Logic and Computer Design Fundamentals

Chapter 1 – Digital Computers and Information

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc. <u>Terms of Use</u> (Hyperlinks are active in View Show mode)

Overview

- Digital Systems and Computer Systems
- Information Representation
- Number Systems [binary, octal and hexadecimal]
- Arithmetic Operations
- Base Conversion
- Decimal Codes [BCD (binary coded decimal), parity]
- Gray Codes
- Alphanumeric Codes

Digital System

 Takes a set of discrete information <u>inputs</u> and discrete internal information <u>(system state)</u> and generates a set of discrete information <u>outputs</u>.

Types of Digital Systems

- No state present
 - Combinational Logic System
 - **Output = Function(Input)**

State present

- State updated at discrete times
 - => Synchronous Sequential System
- State updated at any time
 - =>Asynchronous Sequential System
- State = Function (State, Input)
- Output = Function (State) or Function (State, Input)

Digital System Example:

A Digital Counter (e. g., odometer):

 $\begin{array}{c} \text{Count Up} \longrightarrow \\ \text{Reset} \longrightarrow 0 \quad 0 \quad 1 \quad 3 \quad 5 \quad 6 \quad 4 \end{array}$

Inputs:Count Up, ResetOutputs:Visual DisplayState:''Value'' of stored digits

Synchronous or Asynchronous?

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 1 5

A Digital Computer Example

Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
 - digits 0 and 1
 - words (symbols) False (F) and True (T)
 - words (symbols) Low (L) and High (H)
 - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.

Chapter 1 7

Signal Examples Over Time

Signal Example – Physical Quantity: Voltage

Binary Values: Other Physical Quantities

- What are other physical quantities represent 0 and 1?
 - CPU Voltage
 - Disk Magnetic Field Direction
 - CD Surface Pits/Light
 - Dynamic RAM Electrical Charge

Number Systems – Representation

- Positive radix, positional number systems
- A number with *radix* **r** is represented by a string of digits:

 $A_{n-1}A_{n-2} \dots A_{1}A_{0} \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$ in which $0 \le A_i < r$ and . is the *radix point*.

• The string of digits represents the power series:

$$(\text{Number})_{\mathbf{r}} = \left(\sum_{i=0}^{\mathbf{i}=\mathbf{n}-1} A_{\mathbf{i}} \cdot \mathbf{r}^{\mathbf{i}}\right) + \left(\sum_{j=-\mathbf{m}}^{\mathbf{j}=-1} A_{\mathbf{j}} \cdot \mathbf{r}^{\mathbf{j}}\right)$$

$$(\text{Integer Portion}) + (\text{Fraction Portion})$$

Logic and Computer Design Fundament PowerPoint[®] Stites © 2004 Poerson Education, Inc.

```
Chapter 1 11
```

Number Systems – Examples

		General	Decimal	Binary
Radix (Bas	e)	r	10	2
Digits		0 => r - 1	0 => 9	0 => 1
	0	r ⁰	1	1
	1	r ¹	10	2
	2	r ²	100	4
	3	r ³	1000	8
Powers of	4	r ⁴	10,000	16
Radix	5	r ⁵	100,000	32
	-1	r ⁻¹	0.1	0.5
	-2	r -2	0.01	0.25
	-3	r ⁻³	0.001	0.125
	-4	r -4	0.0001	0.0625
	-5	r ⁻⁵	0.00001	0.03125

Logic and Computer Design Fundamentals PowerPoint[®] Silites © 2004 Peerson Education, Inc.

Chapter 1 12

Special Powers of 2

- 2²⁰ (1,048,576) is Mega, denoted "M"
- 2³⁰ (1,073, 741,824) is Giga, denoted "G"

Logic and Computer Dealgn Fundamentals PowerPoint[®] Slides © 2004 Poerson Education, Inc.

Chapter 1 13

Positive Powers of 2

Useful for Base Conversion

Exponent	Value
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Exponent	Value
11	2,048
12	4,096
13	8,192
14	16,384
15	32,768
16	65,536
17	131,072
18	262,144
19	524,288
20	1,048,576
21	2,097,152

PowerPoint[®] Slidss © 2004 Pearson Education, Inc.

Converting Binary to Decimal

- To convert to decimal, use decimal arithmetic to form Σ (digit × respective power of 2).
- Example:Convert 11010₂ to N₁₀:

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 1 15

Converting Decimal to Binary

- Method 1
 - Subtract the largest power of 2 (see slide 14) that gives a positive remainder and record the power.
 - Repeat, subtracting from the prior remainder and recording the power, until the remainder is zero.
 - Place 1's in the positions in the binary result corresponding to the powers recorded; in all other positions place 0's.
- Example: Convert 625₁₀ to N₂

Commonly Occurring Bases

Name	Radix	Digits
Binary	2	0,1
Octal	8	0,1,2,3,4,5,6,7
Decimal	10	0,1,2,3,4,5,6,7,8,9
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
The six lette	ers (in ad	ldition to the 10
integers) in	hexadec	imal represent:

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Peorson Education, Inc.

