Part 6

Numerical Differentiation and Integration
MOTIVATION

* Calculus 1s the mathematics of change. Because engineers
must continuously deal with systems and processes that
change, calculus 1s an essential tool of engineering.

« Standing in the heart of calculus are the mathematical concepts
of differentiation and integration:

A X +Ax)— f(x.
to differentiate means “to mark off by Y /(x, )=/ (%)
differences; distinguish; . . . to perceive Ax
the difference in or between.” dy f(x, +Ax)— f(x,)

=, Im,
to integrate means “to bring together, as  dx Ax
parts, into a whole; to unite; to indicate b

the total amount . . . .” I = j f(x)dx

a



* Mathematically, the derivative, which serves as the fundamental
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dependent variable with respect to an independent variable.

FIGURE PTé6.1

The graphical definition of a derivative: as Ax approaches zero in going from (gl to (c), the
difference approximation becomes a derivative.
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Partial derivatives are used for functions that depend
more than one variable.
Partial derivatives can be thought of as taking the

derivative of the function at a point with all but one
variable held constant.

of o f(x+ Ax,y) — f(x,y)
— = |mm \ ‘ :
JdX  Ax—0 Ax

of o flxe,y + Ay) — flx,y)
— = Imm

dy  Ay—0 Ay
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* The inverse process to differentiation 1n calculus 1s
integration.
* According to the dictionary definition, to integrate

means “to bring together, as parts, into a whole; to
unite; to indicate the total amount . . . .”

qb
[ = [ f(x)dx

"

This 1s called the definite integral and it corresponds to
the area under the curve of f(x) between x = a and x = b.
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FIGURE PTé6.2

Graphical representation of the integral of f{x] between the limits x = a fo b. The integral is
equivalent to the area under the curve.



Noncomputer Methods for
Differentiation and Integration

* The function to be differentiated or integrated
will typically be in one of the following three
forms:

— A simple continuous function such as polynomial,
an exponential, or a trigonometric function.

— A complicated continuous function that 1s difficult
or impossible to differentiate or integrate directly.

— A tabulated function where values of x and f(x) are
given at a number of discrete points, as 1s often the
case with experimental or field data.
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Equal-area differentiation.

(a) Centered finite divided differences are used to estimate the derivative for each interval

between the data points.

(b) The derivative estimates are plotted as a bar graph. A smooth curve 1s superimposed on
this plot to approximate the area under the bar graph. This is accomplished by drawing the
curve so that equal positive and negative areas are balanced.

(c) Values of dy/dx can then be read off the smooth curve. 4



Application of a numerical integration method:

(a) A complicated, continuous function.

(b) Table of discrete values of f{(x)
generated from the function.

(c) Use of a numerical method (the strip
method here) to estimate the integral on
the basis of the discrete points. For a
tabulated function, the data are already
in tabular form (b); therefore, step (a) is
unnecessary.

(a)

(b)

()

o

Fix)

2+cos (1+x%%) 05«

V1 +0.5sinx

dx
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x| f

Discrete points

7////////

0.25 | 2.599
0.75 | 2.414
1.25 | 1.945
1.75 | 1.993

v

Continuous
function

o
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Newton-Cotes Integration Formulas
Chapter 21

* The Newton-Cotes formulas are the most common
numerical integration schemes.

* They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:

= j £(x)dx = j £ (x)dx

f(x)=a,+ax+-+a, x"" +ax"
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The approximation of an integral by the area under
(a) a single straight line and
(b) a single parabola.
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applied piecewise to the
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The n-cgral can also be approximated using a series of poly als
function or data over segments of constant length.

