
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 1 – Digital
Computers and Information

Logic and Computer Design Fundamentals

Chapter 1 2

Overview

Digital Systems and Computer Systems
Information Representation
Number Systems [binary, octal and hexadecimal]
Arithmetic Operations
Base Conversion
Decimal Codes [BCD (binary coded decimal),
parity]
Gray Codes
Alphanumeric Codes

Chapter 1 3

Digital System

Takes a set of discrete information inputs and discrete
internal information (system state) and generates a set
of discrete information outputs.

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs

Chapter 1 4

Types of Digital Systems

No state present
• Combinational Logic System
• Output = Function(Input)

State present
• State updated at discrete times

=> Synchronous Sequential System
• State updated at any time

=>Asynchronous Sequential System
• State = Function (State, Input)
• Output = Function (State)

or Function (State, Input)

Chapter 1 5

Digital System Example:

A Digital Counter (e. g., odometer):

1 30 0 5 6 4
Count Up

Reset

Inputs: Count Up, Reset
Outputs: Visual Display
State: "Value" of stored digits

Synchronous or Asynchronous?

Chapter 1 6

A Digital Computer Example

Synchronous or
Asynchronous?

Inputs:
Keyboard,
mouse, modem,
microphone

Outputs: CRT,
LCD, modem,
speakers

Memory

Control
unit Datapath

Input/Output

CPU

Chapter 1 7

Signal

An information variable represented by physical
quantity.
For digital systems, the variable takes on discrete
values.
Two level, or binary values are the most prevalent
values in digital systems.
Binary values are represented abstractly by:
• digits 0 and 1
• words (symbols) False (F) and True (T)
• words (symbols) Low (L) and High (H)
• and words On and Off.

Binary values are represented by values or ranges of
values of physical quantities

Chapter 1 8

Signal Examples Over Time

Analog

Asynchronous

Synchronous

Time
Continuous in
value & time

Discrete in
value &

continuous in
time

Discrete in
value & time

Digital

Chapter 1 9

5.0

4.0

3.0

2.0

1.0

0.0
Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

Signal Example – Physical Quantity: Voltage

Threshold
Region

Chapter 1 10

What are other physical quantities
represent 0 and 1?
• CPU Voltage
• Disk
• CD
• Dynamic RAM

Binary Values: Other Physical Quantities

Magnetic Field Direction
Surface Pits/Light

Electrical Charge

Chapter 1 11

Number Systems – Representation

Positive radix, positional number systems
A number with radix r is represented by a
string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m
in which 0 ≤ Ai < r and . is the radix point.
The string of digits represents the power series:

() ()(Number)r= ∑∑ +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion) + (Fraction Portion)

i = n - 1 j = - 1

Chapter 1 12

Number Systems – Examples

1
2
4
8
16
32
0.5

0.25
0.125

0.0625
0.03125

1
10

100
1000

10,000
100,000

0.1
0.01
0.001

0.0001
0.00001

r0

r1

r2

r3

r4

r5

r -1

r -2

r -3

r -4

r -5

0
1
2
3

Powers of 4
Radix 5

-1
-2
-3
-4
-5

0 => 10 => 90 => r - 1Digits
210rRadix (Base)

BinaryDecimalGeneral

Chapter 1 13

Special Powers of 2

210 (1024) is Kilo, denoted "K"

220 (1,048,576) is Mega, denoted "M"

230 (1,073, 741,824)is Giga, denoted "G"

Chapter 1 14

Useful for Base Conversion
Exponent Value Exponent Value

0 1 11 2,048
1 2 12 4,096
2 4 13 8,192
3 8 14 16,384
4 16 15 32,768
5 32 16 65,536
6 64 17 131,072
7 128 18 262,144

19 524,288
20 1,048,576
21 2,097,152

8 256
9 512
10 1024

Positive Powers of 2

Chapter 1 15

To convert to decimal, use decimal arithmetic
to form Σ (digit × respective power of 2).
Example:Convert 110102 to N10:

Converting Binary to Decimal

Chapter 1 16

Method 1
• Subtract the largest power of 2 (see slide 14) that gives

a positive remainder and record the power.
• Repeat, subtracting from the prior remainder and

recording the power, until the remainder is zero.
• Place 1’s in the positions in the binary result

corresponding to the powers recorded; in all other
positions place 0’s.

