx, ] =——21[x3, x0, x7] —
oo _______-——‘?' - : _______-——’!" -
Z Xq N¥g| —————>» T[K:. Xal| —
. o — T
3 X7 nxal —

FIGURE 18.5

Graphical depiction of the recursive nature of finite divided differences.

In practice, the numbers generally decrease as we go right in the
table. This means that the contribution of the higher order terms

are less than the contribution of lower order terms.
12
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and the interpolated value of the function at some input xx.
%x=[1 4 6]; % initial walues
f=@(t) log(t):
y=£f(x)’
K¥=2;
% Uses an (n - 1)-order Newton interpolating polynomial based on n data points (x, v)
% to determine a value of the dependent wariable (yint) at a given value of the independent wvariable, xx.
% input: x = initial points; v = f£(x); %x = interpolation will be calculated at xX=xx
% output: yint = interpolated wvalue of xx ( true walue is ytrue=f(xx) )
n = length(x);
if length(y)~=n, error('x and y must be same length'); end
b = zerosi(n,n);
% assign dependent wvariables to the first column of b.
b(:,1) = v(:); % the (:) ensures that v is a column vector.
for § = 2:n
for i = 1:n-j+1
b(i,3) = (b(1+1,3-1)-b(1,J-1))/(x(1+3-1)-x(1));
end
end
% use the finite divided differences to interpolate
xt = 1;
yvint = b(1l,1);
for § = 1:n-1
Xt = XL* (xx-x(3));
yint = yint+b (1, j+1) *xt;
end
out b coeffs=(b(1l,:))
out yint=yint

13



Homework:

|mplement the previous code in MATLAB and try it with the Example 18.5

In your textbook. In each case, calculate the relative percent error. Compare
your results with the textbook.

18.5 Error Estimates to Determine the ﬁq:pru{nimt% Order of rtﬁrpgiu?fﬂ'

Problem Statement.  After incorporating the error [Eq. (18.18)]. utilize the computer
algorithm given in Fig. 18.7 and the following information to evaluate f(x) = In x
at x = 2:

x

f(ix) = Inx

O
1.3862%44
1.7917595
1.60943/9
1.0986123
0.4054641
0.9162907
1.2527630

Lo R — Lo L O s —

(W] 'Lﬂ (W]

14



Fr ors anrt n’l Nl
| — |

o ar NN NnAl |I nMmialc/
\ W J | I N\LVVULUVUI I 1 | |rJ Wl CA IH | |

I U111 QA JJ

o Structure of interpolating polynoml asissimilar to the Taylor
series expansion in the sense that finite divided differences are
added sequentially to capture the higher order derivatives.

e For an nt"-order interpolating polynomial, an analogous ~ E&

relationship for the error is: ks
f (n+1) ( é:) & is somewhere between
— X — oo (X — unknown and the data
" ( +1)! QTIOR3 (i.e. between x, and x;,,)

 For non differentiable functions, if an additional point f(x, ;)
IS avallable, an alternative formula can be used that does not
require prior knowledge of the function:

Ry = F DXt X Xogr oo X (X=X )(X = %) -+ (X = X,)

15
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grange inter poiating rorynomial S

* The Lagrange interpolating polynomial isssmply a
reformulation of the Newton’ s polynomial that
avoids the computation of divided differences. The
nth order approximation can be represented as:

£ (0= L) f(x)
D
L =][——

i=0 & — X,

j#i

16



f(X) = L (%) + 2 f (x,)

XO_Xl Xl_XO
o X)) o (e )xex,)
L ey ey Rl oy e A

_I_

X— X, J(X—
(X=%)X=%) ¢y )
(Xz — X )(Xz _Xl)

» Aswith Newton’'s method, the Lagrange version has an
estimated error of:

R = f[X,X,X ..., Xo]l_ﬂ[(x—&)

17



100

50

-50

-100

-150

Third term

Summation
of three
terms = fi(x)

First term

Second term

FIGURE 18.10

A visual depiction of the rationale behind the Llagrange polynomial. This figure shows

a second-order case. Each of the three terms in Eq. [18.23) passes through one of the data
points and is zero at the other two. The summation of the three terms must, therefore, be the
unique second-order polynomial f;(x) that passes exactly through the three points.

