
Part 6a t 6
Numerical Differentiation and Integration

MOTIVATION
• Calculus is the mathematics of change. Because engineers 

t ti l d l ith t d th tmust continuously deal with systems and processes that 
change, calculus is an essential tool of engineering.

• Standing in the heart of calculus are the mathematical concepts
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• Standing in the heart of calculus are the mathematical concepts 
of differentiation and integration:
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to differentiate means “to mark off by 
differences; distinguish; . . . to perceive 
the difference in or between ”
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the difference in or between.

to integrate means “to bring together, as 
parts, into a whole; to unite; to indicate 
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the total amount . . . .”



• Mathematically, the derivative, which serves as the fundamental 
vehicle for differentiation represents the rate of change of avehicle for differentiation, represents the rate of change of a 
dependent variable with respect to an independent variable.
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• Partial derivatives are used for functions that depend on• Partial derivatives are used for functions that depend on 
more than one variable. 
P i l d i i b h h f ki h• Partial derivatives can be thought of as taking the 
derivative of the function at a point with all but one 

i bl h ldvariable held constant. 
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• The inverse process to differentiation in calculus is• The inverse process to differentiation in calculus is 
integration. 
A di h di i d fi i i i• According to the dictionary definition, to integrate 
means “to bring together, as parts, into a whole; to 

i i di h l ”unite; to indicate the total amount . . . .” 

This is called the definite integral and it corresponds to 
the area under the curve of f(x) between x = a and x = bthe area under the curve of f(x) between x = a and x = b.

4



5



Noncomputer Methods for 
Differentiation and Integration
h f i b diff i d i d• The function to be differentiated or integrated 

will typically be in one of the following three 
forms:
– A simple continuous function such as polynomial, 

an exponential, or a trigonometric function.
– A complicated continuous function that is difficult 

or impossible to differentiate or integrate directly.
– A tabulated function where values of x and f(x) are 

given at a number of discrete points, as is often the 
case with experimental or field data.
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Equal-area differentiation.
(a) Centered finite divided differences are used to estimate the derivative for each interval(a) Centered finite divided differences are used to estimate the derivative for each interval 
between the data points.
(b) The derivative estimates are plotted as a bar graph. A smooth curve is superimposed on 
this plot to approximate the area under the bar graph. This is accomplished by drawing the
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this plot to approximate the area under the bar graph. This is accomplished by drawing the 
curve so that equal positive and negative areas are balanced.
(c) Values of dy/dx can then be read off the smooth curve.



Application of a numerical integration method: 

(a) A complicated, continuous function.

(b) Table of discrete values of f(x) 
generated from the function.ge e ed o e u c o .

(c) Use of a numerical method (the strip 
method here) to estimate the integral onmethod here) to estimate the integral on 
the basis of the discrete points. For a 
tabulated function, the data are already 
in tabular form (b); therefore step (a) isin tabular form (b); therefore, step (a) is 
unnecessary. 
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Newton-Cotes Integration Formulasg
Chapter 21

• The Newton-Cotes formulas are the most common 
numerical integration schemes. 

• They are based on the strategy of replacing a 
li t d f ti t b l t d d t ithcomplicated function or tabulated data with an 

approximating function that is easy to integrate:
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The approximation of an integral by the area under 
(a) a single straight line and 
(b) a single parabola.
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The integral can also be approximated using a series of polynomialsThe integral can also be approximated using a series of polynomials 
applied piecewise to the function or data over segments of constant length.
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The Trapezoidal RuleThe Trapezoidal Rule
• The Trapezoidal rule is the first of the Newton Cotes• The Trapezoidal rule is the first of the Newton-Cotes 

closed integration formulas, corresponding to the 
case where the polynomial is first order:case where the polynomial is first order:
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• The area under this first order polynomial is an        
estimate of the integral of f(x) between the limits of a
and b:
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Proof of the Trapezoidal rule:
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 Trapezoidal rule
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B Equals to the area 
under the trapezoid
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Area of the Trapezoid =  (A + B) h / 2
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Average 
heightheight

iWidth

All Newton-Cotes formulas can be written in the form 
15“I ≈Average height × width”. 

Different formulas will have different expressions for average height.



• Newton-Cotes formulas can be derived by integrating 
Newton’s Interpolating Polynomials. 

• Newton-Gregory version can be used for equispacedg y q p
data points. 