JXx) 4

FIGURE 21.2

The approximation of an inte-
g gral by the area under three

straightline segments.
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» The Trapezoidal rule 1s the first of the Newton-Cotes
closed integration formulas, corresponding to the
case where the polynomial is first order:

I = j F(x)dx = j £.(x)dx

* The area under this first order polynomial is an

estimate of the integral of f(x) between the limits of a
and b:

I=(b-a) /(a) -2|_ /(5) } Trapezoidal rule
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Proof of the Trapezoidal rule:

Before integration, Eq. (21.2) can be expressed as

f(b) —f(ﬂ)x + fla) — af(b) — af(a)
b — b—a

Grouping the last two terms gives

fix) =

f(b) — N bf(a) — af(a) — af(b) + af(a)

hHx) = P P
or
_ f(b) = fla) bf(a) — af(b)
hHix) = b—a X+ bh—a

which can be integrated between x = a and x = b to yield

:f(b) — fla) X° N bf(a) — ﬂf(b)x
b—a 2 b—a

b
I

[ (b [ @O

2

This result can be evaluated to give

f(b) = fla) (b* — a*) N bf(a) — af(b)
b—a 2 b—a

Now, since b* — a* = (b — a)(b + a),

I =

(b —a)

b+ a
2

I=[f(b) — fla)] + bf(a) — af(b)

Multiplying and collecting terms yields

fla) + f(b)

1= (b= a=—7

which is the formula for the trapezoidal rule.

Trapezoidal rule

13



FIGURE 21.4

Graphical depiction of the frapezoidal rule.
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Area of the Trapezoid= (4 +B) h/2
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FIGURE 21.4

Graphical depiction of the frapezoidal rule.

f(JC) A

f(@)+f(b)

2

Average
height

Width <€

All Newton-Cotes formulas can be written in the form
“I =Average height x width”. .
Different formulas will have different expressions for average height.



* Newton-Cotes formulas can be derived by integrating
Newton’s Interpolating Polynomials.

* Newton-Gregory version can be used for equispaced
data points.

Remember Newton-Gregory forward formula used for
nth order approximation::

A? X An X
FO0) oy g ey A0
2! n!

fi(x) = f(xo) + Af(xp)a + a(ea— 1) (a—n+1)+R,

X — Xg B e B o
, S —(H N h ala — I(a—2) - (a —n)

where a =

* This representation (the remainder term) also provide
an estimate for the truncation error.

16



Derivation of the trapezoidal rule (n=1 case) by using

Newton-Gregory forward formula:

—a(a — 1;;*.-3}1}:

e

b rf{
[= [ﬂ(ﬂ + Af(aya + L&

Substitution: a = (x — a)/h, dx = h da

o1 "
I = h‘ [f{a‘j + Af(a)a —l—f (gjﬂl[ﬂ — ]}f’.‘j}dﬂf

-
“0

—

f"(&€) can be considered as constant for small /:

1

o’ o a’ B >
[ = h[aﬂa} + ijun + (? — T)f (gjff-]

0

Af(a)

1 .
I=h {f{ﬁ} +— } — ]Tfr'{gjfj" replacing Af(a) = f(b) — f(a),

—

_ fla) +fb) 1
I=h 2 12

.

>
Trapezoidal rule Truncation error

e

i
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Error of the Trapezoidal Rule/

 When we employ the integral under a straight line
segment to approximate the integral under a curve,
error may be substantial:

1 " 3
E==7577()b=a)

where £ lies somewhere 1n the interval from a to b.

18




f(x) 4

Big error

FIGURE 21.6
Graphical depiction of the use of a single application of the frapezoidal rule fo approximate the

integral of fix) = 0.2 + 25x — 200x? + 675x> — Q00x* + 400x° from x = O to 0.8.
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The Multiple Application Trapezoidal Rule/

« One way to improve the accuracy of the trapezoidal rule is to divide
the integration interval from a to b into a number of segments and
apply the method to each segment.

» The areas of individual segments can then be added to yield the
integral for the entire interval.

_b-a
n

[:Tf(x)dx+Tf(x)dx+---+ Tf(x)dx

h

a=x, b=x,

Substituting the trapezoidal rule for each integral yields:

I:hf(xo);rf(xl)+hf(xl);f(xz) f(xn_1)2+f(xn)

+--+h

n—1

f(xo) + 2 flx) + flx,)
i=1

I=(b— a)
L 2n , 20

P
A sl

Width Average height




FIGURE 21.7

llustration of the multiple-application trapezoidal rule. (a] Two segments, (b) three segments

(c) four segments, an d (d) five segments.
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ach segment:

S (&) is the second derivative at a point i

located in segment i. This result can be
simplified by estimating the mean or
average value of the second derivative
for the entire interval as /"

Thus, 1f the number of segments 1s doubled,

the truncation error will be quartered.
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* Try the following pseudocodes in MATLAB to examine with
Examples 21.1, 21.2 and 21.3.

