Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 1 - Gate Circuits and Boolean Equations

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

<u>Terms of Use</u>
(Hyperlinks are active in View Show mode)

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Binary Logic and Gates

- Binary variables take on one of two values.
- <u>Logical operators</u> operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as foundation for designing and analyzing digital systems!

Logic and Computer Design Fundamentals
PowerPoint® Slides
© 2004 Pourson Education, Inc.

Chapter 2 - Part 1

3

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - A, B, y, z, or X_1 for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable.

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pasraso Education, Inc.

Chapter 2 - Part 1

5

Notation Examples

- Examples:
 - $Y = A \cdot B$ is read "Y is equal to A AND B."
 - z = x + y is read "z is equal to x OR y."
 - $X = \overline{A}$ is read "X is equal to NOT A."
- Note: The statement:

1 + 1 = 2 (read "one <u>plus</u> one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

Operator Definitions

Operations are defined on the values"0" and "1" for each operator:

AND OR NOT
$$0 \cdot 0 = 0 \qquad 0 + 0 = 0 \qquad \overline{0} = 1$$

$$0 \cdot 1 = 0 \qquad 0 + 1 = 1 \qquad \overline{1} = 0$$

$$1 \cdot 0 = 0 \qquad 1 + 0 = 1$$

$$1 \cdot 1 = 1 \qquad 1 + 1 = 1$$

Lugic and Computer Design Fundamentals PowerPoint® Slidss © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

7

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND					
X	Y	$Z = X \cdot Y$			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

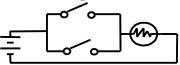
	OR					
X	Y	Z = X+Y				
0	0	0				
0	1	1				
1	0	1				
1	1	1				

NOT		
X	$Z = \overline{X}$	
0	1	
1	0	

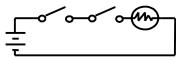
Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is light on
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such that:
 - logic 1 is switch open
 - logic 0 is switch closed

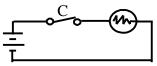
Switches in parallel => OR



Switches in series => AND



Normally-closed switch => NOT

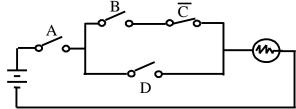


Chapter 2 - Part 1

9

Logic Function Implementation (Continued)

Example: Logic Using Switches



• Light is on (L = 1) for

$$L(A, B, C, D) =$$

and off (L = 0), otherwise.

 Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

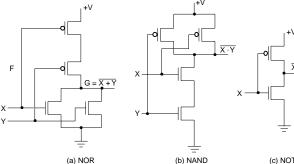
Lugic and Computer Design Fundamentals PowerPoint® Slidss © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

11

Logic Gates (continued)

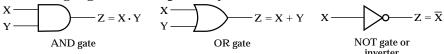
 Implementation of logic gates with transistors (See Reading Supplement – CMOS Circuits)



- Transistor or tube implementations of logic functions are called logic gates or just gates
- Transistor gate circuits can be modeled by switch circuits

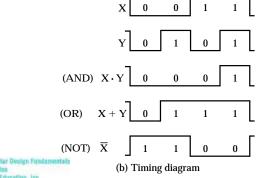
Logic Gate Symbols and Behavior

Logic gates have special symbols:



(a) Graphic symbols

And waveform behavior in time as follows:



Logic and Computer Design Fundame PowerPoint® Stides © 2008 Processor Education, Inc.

Chapter 2 - Part 1

13

Logic Diagrams and Expressions

	th Table	Equation
XYZ	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z}$	
000	0	$\mathbf{F} = \mathbf{X} + \mathbf{Y} \mathbf{Z}$
001	1	
010	0	Logic Diagram
011	0	X
100	1	
101	1	Y—————————————————————————————————————
110	1	z
111	1	

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Algebra

- An algebraic structure defined on a set of at least two elements, B, together with three binary operators (denoted +, · and ¯) that satisfies the following basic identities:
- 1. X + 0 = X

2. $X \cdot 1 = X$

3. X + 1 = 1

4. $X \cdot 0 = 0$

5. X + X = X

6. $X \cdot X = X$

7. $X + \overline{X} = 1$

8. $X \cdot \overline{X} = 0$

- 9. $\overline{\overline{X}} = X$
- 10. X + Y = Y + X
- 11. XY = YX

Commutative

- 12. (X + Y) + Z = X + (Y + Z)
- 13. (XY)Z = X(YZ)