Remember Newton-Gregory forward formula used forRemember Newton Gregory forward formula used for 
nth order approximation::

where

• This representation (the remainder term) also provide 
an estimate for the truncation error.
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Derivation of  the trapezoidal rule (n=1 case) by using 
N t G f d f lNewton-Gregory forward formula:

Substitution:

can be considered as constant for small h:

replacing

17



E f th T id l R l /Error of the Trapezoidal Rule/

• When we employ the integral under a straight line 
segment to approximate the integral under a curve, g pp g ,
error may be substantial:
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where  lies somewhere in the interval from a to b.
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Big error
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The Multiple Application Trapezoidal Rule/
• One way to improve the accuracy of the trapezoidal rule is to divide 

the integration interval from a to b into a number of segments and 
apply the method to each segmentapply the method to each segment.

• The areas of individual segments can then be added to yield the 
integral for the entire interval.g
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Substituting the trapezoidal rule for each integral yields:
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• An error for multiple-application trapezoidal rule can beAn error for multiple application trapezoidal rule can be 
obtained by summing the individual errors for each segment:

f ꞌꞌ(ξ ) i th d d i ti t i t if ꞌꞌ(ξi) is the second derivative at a point i
located in segment i. This result can be 
simplified by estimating the mean or 
average value of the second derivative
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average value of the second derivative 
for the entire interval as f ꞌꞌ:
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Thus, if the number of segments is doubled,
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Thus, if the number of segments is doubled, 
the truncation error will be quartered.



Homework:Homework:

• Try the following pseudocodes in MATLAB to examine with 
Examples 21.1, 21.2 and 21.3.
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Simpson’s RulesSimpson s Rules

i f i l i b i d if• More accurate estimate of an integral is obtained if 
a high-order polynomial is used to connect the 

i tpoints. 
• The formulas that result from taking the integrals 

under such polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule:Simpson’s 1/3 Rule:
• Results when a second-order interpolating 

l i l i dpolynomial is used. 
• It is the second Newton-Cotes closed integration 

24
formula.



Graphical depiction of Simpson’s 1/3 rule: It consists of taking the 
area under a parabola connecting three points. 

This equation is known as Simpson’s 
1/3 rule. It is the second Newton-Cotes 
closed integration formula The label
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closed integration formula. The label 
“1/3” stems from the fact that h is 
divided by 3 . 
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Simpson’s 1/3 Rule

Single segment application of Simpson’s 1/3 rule has a S g e seg e pp c o o S pso s /3 u e s
truncation error of:

ab )( )4(
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Si ’ 1/3 R l 3 i t th f it i• Simpson’s 1/3 Rule uses 3 points, therefore it is 
expected to integrate 2nd order polynomials 

lexactly.
• However it can integrate cubics exactly. This is g y

due to the vanishing third term in integrating the 
Newton-Gregory polynomial.g y p y

• Simpson’s 1/3 rule is more accurate than 
trapezoidal rule in generaltrapezoidal rule in general.

Proof: Home Study (see box 21.3 pp. 616)



Th M lti l A li ti Si ’ f 1/3 R lThe Multiple-Application Simpson’s of 1/3 Rule

J h id l l Si ’ l b• Just as the trapezoidal rule, Simpson’s rule can be 
improved by dividing the integration interval into a 
number of segments of equal widthnumber of segments of equal width.

• Yields accurate results and considered superior to 
t id l l f t li titrapezoidal rule for most applications.

• However, it is limited to cases where values are ,
equispaced.

• Further it is limited to situations where there are an• Further, it is limited to situations where there are an 
even number of segments and odd number of points.
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Graphical representation of the multiple application of Simpson’s 1/3 rule. 
Note that the method can be employed only if the number of segments is even

29

Note that the method can be employed only if the number of segments is even.



Example:Example:
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Simpson’s 3/8 Rule:Simpson s 3/8 Rule:
• A third order Lagrange polynomial can be fit to four 

i t d i t t dpoints and integrated as:
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This equation is called 
Simpson’s 3/8 rule because h
is multiplied by 3/8.

)(
3

)(

b

abh 


)(
6480

5)( )4( fabEt
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Graphical depiction of Simpson’s 3/8 rule: 
It consists of taking the area under a cubic equation connecting four points.
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• Simpson’s 1/3 rule is usually the method of preference because• Simpson s 1/3 rule is usually the method of preference because 
it attains third order accuracy with three points rather than the 
four points required for the 3/8 version. p q

• However, the 3/8 rule has utility when the number of segments 
is odd. 