Chapter 1 17

Numbers in Different Bases

Good idea to memorize!

			· ·
Decimal	Binary	Octal	Hexadecimal
(Base 10)	(Base 2)	(Base 8)	(Base 16)
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	0E
15	01111	17	OF
16	10000	20	10

Logic and Computer Dealgn F PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 1 18

Conversion Between Bases

Method 2

- To convert from one base to another:
 - 1) Convert the Integer Part
 - 2) Convert the Fraction Part
 - 3) Join the two results with a radix point

Logic and Computer Design Fundamentals PowerPoint^{di} Slides © 2004 Poerson Education, Inc.

Chapter 1 19

Conversion Details

To Convert the Integral Part:

Repeatedly divide the number by the new radix and save the remainders. The digits for the new radix are the remainders in *reverse order* of their computation. If the new radix is > 10, then convert all remainders > 10 to digits A, B, ...

To Convert the Fractional Part:

Repeatedly multiply the fraction by the new radix and save the integer digits that result. The digits for the new radix are the integer digits in *order* of their computation. If the new radix is > 10, then convert all integers > 10 to digits A, B, ...

Convert 46 to Base 2

Convert 0.6875 to Base 2:

Join the results together with the radix point:

Logic and Computer Design Fundamentals PowerPoint[®] Stidss © 2004 Pearson Education, Inc.

Chapter 1 21

Additional Issue - Fractional Part

- Note that in this conversion, the fractional part became 0 as a result of the repeated multiplications.
- In general, it may take many bits to get this to happen or it may never happen.
- Example: Convert 0.65₁₀ to N₂
 - 0.65 = 0.1010011001001 ...
 - The fractional part begins repeating every 4 steps yielding repeating 1001 forever!
- Solution: Specify number of bits to right of radix point and round or truncate to this number.

Checking the Conversion

To convert back, sum the digits times their respective powers of r.

• From the prior conversion of 46.6875_{10} $101110_2 = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$ = 32 + 8 + 4 + 2 = 46 $0.1011_2 = 1/2 + 1/8 + 1/16$ = 0.5000 + 0.1250 + 0.0625= 0.6875

Logic and Computer Denign Fundamentals PowerPoint[®] Stidss © 2004 Poerson Education, Inc.

Chapter 1 23

Why Do Repeated Division and Multiplication Work?

- Divide the integer portion of the power series on slide 11 by radix r. The remainder of this division is A₀, represented by the term A₀/r.
- Discard the remainder and repeat, obtaining remainders A₁, ...
- Multiply the fractional portion of the power series on slide 11 by radix r. The integer part of the product is A₋₁.
- Discard the integer part and repeat, obtaining integer parts A₋₂, ...
- This demonstrates the algorithm for any radix r >1.

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Peerson Education, Inc.

Octal (Hexadecimal) to Binary and Back

- Octal (Hexadecimal) to Binary:
 - Restate the octal (hexadecimal) as three (four) binary digits starting at the radix point and going both ways.
- Binary to Octal (Hexadecimal):
 - Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part.
 - Convert each group of three bits to an octal (hexadecimal) digit.

Logis and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 1 25

Octal to Hexadecimal via Binary

- Convert octal to binary.
- Use groups of <u>four bits</u> and convert as above to hexadecimal digits.
- Example: Octal to Binary to Hexadecimal

6 3 5.1 7 7₈

Why do these conversions work?

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

A Final Conversion Note

- You can use arithmetic in other bases if you are careful:
- Example: Convert 101110₂ to Base 10 using binary arithmetic:

Step 1 101110 / 1010 = 100 r 0110

Step 2 100 / 1010 = 0 r 0100

Converted Digits are 0100₂ | 0110₂

or 4 6 10

Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Pearson Education, Inc.

Chapter 1 27

Binary Numbers and Binary Coding

- Flexibility of representation
 - Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.

Information Types

- Numeric
 - Must represent range of data needed
 - Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
 - Tight relation to binary numbers
- Non-numeric
 - Greater flexibility since arithmetic operations not applied.
 - Not tied to binary numbers

Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Non-numeric Binary Codes

- Given *n* binary digits (called <u>bits</u>), a <u>binary code</u> is a mapping from a set of <u>represented elements</u> to a subset of the 2ⁿ binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

Logic and Computer Denign Fundamentals PowerPoint⁰¹ Stides © 2004 Poerson Education, Inc.

