P1 The synchronous generator in the figure below is operating at the rated power, at unity power factor and at the rated voltage when a bolted three-phase short circuit occurs at bus **1**. All the impedance values are in perunit and the system base values are 120 MVA and 13.8 kV at the generator side. Ignore the transformer phase shifts. Assume a balanced three-phase system.

- a) Calculate the subtransient fault current using bus impedance matrix \bar{Z}_{bus} .
- b) Find the subtransient generator current including the prefault current.
- c) Find the bus voltages at the fault instant.

P2 The following unbalance voltages are applied to a balanced line and a load given below.

$$\begin{bmatrix} \bar{V}_{ag} \\ \bar{V}_{bg} \\ \bar{V}_{cg} \end{bmatrix} = \begin{bmatrix} 220 \angle 0^{\circ} \\ 130 \angle -110^{\circ} \\ 200 \angle +120^{\circ} \end{bmatrix}$$
Volts

The balance line has an impedance of $2.5 \angle 90^{\circ} \Omega$ per phase, and the load is a balanced-Y load connected in parallel with a balanced- Δ load. The Y-load has an impedance of $3 \angle 90^{\circ} \Omega$ per phase with an ungrounded neutral, and the Δ -load has $15 \angle -90^{\circ} \Omega$ per phase.

- a) Draw the sequence networks.
- b) Calculate the sequence currents.
- c) Calculate the line currents (\bar{I}_a , \bar{I}_b and \bar{I}_c)

b)
$$\overline{I}_{0=0}$$
 (4)
 $\overline{T}_{1} = \frac{182.83 \lfloor 2.36}{10 \lfloor 90^{\circ}}$
 $\overline{T}_{1} = \frac{182.83 \lfloor 2.36}{10 \lfloor 90^{\circ}}$
 $\overline{I}_{1} = 18.283 \lfloor -87.64^{\circ} \rfloor A^{(5)}$
 $\overline{T}_{2} = \frac{27.4 \lfloor -63.67^{\circ}}{10 \lfloor 90^{\circ}} = 2.74 \lfloor -153.67^{\circ} \rfloor A$
 $= 20. \lfloor 38.7^{\circ} \rfloor A$

P3 Draw the zero-sequence, positive-sequence, and negative-sequence networks for the power system given below. All the impedance values are in per-unit and the system base values are 120 MVA and 13.8 kV at the generator side. Assume a balanced three-phase power system.

A 1500-MVA 20-kV, 60-Hz three-phase generator is connected through a 1500-MVA 20-kV $\Delta/500$ -kV Y transformer to a 500-kV circuit breaker and a 500-kV transmission line. The generator reactances are $X''_d = 0.17$, $X'_d = 0.30$, and $X_d = 1.5$ per unit, and its time constants are $T''_d = 0.05$, $T'_d = 1.0$, and $T_A = 0.10$ s. The transformer series reactance is 0.10 per unit; transformer losses and exciting current are neglected. A three-phase short-circuit occurs on the line side of the circuit breaker when the generator is operated at rated terminal voltage and at no-load. The breaker interrupts the fault 3 cycles after fault inception. Determine (a) the subtransient current through the breaker in per-unit and in kA rms; and (b) the rms asymmetrical fault current the breaker interrupts, assuming maximum dc offset. Neglect the effect of the transformer on the time constants.

P5 As shown in Figure below, a balanced three-phase, positive-sequence source with $\overline{V}_{AB} = 480 \angle 0^{\circ}$ volts is applied to an unbalanced Δ load. Note that one leg of the Δ is open. Determine:

- a) The load currents \overline{I}_{AB} and \overline{I}_{BC}
- b) The line currents \overline{I}_A , \overline{I}_B , and \overline{I}_C which feed the Δ load; and
- c) The zero-, positive-, and negative-sequence components of the line currents.

$$I_{base} = \frac{S_{base_1\varphi}}{V_{baseLN}} = \frac{S_{base_3\varphi}}{\sqrt{3}V_{baseLL}}$$
$$Z_{base} = \frac{V_{baseLN}}{I_{base}} = \frac{V_{baseLN}^2}{S_{base_1\varphi}} = \frac{V_{baseLL}^2}{S_{base_3\varphi}}$$
$$\bar{Z}_{new} = \bar{Z}_{old} \left(\frac{V_{base_old}}{V_{base_new}}\right)^2 \left(\frac{S_{base_new}}{S_{base_old}}\right)$$