18



Example 18.5 istested with the
interpolated value of the function at some input xx.

— o

£11 R PE N
10HOwWITIg COUCE. |

x=[14 65 3 1.5 2.5 3.5]; % initial walues
f=@(t) log(t):
y=f(x);
H¥=2;
% Lagrange interpolating polynomial
% Uses an (n - 1)-order Lagrange interpolating polynomial based on n data points
% to determine a value of the dependent variable (yint) at =x.
% inputs: X, ¥, XX
% output: yint = interpolated wvalue of f at xx.
n = length(x):
if length(y)~=n, error('x and y must be same length'); end
s = 0;
for 1 = 1:n

product = y(i);

for 7 = 1:n

if 1 ~= j
product = product* (xx-x(7))/(x(1i)-x(]))-
end
end
5 = s+product;

-end

yint=s

19



X f(x) Calculate f(4) using Lagrange Interpolating Polynomials
1 | 475 (a) of order 1

2 | 4.00 (b) of order 2

3 | 5.25

5 | 19.75

6 | 36.00

(a) Linear interpolation. Selectxg =3, x; =5
(%) = Lo(x) flxg) + Ly(x) fx;) = (x-5)/(3-5) 5.25 + (x-3)/(5-3) 19.75
f(4) ~ 12.5

(b) Quadratic interpolation. Selectxg =2, x4 =3, X, =5

fa(x) = Lo(x) f(xo) + Ly(x) f(xy) + Ly(x) f(x;)
= (x-3)(x-5)/(2-3)(2-5) 4.00 + (x-2)(x-5)/(3-2)(3-5) 5.25 + (x-2)(x-3)/(5-2)(5-3) 19.75

f(4) ~ 10.5



Coefficients of an Interpolating
Polynomial

 Although both the Newton and Lagrange
polynomials are well suited for determining
Intermedi ate val ues between points, they do not
provide a polynomial in conventional form:

f(X)=a,+ax+ax +---+ax"

e Since n+1 datapoints are required to determine n+1
coefficients, smultaneous linear systems of
equations can be used to calculate “a”’s.

21



f (%) =8y +aX +a,X +a,X
f(Xx)=ay+aX +ax --+ax
2 n

a,X"---+a X

n n-n

f(x,)=a,+a,X

n

where “x;” s are the knowns and “&,” s are the unknowns

22
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It data are equally spaced and in ascending order, then the indepen-
dent variable assumes values of

x]:xu‘l‘h
JCEZID—I—Qh

X, = Xo + nh

where /1 is the interval, or step size, between these data. On this
basis, the finite divided differences can be expressed in concise
form.

23
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Af(xp)
fu(x) = flx) + %) o)
A f(xp)
+ %u— — X)X — X0 — I)
FR ﬁiﬂ'3')(,1:—xﬂ.)(::;—x.ﬂ.—h)
n'h"

ey —xg— (n— D)h] + R,

This equation is known as Newton's formula, or the Newton-Gregory forward formula.
X — X{)
h

[t can be simplified further by defining a new quantity, @: «a =

24
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A% f(xy)
£.(x) = f(xg) + Af(xg)a + {:_“ ala — 1)
Aﬂf{-\ﬂ}
+ - 4+ ' ala — 1) (a—n+1)+ R,
.
where
}L'{”'l‘l}{ }
R, = - 3 "o — 1)(a—2) - (a —n)
(n + 1)!

Prior to the advent of digital computers, these techniques had great
utility for interpolation from tables with equally spaced arguments.
In fact, a computational framework known as a divided-difference

table was developed to facilitate the implementation of these
techniques.

