Problem 1: The following converter is a half-wave rectifier made with ideal components. Assume the source voltage is equal to $v_s(t) = 200 \sin(\omega t)$ volt. Also Assume that the inductance value of the filter inductor (*L*) is very large.

a) Sketch the waveforms of $v_d(t)$ and $i_s(t)$.

c) Find the average current flows into the resistor.

Problem 2: The following circuit is a full-wave rectifier. Assume all components are ideal and the source voltage is equal to $v_s = 377 \sin \omega t$ volt. Also assume that the LC filter at the output is an ideal low-pass filter.

- a) Sketch the waveforms of $v_d(t)$ and $i_s(t)$ when the source inductance is zero $(L_s = 0)$.
- b) Determine the average output voltage V_d and the power P_d for the above case.
- c) Also determine the real, reactive and apparent power delivered by the source.
- d) Determine the average output voltage V_d and the power P_d for the above case.

Problem 3: A balanced three-phase Y-connected ideal voltage source supplies power to a DC load though a three-phase uncontrolled rectifier. The DC load is represented as an ideal current source. Assume that all the components are ideal and the line-to-neutral source voltages are given below:

 $\begin{aligned} v_{an} &= \sqrt{2} \, 400 \sin(\omega t) \, \mathrm{V} \\ v_{bn} &= \sqrt{2} \, 400 \sin(\omega t - 120^\circ) \, \mathrm{V} \\ v_{cn} &= \sqrt{2} \, 400 \sin(\omega t + 120^\circ) \, \mathrm{V} \end{aligned}$

- a) Sketch the circuit schematic of the system, which includes the three-phase source, the three-phase rectifier, and the dc load.
- b) Sketch the waveform of the output voltage and derive the equation that finds the average output voltage.
- c) Determine the distortion and the displacement power factors.
- d) Determine the %THD of the source current.