Example: Convert 62510 to N2

Converting Decimal to Binary

Chapter 1 17

Commonly Occurring Bases

Name Radix Digits
Binary 2 0,1
Octal 8 0,1,2,3,4,5,6,7
Decimal 10 0,1,2,3,4,5,6,7,8,9
Hexadecimal 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

The six letters (in addition to the 10
integers) in hexadecimal represent:

Chapter 1 18

Decimal
(Base 10)

Binary
(Base 2)

Octal
(Base 8)

Hexadecimal
(Base 16)

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10

Good idea to memorize!

Numbers in Different Bases

Chapter 1 19

Conversion Between Bases

Method 2
To convert from one base to another:

1) Convert the Integer Part
2) Convert the Fraction Part
3) Join the two results with a radix point

Chapter 1 20

Conversion Details

To Convert the Integral Part:
Repeatedly divide the number by the new radix and
save the remainders. The digits for the new radix are
the remainders in reverse order of their computation.
If the new radix is > 10, then convert all remainders >
10 to digits A, B, …

To Convert the Fractional Part:
Repeatedly multiply the fraction by the new radix and
save the integer digits that result. The digits for the
new radix are the integer digits in order of their
computation. If the new radix is > 10, then convert all
integers > 10 to digits A, B, …

Chapter 1 21

Example: Convert 46.687510 To Base 2

Convert 46 to Base 2

Convert 0.6875 to Base 2:

Join the results together with the
radix point:

Chapter 1 22

Additional Issue - Fractional Part

Note that in this conversion, the fractional part
became 0 as a result of the repeated
multiplications.
In general, it may take many bits to get this to
happen or it may never happen.
Example: Convert 0.6510 to N2
• 0.65 = 0.1010011001001 …
• The fractional part begins repeating every 4 steps

yielding repeating 1001 forever!
Solution: Specify number of bits to right of
radix point and round or truncate to this
number.

Chapter 1 23

Checking the Conversion

To convert back, sum the digits times their
respective powers of r.

From the prior conversion of 46.687510

1011102 = 1·32 + 0·16 +1·8 +1·4 + 1·2 +0·1
= 32 + 8 + 4 + 2
= 46

0.10112 = 1/2 + 1/8 + 1/16
= 0.5000 + 0.1250 + 0.0625
= 0.6875

Chapter 1 24

Why Do Repeated Division and
Multiplication Work?

Divide the integer portion of the power series
on slide 11 by radix r. The remainder of this
division is A0, represented by the term A0/r.
Discard the remainder and repeat, obtaining
remainders A1, …
Multiply the fractional portion of the power
series on slide 11 by radix r. The integer part of
the product is A-1.
Discard the integer part and repeat, obtaining
integer parts A-2, …
This demonstrates the algorithm for any radix
r >1.

Chapter 1 25

Octal (Hexadecimal) to Binary and
Back

Octal (Hexadecimal) to Binary:
• Restate the octal (hexadecimal) as three

(four) binary digits starting at the radix
point and going both ways.

Binary to Octal (Hexadecimal):
• Group the binary digits into three (four) bit

groups starting at the radix point and going
both ways, padding with zeros as needed in
the fractional part.

• Convert each group of three bits to an octal
(hexadecimal) digit.

Chapter 1 26

Octal to Hexadecimal via Binary

Convert octal to binary.
Use groups of four bits and convert as above to
hexadecimal digits.
Example: Octal to Binary to Hexadecimal

6 3 5 . 1 7 7 8

Why do these conversions work?

Chapter 1 27

A Final Conversion Note

You can use arithmetic in other bases if
you are careful:
Example: Convert 1011102 to Base 10
using binary arithmetic:
Step 1 101110 / 1010 = 100 r 0110
Step 2 100 / 1010 = 0 r 0100
Converted Digits are 01002 | 01102

or 4 6 10

Chapter 1 28

Binary Numbers and Binary Coding

Flexibility of representation
• Within constraints below, can assign any binary

combination (called a code word) to any data as long
as data is uniquely encoded.

