Numeri

cal Differentiation
Chapter 23

 The mathematical definition:
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* Can also be thought of as the tangent line.
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Numerical Differentiation

* We can not calculate the limit as /2 goes to zero, so we
need to approximate it.

* Applying directly for a non-zero 4 leads to the slope
of the secant curve.

‘ X derivative of fat x

secant method’s tangent line

X Xx+th

* When the value of the function 1s known only at
discrete points, the differentiation is to be automated |
in an algorithm.
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» Revisit Taylor Series expansion:
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J(xig) = f(x) + f'(xp)h + h" + R,

n+1)
with R, = }; n (]g})? WY and  step size h = x; — X,
n !

Then, the first order approximation (n=1) 1s:

S =F)+(x)h+R,
= [ = f(x) - ()R,
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Forward difference approximation
of the first derivative

— f,(xi): f(’xi+1)h_ f(xi) _121
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The derivative of fat x, | |
An approximation  error

to 1t

This equation 1s called a finite divided difference. It can be
represented generally as:
P X. — X.
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or simply f7(x,) = Ahf,- oll)



Forward difference approximation
of the first derivative

first forward difference

() =—@<h>

Step size

first finite divided difference

It is termed a “forward” difference because 1t utilizes data
at i and i+1 to estimate the derivative.




Backward difference approximation
of the first derivative

Fex)= 1)+ e L g

hCI’G xi+1 = )Cl. +h > S0,

f(xl‘l'h):f(xl)_l_f'(xl)h_'_f gxi)h2+...
Replacing +h with —/ yields:

F == £+ ) () + LDy

FCo == £ )= oy LS e
X._, i previous term



Backward difference approximation
of the first derivative

The Taylor series can be expanded backward to calculate a previous
value on the basis of a present value in the following way.

f(xi—l) — f(xl-)—f'(xl.)h+ f,,;xi)hz 4 ...

first backward difference
A
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X = Xia

£(x) = A}{ +O(h)



Centered difference approximation
of the first derivative

A third way to approximate the first derivative 1s to subtract
backward Taylor series expansion from the forward Taylor series
expansion

Fx)= )+ f )+ ”;xﬂ .

f(xi—l) =f(xl-)—f'(xl.)h+ f,,;xi)hz 4 ...
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— f(xi+1) — f(xl'_1) + 2f,(xi)h + 2f(3

'(xi)h3 +...



Centered difference approximation
of the first derivative

Solving for the first derivative term yields:

f) =S V),

f(xi): Y 6

f,(xi) — f(xz‘+1 )2_hf(xi—1) _ O(hz)

This 1s a centered difference representation of the first derivative.
Notice that the truncation error is of the order of 42 in contrast to the
forward and backward approximations that were of the order of 4.
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 Forward and backward difference formulas are
first order, O(%), accurate. That 1s the error
drops approximately by a factor of 2 as the
step size h drops to /2.

e Centered difference formula 1s second order,
O(h?). Error drops by a factor of 4 as 4 drops
to h/2.

* Centered difference formula uses the same
number of arithmetic operations as forward
and backward formulas, and it offers better
accuracy. Therefore 1t 1s more efficient.
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(c) centered finite-divided-difference
approximations of the first derivative.
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Finite-Divided-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and
a centered difference approximation of O(h*) to estimate the first derivative of

f(x) = —0.1x* — 0.15x° — 0.5x* — 0.25x + 1.25

at x = 0.5 using a step size h = 0.5. Repeat the computation using 7 = 0.25. Note that
the derivative can be calculated directly as

fi(x) = —04x — 0.45x° — 1.0x — 0.25

and can be used to compute the true value as f(0.5) = —0.9125.

Let’s use MATLAB for the calculations and let’s calculate
errors in each case.
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. clear all _

f=@(x) -0.1*x"~4-0.15*x~3-0.5*x"2-0.25*x+1.25; % function £
f d=@(x) -0.4*x~3-0.45*x"2-x-0.25; %derivative of the function £

xi=0.5;
h=0.5;

% Forward difference approximation:
f d a=(f(xi+h)-f(xi))/(h):
err a=((f d(xi)-f£f d a)/f d(xi))*100; %relative error (%)

% Backward difference approximation:
f d b=(£(xi)-£(xi-h))/(h):
err b=((f d(xi)-f£f d b)/f d(xi))*100;%relative error (%)

% Centered difference approximation:
f d c=(f(xi+h)-f(xi-h))/(2*h):
err c=((f d(xi)-f£ d c)/f d(xi))*100;%relative error (%)

tablo=[f d(xi) £ da fdbfdc;0err a err b err c]
$ First line of tablo is derivatives; the second line are errors

Answer table: err_a err b err_c
h=0.5 -58.9041 39.7260 -9.5890

h=0.25 -26.5411 21.7466 -2.3973
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The following table 1s the data given for some x and f(x).
Approximate the derivative of the function at all points by
using forward difference method at the first point, backward
difference method at the last point and centered difference
method at any middle point.

X Jx)

0 0
0.1 0.15 Answer table:
0.2 0.47 iggg
0.3 0.62 f:igg
0.4 0.84 1.8000

1.4000

0.5 0.98
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Higher order formulas for the first
derivative

* Proper combinations of Taylor series expansions of f(x,, ), f{x,_,),
f(x.,), flx;_,) can also be used to obtain the first derivative.

F) = F ) = f)+ £ eph s L0

F )= f(+h by = £(x)+ £ (2h) + 22 (28) +
FG)= fO=hy= FG)+ ) (h)+ L2 (o +
FGia)=f 5 =h=h)= £(5)+ (3)(-2 ) ”( ) oo
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Higher order formulas for the first
derivative

* Proper combinations of Taylor series expansions of f(x,, ), f{x,_,),
f(x.,), flx;_,) can also be used to obtain the first derivative.