25



EXxt p lation

e Extrapolation isthe process of estimating a value of
f(x) that lies outside the range of the known base points,
Xgs X1y « « « 5 Xy

e The most accurate interpolation is usually obtained
when the unknown lies near the center of the base points.
e Obvioudly, thisisviolated when the unknown lies
outside the range, and conseguently, the error In
extrapolation can be very large.

* Extreme care should, therefore, be exercised whenever

a case arises where one must extrapolate.

26



J(x) 4

True
curve

Extrapolation
'; of interpolating
s polynomial

Y

FIGURE 18.13

lllustration of the possible divergence of an extrapolated prediction. The extrapolation is based
on fitting a parabola through the first three known points.

27
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Spline Interpo

e There are cases where polynomials can lead to
erroneous results because of round off error and
overshoot.

o Alternative approach isto apply lower-order
polynomials to subsets of data points. Such
connecting polynomials are called spline functions.

 |nstead of using a single high-order polynomial that
nasses through the data points, we can use different
ow-order polynomials between each data pair.

28
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fx f
0 x 0
() (d)

alinear spline
FIGURE 18.14
A visual representatfion of a situation where the splines are superior to higher-order interpolating
polynomials. The function to be fit undergoes an abrupt increase at x = O. Paris (a) through
(c) indicate that the abrupt change induces oscillations in interpolating polynomials. In contrast,

because it is limited to third-order curves with smooth transitions, a linear spline (d) provides a
much more acceptable approximation.

29



FIGURE 18.15
The drafting fechnique of using a spline to draw smooth curves through a series of points. Notice
how, at the end points, the spline siraightens out. This is called a “natural” spline.

30



_

First-order
B spline
2 I
0 S [ [ |
2 4 6 8 10
(a)
flx) 4
= Second-order
spline
2 =
0 |
X
(b)
fx) 4
= Cubic
spline Interpolating
g cubic
L. —> third-order curves employed to
0 I connect each pair of data points are

X

©) called cubic splines. Most widely
used splines are these types.

FIGURE 18.16
Spline fits of a set of four points. (a) Linear spline, (b) quadratic spline, and (c) cubic spline, with
a cubic interpolating polynomial also ploted. 31
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e The simplest connection between two pointsisastraight line.

Thefirst-order splinesfor agroup of ordered data points can
be defined as a set of linear functions:

f{ 1) — f(‘-.o} + HFU(I — _.1‘0) Xo =y = X, f{:}{)
f{ 1) — f(\.l} + Hi'](-’l.' — ,.1‘]) X = X =< X

f{l) _f n— ]} + ny, l(" o .-1'”_]) Xn—1 c:—:']“{—:'l‘.n

where m; 1s the slope of the straight line connecting the points:

f{lr-l—l) _f

Xi+1 — X

m; =

32



First-Order Splines

Problem Statement. Fit the data in Table 18.1 with first-order splines. Evaluate the
function at x = 5.

Solution.  These data can be used to determine the slopes between points. For example,

for the interval x = 4.5 to x = 7 the slope can be computed using Eq. (18.27):

2517
T—45

The slopes for the other intervals can be computed, and the resulting first-order splines
are plotted in Fig. 18.16a. The value at x = 5 is 1.3.

= 0.60

m

TABLE 18.1

Data to be fit with fx) 4

spline functions. B First-order

spline

x f(x) o L

3.0 2.5 -

4.5 1.0

7.0 2.5 - | .
G.0 0.5 2 4 6 8 10 x

33
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« Every par of points are connected by quadratic functions.
For n+ 1 data points, there are n splines and 3n unknowns.

e We need 3n equations to solve them.

a,x2+b,x+c,

f(x)| apx?+byx+c, / a, x2+b, x+c,

\/\ \/T
SRS

|
1

Xo Xy

34
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These 3n equations can be found as given in the following:

1. The function values of adjacent polynomials must be equal at
the interior knots.

2. Thefirst and last functions must pass through the end points.
3. Thefirst derivatives at the interior knots must be equal.

|
Thefirst 3 conditions supply 3n—1 equations. The last equation can be chosen
through an arbitrary assumption:

4. Assume that the second derivative is zero at the first point.
\ J
|
The visual interpretation of this condition is that the first two points will be
connected by a straight line.