Information Types
• Numeric

Must represent range of data needed
Very desirable to represent data such that simple,
straightforward computation for common arithmetic
operations permitted
Tight relation to binary numbers

• Non-numeric
Greater flexibility since arithmetic operations not applied.
Not tied to binary numbers

Chapter 1 29

Given n binary digits (called bits), a binary code
is a mapping from a set of represented elements
to a subset of the 2n binary numbers.
Example: A
binary code
for the seven
colors of the
rainbow
Code 100 is
not used

Non-numeric Binary Codes

Binary Number
000
001
010
011
101
110
111

Color
Red
Orange
Yellow
Green
Blue
Indigo
Violet

Chapter 1 30

Given M elements to be represented by a
binary code, the minimum number of
bits, n, needed, satisfies the following
relationships:

2n > M > 2(n – 1)

n = log2 M where x , called the ceiling
function, is the integer greater than or
equal to x.

Example: How many bits are required to
represent decimal digits with a binary
code?

Number of Bits Required

Chapter 1 31

Number of Elements Represented

Given n digits in radix r, there are rn

distinct elements that can be represented.
But, you can represent m elements, m <
rn

Examples:
• You can represent 4 elements in radix r = 2

with n = 2 digits: (00, 01, 10, 11).
• You can represent 4 elements in radix r = 2

with n = 4 digits: (0001, 0010, 0100, 1000).
• This second code is called a "one hot" code.

Chapter 1 32

Binary Codes for Decimal Digits

Decimal 8,4,2,1 Excess3 8,4,-2,-1 Gray
0 0000 0011 0000 0000
1 0001 0100 0111 0100
2 0010 0101 0110 0101
3 0011 0110 0101 0111
4 0100 0111 0100 0110
5 0101 1000 1011 0010
6 0110 1001 1010 0011
7 0111 1010 1001 0001
8 1000 1011 1000 1001
9 1001 1100 1111 1000

There are over 8,000 ways that you can chose 10 elements
from the 16 binary numbers of 4 bits. A few are useful:

Chapter 1 33

Binary Coded Decimal (BCD)

The BCD code is the 8,4,2,1 code.
This code is the simplest, most intuitive binary
code for decimal digits and uses the same
powers of 2 as a binary number, but only
encodes the first ten values from 0 to 9.
Example: 1001 (9) = 1000 (8) + 0001 (1)
How many “invalid” code words are there?
What are the “invalid” code words?

Chapter 1 34

What interesting property is common
to these two codes?

Excess 3 Code and 8, 4, –2, –1 Code

111111009
100010118
100110107
101010016
101110005
010001114
010101103
011001012
011101001
000000110

8, 4, –2, –1Excess 3Decimal

Chapter 1 35

What special property does the Gray code have
in relation to adjacent decimal digits?

Gray Code

Decimal 8,4,2,1 Gray
0 0000 0000
1 0001 0100
2 0010 0101
3 0011 0111
4 0100 0110
5 0101 0010
6 0110 0011
7 0111 0001
8 1000 1001
9 1001 1000

Chapter 1 36

B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary Code for Positions 0 through 7

G0

G1

G2

111

101

100 000

001

011

010110

(b) Gray Code for Positions 0 through 7

Gray Code (Continued)

Does this special Gray code property
have any value?
An Example: Optical Shaft Encoder

Chapter 1 37

Gray Code (Continued)

How does the shaft encoder work?

For the binary code, what codes may be
produced if the shaft position lies
between codes for 3 and 4 (011 and 100)?

Is this a problem?

Chapter 1 38

Gray Code (Continued)

For the Gray code, what codes may be
produced if the shaft position lies
between codes for 3 and 4 (010 and 110)?

Is this a problem?

Does the Gray code function correctly for
these borderline shaft positions for all
cases encountered in octal counting?

Chapter 1 39

Warning: Conversion or Coding?

Do NOT mix up conversion of a decimal
number to a binary number with coding
a decimal number with a BINARY
CODE.

1310 = 11012 (This is conversion)
13 ⇔ 0001|0011 (This is coding)

Chapter 1 40

Binary Arithmetic

Single Bit Addition with Carry
Multiple Bit Addition
Single Bit Subtraction with Borrow
Multiple Bit Subtraction
Multiplication
BCD Addition

Chapter 1 41

Single Bit Binary Addition with Carry

Given two binary digits (X,Y), a carry in (Z) we get the
following sum (S) and carry (C):

Carry in (Z) of 0:

Carry in (Z) of 1:

Z 1 1 1 1
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1
C S 0 1 1 0 1 0 1 1

Z 0 0 0 0
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1
C S 0 0 0 1 0 1 1 0

Chapter 1 42

Extending this to two multiple bit
examples:

Carries 0 0
Augend 01100 10110
Addend +10001 +10111
Sum

Note: The 0 is the default Carry-In to the
least significant bit.

