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Overview

Part 1 – Gate Circuits and Boolean Equations
• Binary Logic and Gates
• Boolean Algebra
• Standard Forms

Part 2 – Circuit Optimization
• Two-Level Optimization
• Map Manipulation
• Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits
• Other Gate Types
• Exclusive-OR Operator and Gates
• High-Impedance Outputs
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Circuit Optimization

Goal: To obtain the simplest 
implementation for a given function
Optimization is a more formal approach 
to simplification that is performed using 
a specific procedure or algorithm
Optimization requires a cost criterion to 
measure the simplicity of a circuit
Two distinct cost criteria we will use:
• Literal cost (L)
• Gate input cost (G)
• Gate input cost with NOTs (GN)
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D

Literal – a variable or it complement
Literal cost – the number of literal   
appearances in a Boolean expression          
corresponding to the logic circuit      
diagram
Examples:
• F = BD + A   C + A                                        L = 8
• F = BD + A   C + A       + AB                        L = 
• F = (A + B)(A + D)(B + C +    )(    +     + D) L =
• Which solution is best?

Literal Cost

DB C
B B D C

B C
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Gate Input Cost
Gate input costs  - the number of inputs to the gates in the 
implementation corresponding exactly to the given equation 
or equations. (G - inverters not counted, GN - inverters counted) 

For SOP and POS equations, it can be found from the 
equation(s) by finding the sum of:
• all literal appearances
• the number of terms excluding terms consisting only of a single 

literal,(G) and
• optionally, the number of distinct complemented single literals (GN).

Example:
• F = BD + A   C + A                                      G = 8, GN = 11
• F = BD + A   C + A       + AB                      G =   , GN = 
• F = (A +   )(A + D)(B + C +    )(    +    + D) G =  , GN =
• Which solution is best? 

DB C
B B D C

B D B C
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Example 1: 

F = A + B C +

Cost Criteria (continued)

A

B
C

F

B C L = 5

L (literal count) counts the AND inputs and the single
literal OR input.

G = L + 2 =  7

G (gate input count) adds the remaining OR gate inputs

GN = G + 2 = 9

GN(gate input count with NOTs) adds the inverter inputs



4

Chapter 2 - Part 2         7

Example 2: 

F = A B C +
L =  6  G = 8 GN = 11
F = (A +    )(    + C)(    + B)
L = 6  G = 9 GN = 12
Same function and same
literal cost
But first circuit has better
gate input count and better
gate input count with NOTs
Select it!

Cost Criteria (continued)

B C

A

A
B
C

F

C B

F

A
B
C

A
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Boolean Function Optimization
Minimizing the gate input (or literal) cost of a (a 
set of) Boolean equation(s) reduces circuit cost.
We choose gate input cost.
Boolean Algebra and graphical techniques are 
tools to minimize cost criteria values.
Some important questions:
• When do we stop trying to reduce the cost?
• Do we know when we have a minimum cost?

Treat  optimum or near-optimum cost functions
for two-level (SOP and POS) circuits first.
Introduce a graphical technique using Karnaugh 
maps (K-maps, for short)
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Karnaugh Maps (K-map)

A K-map is a collection of squares
• Each square represents a minterm
• The collection of squares is a graphical representation 

of a Boolean function
• Adjacent squares differ in the value of one variable
• Alternative algebraic expressions for the same function 

are derived by recognizing patterns of squares
The K-map can be viewed as
• A reorganized version of the truth table
• A topologically-warped Venn diagram as used to 

visualize sets in algebra of sets
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Some Uses of K-Maps
Provide a means for:
• Finding optimum or near optimum

SOP and POS standard forms, and
two-level AND/OR and OR/AND circuit 
implementations

for functions with small numbers of 
variables

• Visualizing concepts related to manipulating 
Boolean expressions, and

• Demonstrating concepts used by computer-
aided design programs to simplify large 
circuits
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Two Variable Maps
A 2-variable Karnaugh Map:
• Note that minterm m0 and

minterm m1 are “adjacent”
and differ in the value of the
variable y

• Similarly, minterm m0 and
minterm m2 differ in the x variable.

• Also, m1 and m3 differ in the x variable as 
well.  