Associative

- 14. X(Y+Z) = XY+XZ
- 15. X + YZ = (X + Y)(X + Z)
- Distributive

16. $\overline{X+Y} = \overline{X} \cdot \overline{Y}$

17. $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

DeMorgans

Logic and Competer Design Fundamental PowerPoint® Stides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

15

Some Properties of Identities & the Algebra

- If the meaning is unambiguous, we leave out the symbol "."
- The identities above are organized into pairs. These pairs have names as follows:

1-4 Existence of 0 and 1 5-6 Idempotence

7-8 Existence of complement 9 Involution

10-11 Commutative Laws
12-13 Associative Laws
14-15 Distributive Laws
16-17 DeMorgan's Laws

- The <u>dual</u> of an algebraic expression is obtained by interchanging + and ⋅ and interchanging 0's and 1's.
- The identities appear in <u>dual</u> pairs. When there is only one identity on a line the identity is <u>self-dual</u>, i. e., the dual expression = the original expression.

Some Properties of Identities & the Algebra (Continued)

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself.
- Example: $F = (A + \overline{C}) \cdot B + 0$ dual $F = (A \cdot \overline{C} + B) \cdot 1 = A \cdot \overline{C} + B$
- Example: $G = X \cdot Y + (\overline{W + Z})$ dual G =
- Example: $\mathbf{H} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$ dual $\mathbf{H} =$
- Are any of these functions self-dual?

Logic and Computer Dealgn Fundamental PowerPoint[©] Slidss © 2004 Pearsen Education, Inc.

Chapter 2 - Part 1

17

Some Properties of Identities & the Algebra (Continued)

- There can be more that 2 elements in B, i. e., elements other than 1 and 0. What are some common useful Boolean algebras with more than 2 elements?
 - 1. Algebra of Sets
 - 2. Algebra of n-bit binary vectors
- If B contains only 1 and 0, then B is called the <u>switching algebra</u> which is the algebra we use most often.

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: $F = A(B + C)(C + \overline{D})$

Logic and Computer Design Fundamentals PowerPoint® Sildss © 2004 Paarase Education, Inc.

Chapter 2 - Part 1

19

Example 1: Boolean Algebraic Proof

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

Logic and Computer Design Fundamental PowerPoint® Slides © 2004 Pagram Education, Inc.

Chapter 2 - Part 1

21

Example 3: Boolean Algebraic Proofs

_

Useful Theorems

•
$$x \cdot y + \overline{x} \cdot y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization

$$x + x \cdot y = x$$
 $x \cdot (x + y) = x$ Absorption

•
$$x + \overline{x} \cdot y = x + y$$
 $x \cdot (\overline{x} + y) = x \cdot y$ Simplification

•
$$\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{z}$$
 Consensus $(\mathbf{x} + \mathbf{y}) \cdot (\overline{\mathbf{x}} + \mathbf{z}) \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) \cdot (\overline{\mathbf{x}} + \mathbf{z})$

•
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
 $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan's Laws

Logic and Computer Design Fundamental PowerPoint® Slides © 2004 Paarsen Education, Inc.

Chapter 2 - Part 1

23

Proof of Simplification

$$x \cdot y + \overline{x} \cdot y = y \quad (x + y)(\overline{x} + y) = y$$

Proof of DeMorgan's Laws

$$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}} \qquad \overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

Chapter 2 - Part 1

Boolean Function Evaluation

$$F1 = xy\overline{z}$$

$$F2 = x + \overline{y}z$$

$$F3 = \overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$$

$$F4 = x\overline{y} + \overline{x}z$$

X	y	Z	F1	F2	F3	F4
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	1		
1	0	1	0	1		
1	1	0	1	1		
1	1	1	0	1		

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables):

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$$

$$= AB + AB(CD) + \overline{A}C(D + \overline{D}) + \overline{A}BD$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

$$= B(A + D) + \overline{A}C5 \text{ literals}$$

Logic and Computer Design Fundamentals PowerPoint[©] Stides © 2004 Posesson Education, Inc.

Chapter 2 - Part 1

27

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{x}y\overline{z} + x\overline{y}\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} =$

Logic and Computer Design Fundamental PowerPoint[®] Slides © 2004 Pensyon Education, Inc.