Multiple Bit Binary Addition

Chapter 1 43

Given two binary digits (X,Y), a borrow in (Z) we
get the following difference (S) and borrow (B):
Borrow in (Z) of 0:

Borrow in (Z) of 1:

Single Bit Binary Subtraction with Borrow

Z 1 1 1 1
X 0 0 1 1

- Y -0 -1 -0 -1
BS 11 1 0 0 0 1 1

Z 0 0 0 0
X 0 0 1 1

- Y -0 -1 -0 -1
BS 0 0 1 1 0 1 0 0

Chapter 1 44

Extending this to two multiple bit examples:

Borrows 0 0
Minuend 10110 10110
Subtrahend - 10010 - 10011
Difference

Notes: The 0 is a Borrow-In to the least significant
bit. If the Subtrahend > the Minuend, interchange
and append a – to the result.

Multiple Bit Binary Subtraction

Chapter 1 45

Binary Multiplication

The binary multiplication table is simple:
0 ∗ 0 = 0 | 1 ∗ 0 = 0 | 0 ∗ 1 = 0 | 1 ∗ 1 = 1

Extending multiplication to multiple digits:
Multiplicand 1011
Multiplier x 101
Partial Products 1011
 0000 -
 1011 - -
Product 110111

Chapter 1 46

BCD Arithmetic

Given a BCD code, we use binary arithmetic to add the digits:
8 1000 Eight

+5 +0101 Plus 5
13 1101 is 13 (> 9)
Note that the result is MORE THAN 9, so must be
represented by two digits!
To correct the digit, subtract 10 by adding 6 modulo 16.
8 1000 Eight

+5 +0101 Plus 5
13 1101 is 13 (> 9)

+0110 so add 6
carry = 1 0011 leaving 3 + cy

0001 | 0011 Final answer (two digits)
If the digit sum is > 9, add one to the next significant digit

Chapter 1 47

BCD Addition Example

Add 2905BCD to 1897BCD showing
carries and digit corrections.

0001 1000 1001 0111
+ 0010 1001 0000 0101

0

Chapter 1 48

Error-Detection Codes

Redundancy (e.g. extra information), in the
form of extra bits, can be incorporated into
binary code words to detect and correct errors.
A simple form of redundancy is parity, an extra
bit appended onto the code word to make the
number of 1’s odd or even. Parity can detect all
single-bit errors and some multiple-bit errors.
A code word has even parity if the number of
1’s in the code word is even.
A code word has odd parity if the number of
1’s in the code word is odd.

Chapter 1 49

4-Bit Parity Code Example

Fill in the even and odd parity bits:

The codeword "1111" has even parity and the
codeword "1110" has odd parity. Both can be
used to represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -

Chapter 1 50

ASCII Character Codes

American Standard Code for Information
Interchange
This code is a popular code used to represent
information sent as character-based data. It uses
7-bits to represent:
• 94 Graphic printing characters.
• 34 Non-printing characters

Some non-printing characters are used for text
format (e.g. BS = Backspace, CR = carriage
return)
Other non-printing characters are used for record
marking and flow control (e.g. STX and ETX start
and end text areas).

(Refer to Table 1-4 in the text)

Chapter 1 51

ASCII Properties

ASCII has some interesting properties:
Digits 0 to 9 span Hexadecimal values 3016 to 3916 .
Upper case A-Z span 4116 to 5A16 .
Lower case a-z span 6116 to 7A16 .
• Lower to upper case translation (and vice versa)

occurs by flipping bit 6.
Delete (DEL) is all bits set, a carryover from when
punched paper tape was used to store messages.
Punching all holes in a row erased a mistake!

Chapter 1 52

UNICODE

UNICODE extends ASCII to 65,536
universal characters codes
• For encoding characters in world languages

• Available in many modern applications

• 2 byte (16-bit) code words

• See Reading Supplement – Unicode on the
Companion Website
http://www.prenhall.com/mano

Chapter 1 53

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard
Pearson Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post
these materials on a protected website or protected ftp site in
original or modified form. All other website or ftp postings,
including those offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice
or any trademark, copyright, or other proprietary notice,
including the copyright watermark on each slide.
Return to Title Page

