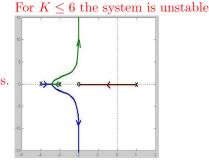
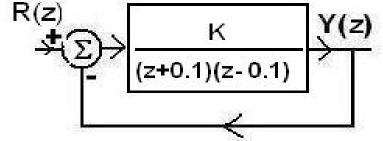

Eskişehir Osmangazi University - Electrical Engineering Department Fundamentals of Control Systems Final Examination - Summer 2013


For each question, put only the answer just below or next to it.

1. For the figure below, find the polynomials n(s) and d(s) such that the transfer function from R to Y is $\frac{n(s)}{d(s)}$.

2. For the figure below, sketch the root locus. Find all positive K values that make the closed loop system unstable.

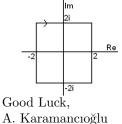


3. For the figure below,

(a) find the transfer function $\frac{Y(z)}{R(z)}$, and

(b) find all positive K values that make the closed loop system unstable, and

(c) find steady state response of the system for K = 0.5 and R equals discrete unit step function.



(a) $\frac{K}{z^2+K-0.01}$ (b) For $K \ge 1.01$ the system is unstable. (c) Because the system is stable for K = 0.5, we have $y(\infty) = \lim_{z \to 1} (z-1) \frac{z}{z-1} \frac{0.5}{z^2+0.5-0.01} = \frac{0.5}{1.49} = 0.3356$

4. [No partial credits] Consider the polynomial $p(s) = s^2 + 2s + 3$. As s travels once in the clockwise direction along the square path given below

(a) how many times does p(s) encircle the origin in the clockwise direction? 2

(b) How many roots does p(s) have in the square region (boundaries included)? 2