Overview – Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Ligic and Computer Design Fundamental PowerPoint® Slides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

29

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., $\overline{\mathbf{x}}$), there are 2^n minterms for n variables.
- Example: Two variables (X and Y)produce 2 x 2 = 4 combinations:

XY (both normal)

 $X\overline{Y}(X \text{ normal}, Y \text{ complemented})$

 $\overline{\mathbf{X}}\mathbf{Y}$ (X complemented, Y normal)

 $\overline{\overline{\mathbf{X}}}\overline{\mathbf{Y}}$ (both complemented)

Thus there are <u>four minterms</u> of two variables.

Logic and Computer Design Fundament PowerPoint[®] Slides

Chapter 2 - Part 1

31

Maxterms

- <u>Maxterms</u> are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

X + Y (both normal)

 $X + \overline{Y}$ (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{\mathbf{X}} + \overline{\mathbf{V}}$ (both complemented)

Maxterms and Minterms

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	x y	$x + \overline{y}$
2	x y	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{x} + \overline{y}$

• The index above is important for describing which variables in the terms are true and which are complemented.

Lugic and Computer Design Fundament PowerPoint® Stites © 2004 Pearage Education, Inc.

Chapter 2 - Part 1

33

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a+b+\overline{c})$, (a+b+c)
 - Terms: (b + a + c), a \bar{c} b, and (c + b + a) are NOT in standard order.
 - Minterms: a b c, a b c, a b c
 - Terms: (a + c), \bar{b} c, and $(\bar{a} + b)$ do not contain all variables

Purpose of the Index

- The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.
- For Minterms:
 - "1" means the variable is "Not Complemented" and
 - "0" means the variable is "Complemented".
- For Maxterms:
 - "0" means the variable is "Not Complemented" and
 - "1" means the variable is "Complemented".

Logic and Computer Design Fundamental PowerPoint® Slides
© 2004 Payraya Education, Inc.

Chapter 2 - Part 1

35

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The <u>Index 0</u> (base 10) = 000 (base 2) for three variables). All three variables are complemented for <u>minterm 0</u> ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for <u>Maxterm 0</u> (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6?
 - Maxterm 6 ?

Index Examples – Four Variables

Index	Binary	Minterm	Maxterm

i	Pattern	$\mathbf{m_i}$	$\mathbf{M_i}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	$a+b+\bar{c}+\bar{d}$
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	$a \bar{b} c \bar{d}$	$\bar{a}+b+\bar{c}+d$
13	1101	abēd	?
15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Engle and Computer Design Fundamentals PowerPoint® Sites © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

37

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example: $\mathbf{M} = \overline{\mathbf{v}} + \mathbf{v} \text{ and } \mathbf{m} = \mathbf{v}$

 $\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$ and $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M_2 is the complement of m_2 and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i \text{ and } \mathbf{m}_{i}} = \overline{\mathbf{M}}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of 2 variables

ху	\mathbf{m}_0	\mathbf{m}_1	m_2	m ₃
0 0	1	0	0	0
0 1	0	1	0	0
10	0	0	1	0
11	0	0	0	1

Maxterms of 2 variables

ху	$\mathbf{M_0}$	$\mathbf{M_1}$	M_2	M_3
0 0	0	1	1	1
01	1	0	1	1
10	1	1	0	1
11	1	1	1	0

 Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Logic and Computer Dealgn Fundamental PowerPoint® Stides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

39

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each $\underline{\text{max}}$ term has one and only one 0 present in the 2^n terms All other entries are 1 (a $\underline{\text{max}}$ imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

for stating any Boolean function.

Minterm Function Example

- Example: Find $F_1 = m_1 + m_4 + m_7$
- $\mathbf{F1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z} + \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \ \mathbf{y} \ \mathbf{z}$

		.•		•				
	x y z	index	\mathbf{m}_1	+	m_4	+	m ₇	$= \mathbf{F_1}$
	000	0	0	+	0	+	0	= 0
	001	1	1	+	0	+	0	= 1
	010	2	0	+	0	+	0	= 0
	011	3	0	+	0	+	0	= 0
	100	4	0	+	1	+	0	= 1
	101	5	0	+	0	+	0	= 0
	110	6	0	+	0	+	0	= 0
mntai	111	7	0	+	0	+	1	= 1
							Chant	or 2 Dart

Logic and Computer Design Fundam PowerPoint® Stides © 2004 Pagesup Education, Inc.