Color	Binary Number
Red	000
Orange	001
Yellow	010
Green	011
Blue	101
Indigo	110
Violet	111

Chapter 1 29

Number of Bits Required

 Given M elements to be represented by a binary code, the minimum number of bits, n, needed, satisfies the following relationships:

 $2^{n} > M > 2^{(n-1)}$

- $n = \lceil \log_2 M \rceil$ where $\lceil x \rceil$, called the *ceiling* function, is the integer greater than or equal to x.
- Example: How many bits are required to represent <u>decimal digits</u> with a binary code?

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Number of Elements Represented

- Given n digits in radix r, there are rⁿ distinct elements that can be represented.
- But, you can represent m elements, m < rⁿ
- Examples:
 - You can represent 4 elements in radix *r* = 2 with *n* = 2 digits: (00, 01, 10, 11).
 - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).
 - This second code is called a "<u>one hot</u>" code.

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 1 31

Binary Codes for Decimal Digits

• There are over 8,000 ways that you can chose 10 elements from the 16 binary numbers of 4 bits. A few are useful:

Decimal	8,4,2,1	Excess3	8,4,-2,-1	Gray
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

Binary Coded Decimal (BCD)

- The BCD code is the 8,4,2,1 code.
- This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9.
- Example: 1001 (9) = 1000 (8) + 0001 (1)
- How many "invalid" code words are there?
- What are the "invalid" code words?

Logic and Computer Denign Fundamentals PowerPoint[®] Stidss © 2004 Poerson Education, Inc.

Chapter 1 33

Excess 3 Code and 8, 4, -2, -1 Code

Decimal	Excess 3	8, 4, -2, -1
0	0011	0000
1	0100	0111
2	0101	0110
3	0110	0101
4	0111	0100
5	1000	1011
6	1001	1010
7	1010	1001
8	1011	1000
9	1100	1111

What interesting property is common

to these two codes? PowerPaint® Sities 0 2004 Person Education, Inc.

Gray Code

Decimal	8,4,2,1	Gray
0	0000	0000
1	0001	0100
2	0010	0101
3	0011	0111
4	0100	0110
5	0101	0010
6	0110	0011
7	0111	0001
8	1000	1001
9	1001	1000

What special property does the Gray code have in relation to adjacent decimal digits?

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Pearson Education, Inc.

Chapter 1 35

36

Gray Code (Continued)

- Does this special Gray code property have any value?
- An Example: Optical Shaft Encoder

Gray Code (Continued)

- How does the shaft encoder work?
- For the binary code, what codes may be produced if the shaft position lies between codes for 3 and 4 (011 and 100)?
- Is this a problem?

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 1 37

Gray Code (Continued)

- For the Gray code, what codes may be produced if the shaft position lies between codes for 3 and 4 (010 and 110)?
- Is this a problem?
- Does the Gray code function correctly for these borderline shaft positions for all cases encountered in octal counting?

Warning: Conversion or Coding?

- Do <u>NOT</u> mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE.
- 13₁₀ = 1101₂ (This is <u>conversion</u>)
- 13 \Leftrightarrow 0001|0011 (This is <u>coding</u>)

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.

Chapter 1 39

Binary Arithmetic

- Single Bit Addition with Carry
- Multiple Bit Addition
- Single Bit Subtraction with Borrow
- Multiple Bit Subtraction
- Multiplication
- BCD Addition

Single Bit Binary Addition with Carry

Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C):

Z	0	0	0	0
Х	0	0	1	1
+ Y	+ 0	+1	+ 0	+1
C S	00	01	01	10
Z	1	1	1	1
X	0	0	1	1
+ Y	+ 0	+1	+ 0	+ 1
C S	01	10	10	11
		$ \begin{array}{cccc} Z & 0 \\ X & 0 \\ + Y & + 0 \\ \hline C S & 0 0 \\ \end{array} $ $ \begin{array}{c} Z & 1 \\ X & 0 \\ + Y & + 0 \\ \hline C S & 0 1 \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 1 41

Multiple Bit Binary Addition

• Extending this to two multiple bit examples:

<u>0</u>	<u>0</u>
01100	10110
<u>+10001</u>	+10111
	<u>0</u> 01100 <u>+10001</u>

Sum

• Note: The <u>0</u> is the default Carry-In to the least significant bit.

