

Natural Language

Fundamental terms: atomic terms Examples of atomic terms: "slow", "medium", "young", "beautiful", etc... Collection of atomic terms: composites Examples of composite terms: "very slow horse", "medium-weight female", "young three", "fairly beautiful painting", etc... Universe of natural language: X(as element of α). Fuzzy set A: universe of interpretations (or meanings) Mapping from X to Y: $M(\alpha, A)$

$$\mu_{M}(\alpha, y) = \mu_{A}(y)$$

Natural Language

y = 0:0.01:100; output = zeros(length(y),1); for i = 1:length(y) if y(i) <= 25 output(i,1) = 1; else output(i,1) = (1+((y(i)-25)/5)^2)^-1; end end plot(y,output); grid axis([-1 110 -0.1 1.1]);

Consider the domain of attitude control of a spin-stabilized space vehicle. In order to change the attitude of the vehicle, the roll orientation of the vehicle, say Φ , has to be in a specific position, and the roll rate has to be within a certain bound, say a slow rate and a fast rate. Let these two rates be defined as linguistic variables on a universe of degrees per second:

" Fast" _)	0	0.2	0.4	0.6	0.8	1
1431 -	$(\overline{1}^{\top})$	100	200	300	400	<u>500</u> ∫
" Slow " =	[1_	0.8	0.6	0.4	0.2	0]
	$\overline{1}$	100	200	300	400	500∫

IF x is
$$A^{l}$$
 or x is A^{2} ... or x is A^{L} THEN y is B^{S}
 $A^{s} = A^{l} \bigcup A^{2} \bigcup ... \bigcup A^{L}$
 \bigcup
IF A^{s} THEN B^{S}

19