• Suppose that you desired an estimate for five segments. One 
option would be to use a multiple-application version of the 

id l l hi b d i bl h btrapezoidal rule. This may not be advisable, however, because 
of the large truncation error associated with this method. 
A lt ti ld b t l Si ’ 1/3 l t th fi t• An alternative would be to apply Simpson’s 1/3 rule to the first 
two segments and Simpson’s 3/8 rule to the last three (Fig. 
21.12).21.12). 

• In this way, we could obtain an estimate with third-order 
accuracy across the entire interval.y
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Pseudocodes for Simpson's Rules:
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Integration of Equationsg q
Chapter 22

• Functions to be integrated numerically are in two 
forms:
– A table of values. We are limited by the number of points 

that are given.
– A function. We can generate as many values of f(x) as 

needed to attain acceptable accuracy.

• Will focus on two techniques that are designed to 
analyze functions:
– Romberg integration
– Gauss quadrature
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Romberg IntegrationRomberg Integration

• Is based on successive application of the 
trapezoidal rule to attain efficient numerical p
integrals of functions.

Richardson’s Extrapolation/
• Uses two estimates of an integral to compute a 

third and more accurate approximationthird and more accurate approximation.
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• The estimate and error associated with a multiple-The estimate and error associated with a multiple
application trapezoidal rule can be represented 
generally asgenerally as

)()(  hEhII
I =exact value of integral
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Romberg integration algorithmRomberg integration algorithm
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Graphical depiction of the sequence of integral estimates generated using Romberg p p q g g g g
integration. 

(a) First iteration. (b) Second iteration. (c) Third iteration.
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Gauss QuadratureGauss Quadrature

• Gauss quadrature implements a strategy of 
positioning any two points on a curve to define p g y p
a straight line that would balance the positive 
and negative errorsand negative errors.

• Hence the area evaluated under this straight 
line provides an improved estimate of the 
integral.g
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(a) Graphical depiction of the trapezoidal (b) An improved integral estimate obtained 
rule as the area under the straight line 
joining fixed end points.

by taking the area under the straight line 
passing through two intermediate points. 
By positioning these points wisely, the 

i i d i b l dpositive and negative errors are balanced, 
and an improved integral estimate results.
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Method of Undetermined Coefficients/

• The trapezoidal rule yields exact results when the function
)()( 10 bfcafcI 

The trapezoidal rule yields exact results when the function 
being integrated is a constant or a straight line, such as y=1 
and y=x:
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Trapezoidal rule
44

( ) ( )
2 2

b a b aI f a f b 
 

Trapezoidal rule



Two integrals that should 
be evaluated exactly bybe evaluated exactly by 
the trapezoidal rule: 
(a) a constant,
(b) a straight line. 
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Derivation of the Two-Point Gauss-Legendre Formulag
• The object of Gauss quadrature is to determine the equations of 

the form

)()( 1100 xfcxfcI 

• However, in contrast to trapezoidal rule that uses fixed end 
points a and b, the function arguments x0 and x1 are not fixed 
end points but unknowns.

• Thus, four unknowns to be evaluated require four conditions. 
• First two conditions are obtained by assuming that the above 

eqn. for I fits the integral of a constant and a linear function 
exactlyexactly.

• The other two conditions are obtained by extending this 
reasoning to a parabolic and a cubic functions
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reasoning to a parabolic and a cubic functions.
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Yields an integral 
estimate that is third
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• Notice that the integration limits are from −1 to 1. g
This was done for simplicity and make the 
formulation as general as possible.g p

• A simple change of variable is used to translate other 
limits of integration into this formlimits of integration into this form.

• Provided that the higher order derivatives do not 
increase substantially with increasing number ofincrease substantially with increasing number of 
points (n), Gauss quadrature is superior to Newton-
Cotes formulasCotes formulas.
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Improper IntegralsImproper Integrals
I i l b l d b ki• Improper integrals can be evaluated by making a 
change of variable that transforms the infinite range 
to one that is finiteto one that is finite,
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where –A is chosen as a sufficiently large negative 
value so that the function has begun to approach zero 

50
asymptotically at least as fast as 1/x2.


