Microwave Techniques

Prof. Dr. Gökhan Çınar Eskişehir Osmangazi University Electrical and Electronics Engineering Department

PROBLEM 1. For a purely reactive load impedance of the form $Z_L = jX_L$, show that the reflection coefficient magnitude $|\Gamma|$ is always unity. Assume that the characteristic impedance Z_0 is real.

PROBLEM 2. RG-402U semi-rigid coaxial cable has an inner conductor diameter of 0.91 mm and a dielectric diameter (equal to the inner diameter of the outer conductor) of 3.02 mm. Both conductors are copper, and the dielectric material is Teflon. Compute the *R*, *L*, *G*, and *C* parameters of this line at 1 GHz, and use these results to find the characteristic impedance and attenuation of the line at 1 GHz. Compare your results to the manufacturer's specifications of 50 Ω and 0.43 dB/m, and discuss reasons for the difference. Compute and plot the attenuation of this coaxial line in dB/m, over a frequency range of 1 MHz to 100 GHz. Use log-log graph scale.

PROBLEM 3. A 75 – Ω transmission line operating at 10 MHz is connected to a load composed of a resistor of 150 Ω in series with an inductor of 5 μ H. Calculate the load impedance, reflection coefficient, standing wave ratio, return loss. On the other hand, determine the reflection coefficient and the input impedance at a distance of 0.4 λ from the load.

Repeat the same problem by using Smith chart.

PROBLEM 4. A coaxial cable operating at 1 GHz has line parameters $R = 5 \Omega/m$, $G = 600 \mu$ S/m, L = 400 nH/m and C = 45 pF/m. Find

a) electrical parameters (characteristic impedance, complex wavenumber, propagation and attenuation constants, phase velocity) of the line.

b) When the line is terminated by a specific load, the voltage throughout the line is given as

$$V(z) = V_0^+ \mathrm{e}^{-\gamma z}.$$

If $V_0^+ = 8$ V, find the voltage and the current at z = 2.5 m.

PROBLEM 5. The voltage and the current at z = -l of a line operating at 1 GHz are given as

$$V(-l) = 250e^{(0.005+j0.2)l} + 100e^{-(0.005+j0.2)l}$$
[V]
$$I(-l) = 5e^{(0.005+j0.2)l} - 2e^{-(0.005+j0.2)l}$$
[A].

Find

a) characteristic impedance of the line,

b) reflection coefficient at the load and the load impedance,

c) propagation and attenuation constants,

d) reflection coefficient and the input impedance at a distance l = 10 cm from the load.