(a) Single-segment (b) Multiple-segment
FUNCTION Trap (h, f0, f1) FUNCTION Trapm (h, n, f)
Trap = h * (f0 + f1)/2 sum = fp
END Trap DOFOR i =1, n— 1
sum= sum+ 2 * f;
END DO

sum = sum + f,
Trapm = h * sum / 2
END Trapm

FIGURE 21.9

Algorithms for the (a) single-segment and (b} multiple-segment frapezoidal rule.
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* More accurate estimate of an integral 1s obtained 1f
a high-order polynomial 1s used to connect the
points.

* The formulas that result from taking the integrals
under such polynomials are called Simpson’s rules.

~ = /Y TY__1..

Simpson’s 1/3 Rule:
* Results when a second-order interpolating
polynomial 1s used.

* It 1s the second Newton-Cotes closed integration

formula.
24
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Graphical depiction of Simpson’s 1/3 rule: It consists of taking the
area under a parabola connecting three points.

b b
I =J f(x)dx EJ fr(x) dx

; . This equation 1s known as Simpson’s

1/3 rule. It is the second Newton-Cotes
closed integration formula. The label

h
| = — [f(xo) — 4f()(l ) + f(;{z) | “1/3” stems from the fact that 4 is
3 divided by 3 .



I = jf(x)dx = jjg(x)dx

a=x, b=x,

I:T (x_xl)(x_xz) f(x0)+ (.X—XO)(X_X2) f(x1)+ ('x—xo)(x_xl) f(xz)

. (X —x )(xy —X,) (x; = x,)(x; — x;) (X, =X, )(x, —X;)

P22+ 4G+ ()] =T

i

Single segment application of Simpson’s 1/3 rule has a
truncation error of:

__(b—cz)5

4
, o @) a=<g=b

2

26



« Simpson’s 1/3 Rule uses 3 points, therefore 1t 1s
expected to integrate 2"? order polynomials
exactly.

 However it can integrate cubics exactly. This 1s
due to the vanishing third term in integrating the
Newton-Gregory polynomial.

* Simpson’s 1/3 rule is more accurate than
trapezoidal rule in general.

h |
[ =—[f(xo) +4f(x)) + ()] — = {4](5)]?5
3 90
Simps;l’s 1/3 Truncat;m error

Proof: Home Study (see box 21.3 pp. 616) h= (b — a2



The Multiple-Application Simpson’s of 1/3 Rule

 Just as the trapezoidal rule, Stmpson’s rule can be
improved by dividing the integration interval into a
number of segments of equal width.

* Yields accurate results and considered superior to
trapezoidal rule for most applications.

 However, 1t 1s limited to cases where values are
equispaced.

o Further, 1t 1s limited to situations where there are an
even number of segments and odd number of points.

28
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of Simpson’s 1/3 rule.

J(x)

application

of the multiple
Note that the method can be employed only if the n

Graphical representation

umber of segments is even



Multiple-Application Version of Simpson’s 1/3 Rule

Problem Statement. Use Eq. (21.18) with n = 4 to estimate the integral of

f(x) = 0.2 + 25x — 200x" + 675x° — 900x* + 400x°

from a = 0 to b = 0.8. Recall that the exact integral is 1.640533.
Solution. n =4 (h = 0.2):

f(0) = 0.2 £(0.2) = 1.288
f(0.4) = 2456  f(0.6) = 3.464
£(0.8) = 0.232

From Eq. (21.18),

0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232
=08 > = 1.623467

E, = 1.640533 — 1.623467 = 0.017067 g = 1.04%

The estimated error [Eq. (21.19)] is

~(0.8)
180(4)*

7

(—2400) = 0.017067

30
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A third order Lagrange polynomial can be fit to four

points and integrated as:

I= j £(x)dx = j £, (x)dx

= %[f(xo)+3f(xl)+3f(x2)+f(x3)]

This equation is called
Simpson’s 3/8 rule because /

\ is multiplied by 3/8.

