Eskişehir Osmangazi University - Electrical Engineering Department Fundamentals of Control Systems

First Midterm Examination - Summer 2012

1. Let

$$\left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] + \left[\begin{array}{c} 1 \\ 2 \end{array}\right] u; \ y = \left[\begin{array}{cc} 2 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

- a) Obtain the transfer function $\frac{Y(s)}{U(s)}$.

b) If
$$u$$
 is a unit step function, find the steady state $y(t)$.

ANS. a) $\frac{4s+3}{s^2-s-1}$ because $(sI-A) = \begin{bmatrix} s-1 & -1 \\ -1 & s \end{bmatrix}$; $(sI-A)^{-1} = \frac{1}{s^2-s-1} \begin{bmatrix} s & 1 \\ 1 & s-1 \end{bmatrix}$; $C(sI-A)^{-1}B = \begin{bmatrix} 2 & 1 \end{bmatrix} \frac{1}{s^2-s-1} \begin{bmatrix} s & 1 \\ 1 & s-1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{4s+3}{s^2-s-1}$

- b) as $t \to \infty$; $y(t) \to \infty$
- **2.** Find transfer function C(s)/R(s).

Figure 1: Signal flow graph referenced by Problem 2

ANS. $\frac{2}{s^2+5s+10}$

3. How many roots of $s^5 - 9s^4 + 25s^3 - 15s^2 - 26s + 24$ are in the OLHP? ANS. 1, becase its Routh Table is as follows:

1, 25, -26]

-9, -15,

[70/3, -70/3,

-24, 24,

-48, 0, 0]

4. Find steady state y(t) if it is the output of $G(s) = \frac{1}{s^2 + 5s + 6}$ for a unit step

ANS. $\frac{1}{6}$, because, in the standard form $G(s) = \frac{1}{6} \times \frac{6}{s^2 + 5s + 6}$; steady state response of $G(s) = \frac{6}{s^2 + 5s + 6}$ to unit step is 1 therefore $G(s) = \frac{1}{6} \times \frac{6}{s^2 + 5s + 6}$ has steady state unit step response $\frac{1}{6}$.

Good Luck,

A. Karamancıoğlu