

Extension Principle for Crisp Sets

Let A be a crisp set defined on X. The mapping y=f(x) will result in a set B defined on Y such that

$$B = f(A) = \{ y \mid \forall x \in A, y = f(x) \},$$

and the characteristic function of B will be

$$\chi_{\mathrm{B}}(y) = \chi_{f(\mathrm{A})}(y) = \bigvee_{y=f(x)} \chi_{\mathrm{A}}(x)$$

Here, B is another crisp set.

Example: Let X={ -2, -1, 0, 1, 2} and A={ 0, 1} defined on X.z = 4x | +2 mapping is applied to A, find B. $x = -2 \Rightarrow y = 10$ $x = 0 \Rightarrow y = 2$ $x = 1 \Rightarrow y = 6$ $x = 2 \Rightarrow y = 10$

Extension Principle for Crisp Sets

Method #1: Directly appliying the formula:

$$\begin{split} \chi_B(y) &= \bigvee_{y=f(x)} \chi_A(x) \\ \chi_A(0) &= 1, \ \chi_A(1) = 1 \\ \chi_A(-2) &= \chi_A(-1) = \chi_A(2) = 0 \end{split}$$

Method #2:	$\begin{bmatrix} 1 & y = f(x) \end{bmatrix}$
Use relation mo	atrix $\chi_R(x,y) = \begin{cases} 0 & y \neq f(x) \end{cases}$
2 6 10)
$-2[0 \ 0 \ 1]$	-2 -1 0 1 2
-1 0 1 0	$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
$R = 0 \begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$	Then, B = A o R
1 0 1 0	2 6 10
2 0 0 1	$B = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$
	$B = \{2, 6\}$

Extension Principle for Fuzzy Sets

A: fuzzy set defined on X y = f(x): functional transform or mapping B: image of A on X under f. B is a fuzzy set having universe of discourse Y. $\tilde{B} = f(A)$ $\mu_B(y) = \bigvee_{f(x)=y} \mu_A(x)$

Example: cont.							
	-						
	(3; 0,1)	(4; 0,3)	(5; 0,8)	(6; 1,0)	(7; 0,7)	(8; 0,2)	(9;
(12; 0,1)	(2; 0,1)	(5; 0,1)	(8; 0,1)	(11; 0,1)	(14; 0,1)	(17; 0,1)	(20
(13; 0,1)	(1; 0,1)	(4; 0,1)	(7; 0,1)	(10; 0,1)	(13; 0,1)	(16; 0,1)	(19
(14; 0,6)	(0; 0,1)	(3; 0,3)	(6; 0,6)	(9; 0,6)	(12; 0,6)	(15; 0,2)	(18
(15; 0,6)	(-1; 0,1)	(2; 0,3)	(5; 0,6)	(8; 0,6)	(11; 0,6)	(14; 0,2)	(17
(16; 1,0)	(-2; 0,1)	(1; 0,3)	(4; 0,8)	(7; 1,0)	(10; 0,7)	(13; 0,2)	(16
(17; 0,9)	(-3; 0,1)	(0; 0,3)	(3; 0,8)	(6; 0,9)	(9; 0,7)	(12; 0,2)	(15
(18; 0,8)	(-4; 0,1)	(-1; 0,3)	(2; 0,8)	(5; 0,8)	(8; 0,7)	(11; 0,2)	(14
(19; 0,2)	(-5; 0,1)	(-2; 0,2)	(1; 0,2)	(4; 0,2)	(7; 0,2)	(10; 0,2)	(13
(20; 0,1)	(-6; 0,1)	(-3; 0,1)	(0; 0,1)	(3; 0,1)	(6; 0,1)	(9; 0,1)	(12

Let I and J be two fuzzy numbers with I defined on X and J defined on Y, and let the symbol * denote a general arithmetic operation.

$$\star = \{+, -, \times, \div\}$$