,_(b=a)
3 [= (b — flxo) + 3f(x)) + 3f(x2) + f(x3)
= (b — a) :
b - 5 \ v Y y
B, == ( a) f(4) (5) Width Average height

" (6480
&

~ More accurate (error is smaller)

31



Graphical depiction of Simpson’s 3/8 rule:
It consists of taking the area under a cubic equation connecting four points.

32



, L]
impson’s 1/3 rule 1s usually t

four points required for the 3/8 version.

However, the 3/8 rule has utility when the number of segments
1s odd.

Suppose that you desired an estimate for five segments. One
option would be to use a multiple-application version of the
trapezoidal rule. This may not be advisable, however, because
of the large truncation error associated with this method.

An alternative would be to apply Sitmpson’s 1/3 rule to the first
two segments and Simpson’s 3/8 rule to the last three (Fig.
21.12).

In this way, we could obtain an estimate with third-order
accuracy across the entire interval.

33
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(@)
FUNCTION Simpl3 (h, 0, f1, f2)
Simpl3 = Zxh* (fO+4xf1+f2) / 6

END Simpl3

(b)

FUNCTION Sinp38 (h, f0, fl1, 2, f3)
Simp38 = 3xh* (fO+3%(fl+F2)+f3) / 8

END Simp38

()
FUNCTION Simpl3m (h, n, f)
sum = f(0)
DOFOR i =1, n— 2, 72
sum= sum+ 4 * f; +2 * fiy
END DO
sum = sum+ 4 * f,; +1,
Simpl3m = h + sum / 3
END Simpl3m

FIGURE 21.13

(d)
FUNCTION SimpInt(a,b,n,f)
h=(b—a)/n

IF n= 1 THEN

sum = Trap(h,f._;.f,)
ELSE

m=n

odd =n/2— INT(n/ 2)
IF odd = 0 AND n = 1 THEN
sum = sum+Simp38(h, fr-3, T2, Tn-1, Tn)

m=n-3
END IF
IF m= 1 THEN

sum = sum + Simpl3m(h,m,f)
END IF

END IF
SimpInt — sum

END SimpInt

Pseudocode for Simpson's rules. a) Single-application Simpson's 1/3 rule, (b} single-
application Simpson's 3/8 rule, (c) multiple-application Simpson's 1/3 rule, and (d) multiple-
application Simpson's rule for both odd and even number of segments. Note that for all cases, 35

nmustbe =1.



Integration of Equations
Chapter 22

* Functions to be integrated numerically are 1 two
forms:

— A table of values. We are limited by the number of points
that are given.

— A function. We can generate as many values of f(x) as
needed to attain acceptable accuracy.

» Will focus on two techniques that are designed to
analyze functions:

— Romberg integration

— Gauss quadrature

36
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* Is based on successive application of the
trapezoidal rule to attain efficient numerical
integrals of functions.

Richardson’s Extrapolation/

» Uses two estimates of an integral to compute a
third and more accurate approximation.

37
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application trapezoidal rule can be represented
generally as

[ =1(h)+E(h)
h= (b — a) /n I(h) =the approximation from an n

I(h)+Eh)=1(h)+E(h,) segment application of trapezoidal
rule with step size 4

I =exact value of integral

n=((b-a)lh
b E(h) =the truncation error

E=2"¢ h

12 ) Assumed constant regardless
E(h) N h, of step size
E(h)  h

2

- hl

E(hl) = E(hz) P
hz

38



1(@)+E<h2>[hﬁ] = I(h,)+ E(hy)

1(h)~1(h,)
(%)

[=1(h,)+E(h,)

E(h,)=

1 \
I=1 (hz) + h 2 [I (hz) —1 (hl )] > Improved estimate of the
( / ) —1 integral
h, )

39
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FIGURE 22.4

Pseudocode for Romberg
infegration that uses the
equalsize-segment version of
the trapezoidal rule from

Fig. 22.1.