35



Example:

x| fx) Develop quadratic splines for these data points and predict f(3.4) and f(2.2)
1 1 f(x) - a;x2+ b;x + ¢
|
2 | s A /
25| 7 | | |
|
A A
402 IR X
Xp=1 2 25 3 4

» There are 5 points and n=4 splines. Totally there are 3n=12 unknowns. Equations are

» End points: a;12+b;14¢, =1 , ¥+ b,4+c,=2

o Interior points:  a;22+b;2+¢; =5 , 3,22+ by,24¢,=5
3,252+ by254+¢c, =7, a3252+b325+¢;=7
a332+ b3 +¢,;=8 ; 3,32+ by34+¢,=8

* Derivatives at the interior points:  2a,2+ b; = 2a,2+ b,
2a,2.5+ b, =2a;2.5+ b,
2333+ b3= 2343 + b4

* Arbitrary choice for the missing equation: a, = 0 36



Example - continued:

*» a,=0 is already known. Solve for the remaining 11 unknowns.

11 0 0 0 0 0 0 0 o0 of [b] 1
00 0O O 0 O O O0 16 4 1| |c 2
21 0 0 0 0 0 0 0 0 0 |a 5
00 4 2 1 0 0 0 0 0 0f|b 5
0 0625251 0 ©0 0 0 0 0 |c 7
00 0O O 0625251 0 0 0| Jda,p =137y = A
00 0 O 0 9 3 1 0 0 0| |b, 8
00 0 O 0 O ©O0 0 9 3 1| |c 8
10 -4 -10 0 0 0 0 0 0 |a 0
00 5 1 0 -5 -10 0 0 0| |b, 0
00 0 0 0 6 1 0 -6 -1 0] |c, 0

» Equations for the splines are
1stspline: f(x) =4x -3 (Straight line.)
2nd spline: f(x) = 4x -3 (Same as the 1st. Coincidence)
3rd spline:  f(x) = -4x2 + 24x - 28
4th spline: f(x) = -6x2 + 36x — 46
» To predict f(3.4) use the 4™ spline. f(3.4) = -6(3.4)2+36(3.4)-46 = 7.04
To predict f(2.2) use the 2" spline. f(2.2) = 4(2.2)-3 = 5.8

37
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e Theobjectivein cubic splinesisto derive athird-order
polynomial for each interval between knots.

filx) = ax + bjx* + c;x + d

e Thus, for n+ldatapoints(i=0,1,2,...,n),therearenintervals
and, conseguently, 4n unknown constants to evaluate:

1. The function values must be equal at the interior knots (2n-2 conditions).
2. Thefirst and last functions must pass through the end points (2 conditions).
3. Thefirst derivatives at the interior knots must be equal (n-1 conditions).
4. The second derivatives at the interior knots must be equal (n-1 conditions).
5. The second derivatives at the end knots are zero (2 conditions).

38



ubic Solines/
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The above five types of conditions provide the total of 4n
equations required to solve for the 4n coefficients. Thisisa
costly procedure.

Whereas there is an alternative technique that requires the
solution of only n—1 equations.

Thefirst step in the derivation is based on the observation that
because each pair of knots is connected by a cubic, the second
derivative within each interval isastraight line.