Single Bit Binary Subtraction with Borrow

Given two binary digits (X,Y), a borrow in (Z) we
get the following difference (S) and borrow (B):

Borrow in (Z) of 0: Z	0	0	0	0
Х	0	0	1	1
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>
BS	00	11	01	00
Borrow in (Z) of 1: Z	1	1	1	1
X	0	0	1	1
<u>- Y</u>	<u>-0</u>	<u>-1</u>	<u>-0</u>	<u>-1</u>
BS	11	10	00	11
Logic and Computer Design Fundamentals PowerPoint ⁰⁰ Stitles © 2004 Pressure Education, Inc.			Chapt	er 1 43

Multiple Bit Binary Subtraction

• Extending this to two multiple bit examples:

Borrows	<u>0</u>	<u>0</u>
Minuend	10110	10110
Subtrahend	<u>- 10010</u>	<u>- 10011</u>

Difference

 Notes: The <u>0</u> is a Borrow-In to the least significant bit. If the Subtrahend > the Minuend, interchange and append a – to the result.

Binary Multiplication

The binary multiplication table is simple:

0 * 0 = 0 | 1 * 0 = 0 | 0 * 1 = 0 | 1 * 1 = 1

Extending multiplication to <u>multiple digits</u>:

Multiplicand	1011
Multiplier	<u>x 101</u>
Partial Products	1011
	0000 -
	1011
Product	110111
and Computer Dealgn Fundamentals	

Logic and Computer Dealgn Fundamental PowerPoint[®] Slides © 2004 Poersun Education, Inc.

Chapter 1 45

BCD Arithmetic

Given a BCD) code,	we use binary arithmetic to add the digits:
8 10	00 E	Cight
<u>+5</u> <u>+01</u>	<u>01</u> P	Plus 5
13 11	01 is	s 13 (> 9)
Note that the	e result	is MORE THAN 9, so must be
represented	by two	digits!
To correct the	e digit	, subtract 10 by adding 6 modulo 16.
8	1000	Eight
<u>+5</u> +	<u>-0101</u>	Plus 5
13	1101	is 13 (> 9)
<u>+</u>	<u>-0110</u>	so add 6
carry = 1	0011	leaving 3 + cy
0001	0011	Final answer (two digits)
If the digit su	ım is >	9, add one to the next significant digit

Logic and Computer Design Fundamentals PowerPoint[®] Sides © 2004 Poerson Education, Inc.

Chapter 1 46

BCD Addition Example

Add 2905_{BCD} to 1897_{BCD} showing carries and digit corrections.

			v
0001	1000	1001	0111
+ <u>0010</u>	<u>1001</u>	<u>0000</u>	<u>0101</u>

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Pearson Education, Inc.

Chapter 1 47

Error-Detection Codes

- <u>Redundancy</u> (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is <u>parity</u>, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has <u>even parity</u> if the number of 1's in the code word is even.
- A code word has <u>odd parity</u> if the number of 1's in the code word is odd.

Logic and Computer Design Fundamentals PowerPoint[®] Stitus © 2004 Poerson Education, Inc.

4-Bit Parity Code Example

Fill in the even and odd parity bits:			
	Even Parity	Odd Parity	
	Message - Parity	Message _ Parity	
	000 -	000 _	
	001.	001	
	010 .	010 _	
	011.	011	
	100.	100 _	
	101.	101 _	
	110.	110_	
	111.	111_	

• The codeword "1111" has <u>even parity</u> and the codeword "1110" has <u>odd parity</u>. Both can be used to represent 3-bit data.

Logis and Computer Design Fundam PowerPoint[®] Slides © 2004 Poerson Education, Inc.

Chapter 1 49

ASCII Character Codes

- American Standard Code for Information Interchange (Refer to Table 1-4 in the text)
- This code is a popular code used to represent information sent as character-based data. It uses 7-bits to represent:
 - 94 Graphic printing characters.
 - 34 Non-printing characters
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Properties

ASCII has some interesting properties:

- Digits 0 to 9 span Hexadecimal values 30₁₆ to 39₁₆.
- Upper case A-Z span 41₁₆ to 5A₁₆.
- Lower case a -z span 61₁₆ to 7A₁₆.
 - Lower to upper case translation (and vice versa) occurs by flipping bit 6.
- Delete (DEL) is all bits set, a carryover from when punched paper tape was used to store messages.
- Punching all holes in a row erased a mistake!

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 1 51

UNICODE

- UNICODE extends ASCII to 65,536 universal characters codes
 - For encoding characters in world languages
 - Available in many modern applications
 - 2 byte (16-bit) code words
 - See Reading Supplement Unicode on the Companion Website <u>http://www.prenhall.com/mano</u>

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education <u>Legal Notice</u>.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- <u>Return to Title Page</u>

Logis and Computer Denign Fundamentals PowerPoint[®] Slides © 2004 Poerson Education, Inc.

Chapter 1 53