Chapter 2 - Part 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

Example: Implement F1 in maxterms:

$$\begin{split} F_1 &= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 \\ F_1 &= (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z}) \\ \cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z) \\ & \underline{x \ y \ z \ i \ | M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6} \end{split}$$

хуz	i	$\mathbf{M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 = F1}$
$0\ 0\ 0$	0	$0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0$
001	1	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
010	2	$1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$
011	3	$1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0$
100	4	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
101	5	$1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0$
110	6	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0$
111	7	1 · 1 · 1 · 1 · 1 =1

Chapter 2 - Part 1 43

Maxterm Function Example

- $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D}) = \mathbf{M}_3 \cdot \mathbf{M}_8 \cdot \mathbf{M}_{11} \cdot \mathbf{M}_{14}$
- F(A, B, C, D) =

Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Minterms.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$.
- **Example:** Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $\mathbf{f} = \mathbf{x}(\mathbf{y} + \overline{\mathbf{y}}) + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Then distribute terms: $\mathbf{f} = \mathbf{x}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Express as sum of minterms: $\mathbf{f} = \mathbf{m}_3 + \mathbf{m}_2 + \mathbf{m}_0$

Logic and Computer Design Fundamenta PowerPaint® Slides © 2004 Pearson Education, inc.

Chapter 2 - Part 1

45

Another SOM Example

- Example: $F = A + \overline{B} C$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOM:

Shorthand SOM Form

• From the previous example, we started with:

$$\mathbf{F} = \mathbf{A} + \overline{\mathbf{B}} \mathbf{C}$$

We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

 Note that we explicitly show the standard variables in order and drop the "m" designators.

Logic and Computer Design Fundamentals PowerPoint[©] Stides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

47

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to v and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \bar{x} \, \bar{y}$$

Apply the distributive law:

$$(\overline{x} + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z) (x + \overline{y} + \overline{z})$$

Express as POM: $f = M_2 \cdot M_3$

Another POM Example

Convert to Product of Maxterms:

$$f(A,B,C) = A \overline{C} + BC + \overline{A} \overline{B}$$

Use $x + y z = (x+y) \cdot (x+z)$ with $x = (A \overline{C} + B C)$, $y = \overline{A}$, and $z = \overline{B}$ to get:

$$f = (A \overline{C} + BC + \overline{A})(A \overline{C} + BC + \overline{B})$$

• Then use $x + \overline{x}y = x + y$ to get:

$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Logic and Computer Design Fund PowerPoint[®] Stides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

49

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1,3,5,7)$ $\overline{F}(x, y, z) = \Sigma_m(0,2,4,6)$ $\overline{F}(x, y, z) = \Pi_M(1,3,5,7)$

Conversion Between Forms

- To convert between sum-of-minterms and productof-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \sum_{m} (1,3,5,7)$
- Form the Complement: $\overline{F}(x, y, z) = \Sigma_m(0, 2, 4, 6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x,y,z) = \prod_{M}(0,2,4,6)$

Logic and Computer Design Fundament PowerPoint® Slidss © 2004 Paerson Education, Inc.

Chapter 2 - Part 1

51

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - $\bullet (A B + C) (A + C)$
 - $\bullet ABC+AC(A+B)$

Standard Sum-of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Logic and Computer Design Fundament PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 2 - Part 1

53

Standard Sum-of-Products (SOP)

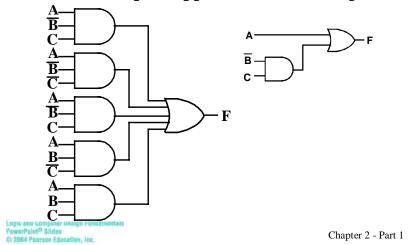
- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A \overline{B} C + A \overline{B} C$
- Simplifying:

 $\mathbf{F} =$

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

 The two implementations for F are shown below – it is quite apparent which is simpler!



SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.

55

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education <u>Legal Notice</u>.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page

Logic and Computer Design Fundamentals PowerPoint® Sildse © 2004 Pagraun Education, Inc.

Chapter 2 - Part 1