FUNCTION Komberg (a, b, maxit, es)
LOCAL I(10, 10)
n=1
I, ; = Trapkg(n, a, b)
iter = 0
00
iter = iter + 1
n = ther
If;eﬁ.;__j = TF&DEQ(”, a, b)
DOFOR k = 2, iter + 1
J=2+ iter — k
Lix = (41 * Livieer — Lige1? / (41 — 1)
END DO
ea = ABS((Iy iters1 — Iziter) / I iters1) * 100
IF (iter = maxit OR ea = es) EXIT
END DO
Romberg = I, iter+1
END Romberg

40



O(h?) O(h?) O(h®) O(h?)

(a) 0,1728m’/;1.3¢7467
1.068800

(b] 0.172800 1.367467 /,,;1.5:-40533
1.068800

. ®|.623467
1.484800 ——
(¢) 0.172800 1.367467 1.640533 /; 1.640533
1.068800 1.623467

//,; 1.640533
1.484800 //_; 1.639467
1.600800

Graphical depiction of the sequence of integral estimates generated using Romberg
integration.
(a) First iteration. (b) Second iteration. (c) Third iteration.

41
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* Gauss quadrature 1mplements a strategy of

positioning any two points on a curve to define
a straight line that would balance the positive
and negative errors.

* Hence the area evaluated under this straight

line provides an improved estimate of the
integral.

42



flx) 4 f(x) 4

“’f
2

(a) (b)

(a) Graphical depiction of the trapezoidal (b) An improved integral estimate obtained
rule as the area under the straight line by taking the area under the straight line
joining fixed end points. passing through two intermediate points.

By positioning these points wisely, the
positive and negative errors are balanced,
and an improved integral estimate results.

43



Method of Undetermined Coefficients/

I=c,f(a)+c f(b)
The trapezoidal rule yields exact results when the function
being integrated is a constant or a straight line, such as y=1
and y=x:

(b—a)/2
c,+c = I 1 dx

—(b-a)/2

b—a)/2
b—a b—a_(a)

—C, +c = X dx
2 2 —(bL)/z
c,+c, =b—a
b-a b—a Solve simultaneously
—C, +c =0
2 2

b—a

Co=6=—

b— Trapezoidal rule

j=2"¢
)

fla)+2 2 rw) |

44
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9 Two integrals that should
be evaluated exactly by
the trapezoidal rule:

(a) a constant,

(b) a straight line.

(b)
45



Derivation of the Two-Point Gauss-Legendre Formula

The object of Gauss quadrature 1s to determine the equations of
the form

I=c,f(x))+c f(x)

However, in contrast to trapezoidal rule that uses fixed end
points a and b, the function arguments x,, and x, are not fixed
end points but unknowns.

Thus, four unknowns to be evaluated require four conditions.

First two conditions are obtained by assuming that the above
eqn. for / fits the integral of a constant and a linear function
exactly.

The other two conditions are obtained by extending this
reasoning to a parabolic and a cubic functions.

46
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1

cof (X)) +e f(x)= Ix dx =0

1

2 5 _2
%fua+qfuo—£xch—3

o f (Xo) +¢f (%) = j.x3 dx =0

c,=¢ =1
Xy = —% =—0.5773503...
X, = % =—0.5773503...

J

\

=15 )5)

Solved simultaneously

Yields an integral
estimate that is third
order accurate

47



FIGURE 22.8

Graphical depiction of the unknown variables x; and x; for integration by Gauss quadrature.
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» Notice that the integration limits are from —1 to 1.
This was done for simplicity and make the
formulation as general as possible.

» A simple change of variable 1s used to translate other
limits of integration into this form.

* Provided that the higher order derivatives do not
increase substantially with increasing number of

points (n), Gauss quadrature 1s superior to Newton-
Cotes formulas.

b 22n+3 [(l’l _ 1) ']4

_ f(2n+2) (&) Error for the Gauss-Legendre
" @n+3)|@n+2)1f

formulas

49



* Improper integrals can be evaluated by making a
change of variable that transforms the infinite range
to one that 1s finite,

j f(x)dx = T% f (}jdt ab >0

1/b

T F(x)dx = f F(x)dx + j £ (x)dx

where —A4 1s chosen as a sufficiently large negative
value so that the function has begun to approach zero

asymptotically at least as fast as //x°. -