On this basis, the second derivatives can be represented by afirst-
order Lagrange interpolating polynomial:

‘&
wu

T, . o . ] ,1‘ - _‘illl' I i 11‘ _— 11,|II_1
fi(x) = fi'(xi—y) + f7(x;)
Xy — X X, — X

Let’s integrate this twice to yield an expression for f(x). 39



Cirihie Qi
CUbiC opilirics
f(x) o) SR AT )’
(x) = X, — X X — X;_
. 6(x; — x;iq) 6(x; — X;—1) o
[ f(x;—y) (X)) (x; — x;_
L SeD ) ]u,- )
LY — X 6
f(x;) F"(x)(x; — x;_1) ]
+ - (X — X;—1)
LXi T X 6

This equation contains only two unknowns, the second derivatives at the end of
each interval. These unknowns can be evaluated using the following equation:

I I i 6 - -
(X — X ) () + 2000 — x5 ) () + (e — )" () = = Lf(xier) — f(xp)]

Xit+1 Vi
6
Xi = Xi—g

+

Lf(xim) — f(x) ]

If this equation iswritten for all interior points, n—1 simultaneous equations
result with n—1 unknowns. The second derivatives at the end points are zero. 40



MATLAB Function: spline

>> help spline
spline Cubic spline data interpolation.
PP = spline(X,Y) provides the piecewlise polynomial form of the
cubic spline interpolant to the data values Y at the data sites X,

for use with the evaluator PPVAL and the spline utility UNMEKPP.
X must be a vector.

Example:
This 1llustrates the use of clamped or complete spline interpolation where
end slopes are prescribed. In this example, zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced:

X =-4:4; y= [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];

cs = spline(x, [0 v 0]1); 3

XX = linspace(-4,4,101); e
plot(x,y,'o",xx,ppval(cs,xx),"'-");
2 L

See also interpl, mkpp, pchip, ppval, unmkpp 157
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Cubic Splines

Problem Statement.
(Table 18.1). Utilize the results to estimate the value at x = 5.
TABLE 18.1

Data to be fit with
spline functions.

x f(x)
3.0 2.5
4.5 1.0
/7.0 2.5
@.0 0.5

Fit cubic splines to the same data used in Examples 18.8 and 18.9

42



MATLAB Function: interpl

>> help interpl
interpl 1-D interpolation (table lookup)

Vg = interpl (¥,V,¥Xq) 1interpolates to find Vg, the values of the
underlying function V=F(¥) at the query points Xq.

¥ must be a vector. The length of X 1s equal to N.

If V is a vector, V must have length N, and Vg 15 the same size as Xq.
If Vv is an array of size [N,D1,D2,...,Dk], then the interpolation 1is
performed for each Dl-by-D2-by-...-Dk value in V(i,:,:,...,:). If Xg
15 a vector of length M, then Vg has size [M,D1,D2,...,Dk]. If Xg 1s
an array of size [M1,M2,...,M]j], then Vg is of size
[M1,M2,...,Mj,D1,D2,...,DK].

For example, generate a coarse sine curve and interpolate over a

finer abscissa: s =
X = 0:10; Vv = 5in(X); Xq = 0:.25:10; it @
. 05 ; g p
Vg = interpl(X,V,Xq): plot(X,V,'o',Xq, Vg, ':.") : " : @
; ® :
0 R ; 3
See also griddedInterpolant, interp?, interp3, interpn ol
05 ®
&,
1 " 43
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The interpolation methods for one-dimensional problems can be
extended to multidimensional interpolation.

The simplest case I's two-dimens onal Interpolation in Cartesian
coordinates. fix, 1))

FIGURE 18.19

Graphical depiction of two-dimensional bilinear interpolation where an intermediate value (filled 44
circle is estimated based on four given values (open circles).



Fourier Approximation
Chapter 19

* Engineers often deal with systems that
oscillate or vibrate.

* Therefore trigonometric functions play a
fundamental role in modeling such problems.

* Fourier approximation represents a systemic
framework for using trigonometric series for

this purpose.
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FIGURE 19.2

Aside from frigonometric
functions such as sines and
cosines, periodic funcfions
include waveforms such as

(a) the square wave and (b) the
sawtooth wave. Beyond these
idealized forms, periodic

signals in nature can be (c) non-

ideal and (d) contaminated by
noise. The frigonometric func-

tions can be used to represent
and to analyze all these cases.
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Curve Fitting with Sinusoidal
Functions

« A periodic function f(t) is one for which
f(t)=f(t+T)

where T is a constant called the period that is the smallest
value for which this equation holds.