Forward differencing:

Fx2) = )+ yem+ L0 a4

F) = f(X)+f(x)(h)+f( )

F () =4 () = =3 () =21 (e -+

f,(xi) _ _f(xi+2)+4];}(lxi+1)_3f(xi) —O(hz)
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Higher order formulas for the first
derivative

* Proper combinations of Taylor series expansions of f(x,, ), f{x,_,),
f(x.,), flx;_,) can also be used to obtain the first derivative.

Backward differencing:

Fx2)= £~ )+ L @iy
f”( )

S =f(x) = f(x)(h)+

(X)) =47 (x, 1)——3f(X)+2f(X)h+

f(xl-)—f(x )~ 4f2(z+1)+3f(x)+0(h )
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Higher order formulas for the first
derivative

* Proper combinations of Taylor series expansions of f(x,, ), f{x,_,),
f(x.,), flx;_,) can also be used to obtain the first derivative.

Centered differencing:
f”(xi) (2h)2 + f”,(xi) (2h)3 + f(4) ()Ci) (2h)4 +

F(a) = £ )+ f(x) @I+
JAC >h2 f >h3 fO)

2! 3! 41
1160) gy L) oy f(‘”(x)(zh)

f('xi+1):f(xi)+f,('xi)h+

()= f0x) = f(x)(2h) +

f(x 1) f(x) f’(x )h+ f (x)hZ f 3('x)h3 f(4:|§x ) h4

—f () + ()8 (x,,)— Sf(x )= lzf(x)h

sy = L)+ 87 0) S8 )/ ) o
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Higher order formulas for the first
derivative

* Proper combinations of Taylor series expansions of f(x,, ), f{x,_,),
f(x.,), flx;_,) can also be used to obtain the first derivative.

~f () 44/ G =31 | e
2h

3/() =4/ )+ 1) | gy
2h

Forward differencing: — f ’(xl,) —

Bacward differencing: — 7’(x)=

_f(xi+2) + 8f(xi+1) B 8f(xi_1) + f(xi_z) 4 O(h4)

Centered differencing: — f '(x,-) = 12/

Derivative estimates are improved if small / or higher order

approximation 1s used.
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High-Accuracy Differentiation Formulas
Problem Statement. Recall that in Example 4.4 we estimated the derivative of

fix) = —0.1x* — 0.15x* — 0.5x* — 0.25x + 1.2

at x = 0.5 using finite divided differences and a step size of h = 0.25,

Forward Backward Centered
o(h) o(h) O(h?)
Estimate —1.155 —-0./14 —0.934
&g (%) —26.5 21.7 —2.4

where the errors were computed on the basis of the true value of —0.9125. Repeat this com-
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

20




clear all

=0 (x)

xi=0.5;
h=0.25;

% Forward difference approximation O(h"2):

-0.1*x74-0.15*x"3-0.5*x"2-0.25*x+1.25;
f d=@(x) -0.4*x"3-0.45%*x"2-x-0.25; %derivative of the function £

f d a=(-f£(xi+th+h)+4*f (xi+h)-3*£(x1))/(2*%h);
err a=((f d(xi)-£ d a)/f d(xi))*100;

% Backward difference approximation O(h"2):

f d b=(3*f(x1)-4*f(x1-h)+f(xi-h-h))/(2%*h);

err b=((f d(xi)-f d b)/f d(xi))*100;

% Centered difference approximation O(h"2):

f d e=(-£(xi+h+h)+8*f (xi+h)-8*f (x1-h)+f(xi-h-h))/(12%*h);

err c=((f d(xi)-£ d c)/f d(xi))*100;

tablo=[f d(xi) £ dafdbifdc:0 err a err b err c]

% function £

4

-0.9125

-0.8594

-0.8781

-0.9125

5.8219

37671

-24334e-14
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* There are two ways to improve derivative
estimates when employing finite divided
differences:

— Decrease the step size, or
— Use a higher-order formula that employs more
points.

A third approach, based on Richardson
extrapolation, uses two derivative estimates to
compute a third, more accurate approximation.
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1
an improved integral estimate [/ .

1
(h1 /h2)2 -1

[=1(h)+ [£(hy)—1(h)]
h,=h /2

=y L
=2 1(h) =2 1()]

D D(h.)—— D(h)]
= NI ) \"1 /1

p llll

I

i L
3 3

A similar fashion can be written for derivatives as well

* For centered difference approximations with O(%?). The
application of this formula yield a new derivative estimate of O(h?).
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Derivatives of Unequally Spaced Data

« Data from experiments or field studies are often
collected at unequal intervals. One way to handle
such data 1s to fit a second-order Lagrange
interpolating polynomial.

ren 2x—x,—x,,, 2x =X, —X;,
R S SRR R '

X =X )(x — x1+1)

2x—x,_, — X,

S G e Y —x)

x 1s the value at which you want to estimate the

derivative.
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* The advantages of this equation are

It can be used to estimate the derivative anywhere
within the range prescribed by the three points.

I'he points do not have to be equally spaced.

T'he derivative estimate 1s of the same accuracy as
the centered difference.
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Derivatives and Integrals for Data with Errors

Y Kok

Differentiate
Differentiate

dy dy
dt dt

(c) (d)

[llustration of how small data errors are amplified by numerical differentiation: (a)
data with no error, (b) data modified slightly, (¢) the resulting numerical differentia-
tion of curve (a), and (d) the resulting differentiation of curve (b) manifesting
increased variability. In contrast, the reverse operation of integration [moving from
(d) to (b) by taking the area under (d)] tends to attenuate or smooth data errors.