« Any waveform that can be described asasineor cosineis
called sinusoid:

f(t)=A +C, cos(w,t+6)

Four parameters serve to characterize the sinusoid. The

mean value A, sets the average height above the abscissa.

The amplitude C, specifiesthe height of the oscillation. The
angular frequency a, characterizes how often the cycles
occur. The phase angle, or phase shift, & parameterizesthe
extent which the sinusoid is shifted horizontally. 47
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ddltlon f these 3 functlon gives

1
B; sin (wgyf)
] ) ' ] />T\ u
f | | o N\ .
| ] | 2 t’_s A, cos (wgt)
0 T 2 37 wt, rad

FIGURE 19.3

(@) A plot of the sinusoidal function i} = Ag + C; coslwgt + ). For this case, Ag = 1.7,
Ci=1,w00=2w/T=2mw/(1.55), and 8 = 7/3 radians = 1.0472 (= 0.25 s). Other
parameters used to describe the curve are the frequency f = wo/(2), which for this case is

1 cycle/(1.5 s) and the period T = 1.5 s. (b An alternative expression of the same curve is
vt) = Ao + A coslwot] + By sinfwot). The three components of this function are depicted in (b),
where A; = 0.5 and B, = —0.866. The summation of the three curves in (b) yields the single
curve in (a).
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As depicted in Fig. 19.4a, a negative value
is referred to as a lagging phase angle because the curve cos(wyf — 6) begins a new
cycle @ radians after cos(wgf). Thus, cos(wyf — ) 1s said to lag cos(wgf). Conversely, as
in Fig. 19.4b, a positive value is referred to as a leading phase angle.

cos (wy!) I e (wor—%)
\f "
v ‘
’ '
' '
[ 'l 3
/ / : wy = 2mf
B 1
I=7
[
FIGURE 19.4
Graphical depictions of (a) a lagging phase angle and (b) a leading phase angle. Note that the
lagging curve in (a) can be alternatively described as cos(wgt + 37 /2). In other words, if a 49

curve lags by an angle of e, it can also be represented as leading by 27 — a.



ernative modd that still requires four
parameters but that is cast in the format of a general
linear model can be obtained by invoking the

trigonometric identity:

C, cos(aw,t + 8) = C[cos(w,t) cos(8) — sin(w,t) SIN(6)]
f(t)=A,+A cos(w.t)+ B, sin(w,t)

where
A =C, cos(6 B, =-C,sin(6)
@ = arctan| — Ej

A

C1: 2"'812
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e Sinusoid eguation can be thought of as alinear |east-

sguares model

y=A + A cos(wpt) + B, sin(w,t) +e
Y=QGH T4 T4, T AL, TE
Z2,=1 2z =cos(wy),...

e Thusour goal isto determine coefficient values that
minimize

S =y ~[A+ Acost@t) + B sin(a, )]
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Thus, for equispaced points the normal equations become

‘N 0 0 ](A, Sy
0O N/2 0 A, = 2V cos(wgyl)
0 0 N/2 |\ B, >y sin(wgt)

The inverse of a diagonal matrix 1s merely another diagonal matrix whose elements are
the reciprocals of the original. Thus, the coefficients can be determined as

Ao "I/N 0 0 | >y
Ayy=|1 0 2/N 0 >y cos(wt)
B, 0 0 2/N]\ Xysin(wyr)
or
2y 2 2
AO — T Al = Ezy COS(&){}I) B] = Ezy Sin({ﬂaf)

Least-squaresFit: 'y = A + A cos(apt) + B, sin(ajt) >



least-Squares Fit of a Sinusoid

Example Problem Statement. The curve in Fig. 19.3 is described by y=1.7 4+ cos(4.189¢ +
* 1.0472). Generate 10 discrete values for this curve at intervals of At = 0.15 for the range
t =0 to 1.35. Use this information to evaluate the coefficients of Eq. (16.11) by a least-
squares fit.
Solution.  The data required to evaluate the coefficients with @ = 4.189 are
t y y cos(wof) y sin(wf)
0 2.200 2.200 0.000
0.15 1.595 1.291 0.938
0.30 1.031 0.319 0.980
0.45 0.722 —0.223 0.687
0.60 0.786 —-0.636 0.462
0.75 1.200 —1.200 0.000
0.90 1.805 —1.460 —-1.061
1.05 2.369 -0.732 —2.253
1.20 2.678 0.829 —2.547
1.35 2614 2.114 —1.536
2= 17.000 2.502 —4.330
2

17000
0 10

2
1.7 Ay =—2502 = 0.500 B, = 0(—4.330) = —0.866

10 10

=—> y= 1.7 + 0.500 cos(wof) — 0.866 sin(wl) >3
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 |n course of studying heat-flow problems, Fourier
showed that an arbitrary periodic function can be
represented by an infinite series of sinusoids of
harmonically related frequencies.

« For afunction with period T, a continuous Fourier

series can be written:
f (t) =a, +a, cos(a,t) + b, Sin(agt) + a, cos(2aw,t) + b, Sin(2awgt) + -
moreconcisely

() =a,+ [a, coskayt) + b, sin(kayt)]
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 Where w,=27T is called fundamental frequency and
Its constant multiples 2a,, 3w, €tc., are called
harmonics.

* The coefficients of the equation can be calculated as
follows:

)
a, = % j f (t) cos(kat)dlt
0

b, = ﬂ f (t) Sin(kay t)ct

fork=1, 2, ...

1T
aoz?j f (t)dt
0
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« Although it is not as familiar, the frequency domain
provides an alternative perspective for characterizing
the behavior of oscillating functions.

e Just as an amplitude can be plotted versus time, it can
also be plotted against frequency. In such aplot, the
magnitude or amplitude of the curve, f(t), Isthe
dependent variable and timet and frequency = wy/27
are independent variables. Thus, the amplitude and
time axis form atime plane, and the amplitude and
the freguency axes form a frequency plane.
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(a)

Amplitude
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(c) (d)

FIGURE 19.7
(a) A depiction of how a sinusoid can be porfrayed in the time and the frequency domains. The

time projection is reproduced in (b), whereas the amplitude-frequency projection is reproduced in
(c). The phasefrequency projection is shown in (d).
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 Although the Fourier seriesis useful tool for
Investigating the spectrum of aperiodic
function, there are many waveforms that do
not repeat themselves regularly, such asa

signal produced by alightning bolt.

» Such anonrecurring signal exhibits a
continuous frequency spectrum and the

Fourier integral isthe primary tool available
for this purpose.
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== j f(t)e ! dt
-T/2

w,=2rx/T k=012,...

- The transition from a periodic to a nonperiodic function can be
affected by allowing the period to approach infinity. In other words,
as T becomes infinite, the function never repeats itself and thus
becomes aperiodic. Then the Fourier series reduces to:

.
1 7. -

Inverse ,@: — J F(I (()O)ela)otdwo

Fourier ¢ 27T L _ _

transform )y Fourier transform pair

of F(i ay) o - -
jf(t)eodt Fourier integral of f(t), or

Fourier transform of f(t)



Distinction between Fourier Series
and Fourier Transform

e each appliesto adifferent class of functions
— the series to periodic and
— the transform to nonperiodic waveforms
e Thetwo approaches differ in how they move between

the time and the frequency domains.

— The Fourier series converts a continuous, periodic time-
domain function to frequencydomain magnitudes at discrete
frequencies.

— The Fourier transform converts a continuous time-domain
function to a continuous frequency-domain function.

* The discrete frequency spectrum generated by the
Fourier series; a continuous frequency spectrum
generated by the Fourier transform.
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 In engineering, functions are often represented
by finite sets of discrete values and datais
often collected in or converted to such a

discrete format.

 Aninterval from0Otot can bedividedinto N
equispaced subintervals with widths of
At=T/N.
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The sampling points of the discrete Fourier series.

FIGURE 19.11

£) 3
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as
N

1
Fo=> fie™  fork=0toN — 1
n=0

f

f2 ~
. . |
and the inverse Fourier transform as i | 9 |
e |
|

N—-1

1 .
fo=—= D Fe™  forn=0toN— 1
N =

where wy, = 27/ N. DOFOR k = 0, N — I
DOFOR n = 0, N — 1
angle = Kwgh

real, = real, + f, cos(angle)/N
imaginary, = imaginary, — f, sin(angle)/N
END DO
END DO

FIGURE 19.12 63
Pseudocode for computing the DFT.




Fast Fourier Transform (FFT)

o FFT isan algorithm that has been devel oped to compute the
DFT in an extremely economical (fast) fashion by using the
results of previous computations to reduce the number of

operations.

« FFT exploits the periodicity and symmetry of trigonometric

functions to compute the transform with approximately N log,
Nl nnaratinne Thiic for N=50 cnmnlac the FFT |c 10 times

I\I\JPL:LAL\J\J 11 1IUuw 1V Iy LT | L\ LIl VYD

faster than the standard DFT. For N 1000, it is about 100
times faster.

— Sande-Tukey Algorithm

— Cooley-Tukey Algorithm
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DFT(-~N?)

1000

Operations

FIGURE 19.14
Plot of number of operations vs. sample size for the standard DFT and the FFT.
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MATLAB Function: £ft

fft - Fast Fourier transform

This MATLAB function returns the discrete Fourier transform (DFT) of vector x,
computed with a fast Fourier transform (FFT) algorithm.

£t (x)
£t (X, n)

££t (X, [1,dim)
fft (X, n, dim)

R

See also fft2?, fftn, fftshift, fftw, filter, ifft

Acommaon use of Fourier fransforms is to find the frequency components of a signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz. Form a
signal containing a 50 Hz sinusoid of amplitude 0.7 and 120 Hz sinusoid of amplitude 1 and corrupt it with some zero-mean random noise:

Fs = 1000; ¥ Sampling frequency

T =1/Fs: % Sample time

L = 1000; % Length of signal

t = (0:L-1)=*T; % Time wector

% Sum of & 50 Hz sinuscid and & 120 Hz sinuscid

X = 0,7T*3in(2*pi*50*C) + sin(2*pi*l20*tL);

¥ = X + Z2*randn(size(t)); % Sinmuscids plus noise

plot{Fa*t(1:50) ,v{1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlaebkel ("time (milliseconds)’')
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Homework: Try the following MATLAB code at home
and try to understand what’ s going on at each step.

clear all
close all

% fft Example

n=8; dt=0.02; fs=1/dt; T = 0.1¢&;
tspan=(0:n-1)/fs; % omits the last point
y=5+cos (2*pi*12.5*tspan)+sin(2*pi*31.25*tspan);
subplot(3,1,1);

plot(tspan,y,'-og', "linewidth', 2);

title('(a) f(t) wversus time (s)"'); grid;

Y=£fft (y)/n;
nyquist=fs/2; fmin=1/T;
f = linspace(fmin,nyquist,n/2);

Y(1)=[1:YP=Y(1l:n/2);

subplot (3,1, 2)

stem(f, real (YP), "linewidth', 2, "MarkerFaceColor', "blue')
grid;title(' (b) Real component versus frequency')
subplot (3,1, 3)

stem(f, imag(YP), 'linewidth', 2, "MarkerFaceColor', 'blue')
grid; title(' (b) Imaginary component versus frequency')
xlabel ('frequency (Hz)')
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