• Finally, m2 and m3 differ in the value of the 
variable y

y = 0 y = 1

x = 0 m0 = m1 =

x = 1 m2 = m3 =
yx yx

yx yx
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K-Map and Truth Tables

The K-Map is just a different form of the truth table. 
Example – Two variable function:
• We choose a,b,c and d from the set {0,1} to 

implement a particular function, F(x,y).
Function Table K-Map
Input 
Values
(x,y)

Function 
Value
F(x,y)

0 0 a
0 1 b
1 0 c
1 1 d

y = 0 y = 1
x = 0 a b
x = 1 c d
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K-Map Function Representation

Example: F(x,y) = x

For function F(x,y), the two adjacent cells 
containing 1’s can be combined using the 
Minimization Theorem:

F = x y = 0 y = 1

x = 0 0 0

x = 1 1 1

xyxyx)y,x(F =+=
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K-Map Function Representation

Example: G(x,y) = x + y

For G(x,y), two pairs of adjacent cells containing 
1’s can be combined using the Minimization 
Theorem:

G = x+y y = 0 y = 1

x = 0 0 1

x = 1 1 1

( ) ( ) yxyxxyyxyx)y,x(G +=+++=

Duplicate xy
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Three Variable Maps

A three-variable K-map:

Where each minterm corresponds to the product 
terms: 

Note that if the binary value for an index differs in one 
bit position, the minterms are adjacent on the K-Map

yz=00 yz=01 yz=11 yz=10

x=0 m0 m1 m3 m2

x=1 m4 m5 m7 m6

yz=00 yz=01 yz=11 yz=10

x=0

x=1

zyx zyx zyx zyx
zyx zyx zyx zyx
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Alternative  Map Labeling

Map use largely involves:
• Entering values into the map, and
• Reading off product terms from the 

map.
Alternate labelings are useful:

y

z
x

10 2

4

3

5 67

x
y

zz

yy z

z

10 2

4

3

5 67

x
0

1

00 01 11 10

x
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Example Functions

By convention, we represent the minterms of F by a "1" 
in the map and leave the minterms of     blank
Example: 

Example: 

Learn the locations of the 8 
indices based on the variable 
order shown (x, most significant
and z, least significant) on the
map boundaries

y

x
10 2

4

3

5 67

1
11

1

z

x

y
10 2

4

3

5 671 11
1

z

(2,3,4,5)  z)y,F(x, mΣ=

(3,4,6,7)  c)b,G(a, mΣ=

F
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Combining Squares
By combining squares, we reduce number of 
literals in a product term, reducing the literal cost, 
thereby reducing the other two cost criteria

On a 3-variable K-Map:
• One square represents a minterm with three 

variables
• Two adjacent squares represent a product term 

with two variables
• Four “adjacent” terms represent a product term 

with one variable
• Eight “adjacent” terms is the function of all ones (no 

variables) = 1.
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Example: Combining Squares

Example: Let

Applying the Minimization Theorem three 
times:

Thus the four terms that form a 2 × 2 square 
correspond to the term "y". 

y=
zyyz +=

zyxzyxzyxzyx)z,y,x(F +++=

x

y
10 2

4

3

5 671 1
11

z

m(2,3,6,7)F Σ=
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Three-Variable Maps

Reduced literal product terms for SOP standard 
forms correspond to rectangles on K-maps 
containing cell counts that are powers of 2. 
Rectangles of 2 cells represent 2 adjacent 
minterms; of 4 cells represent 4 minterms that 
form a “pairwise adjacent” ring.
Rectangles can contain non-adjacent cells as 
illustrated by the “pairwise adjacent” ring 
above.
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Three-Variable Maps

Topological warps of 3-variable K-maps 
that show all adjacencies:

Venn Diagram            Cylinder

Y Z

X

1
3
76 5

4

2

0

Chapter 2 - Part 2         22

Three-Variable Maps

Example Shapes of 2-cell Rectangles:

Read off the product terms for the 
rectangles shown

y
0 1 3 2

5 64 7x
z
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Three-Variable Maps

Example Shapes of 4-cell Rectangles:

Read off the product terms for the 
rectangles shown

y
0 1 3 2

5 64 7x
z
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Three Variable Maps

z)y,F(x, =

y

11

x

z

1 1

1

z

z

yx+

yx

K-Maps can be used to simplify Boolean functions by
systematic methods.   Terms are selected to cover the
“1s”in the map.

Example:  Simplify )(1,2,3,5,7z)y,F(x, mΣ=
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Three-Variable Map Simplification
Use a K-map to find an optimum SOP 
equation for ,7)(0,1,2,4,6Z)Y,F(X, mΣ=
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Four Variable Maps

Map and location of minterms:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W
Variable Order
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Four Variable Terms

Four variable maps can have rectangles   
corresponding to:

• A single 1 = 4 variables, (i.e. Minterm)
• Two 1s = 3 variables,
• Four 1s = 2 variables
• Eight 1s = 1 variable,
• Sixteen 1s = zero variables (i.e.

Constant "1")
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Four-Variable Maps

Example Shapes of Rectangles:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W
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Four-Variable Maps

Example Shapes of Rectangles:

X

Y

Z

8 9 1011

12 13 1415

0 1 3 2

5 64 7

W
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Four-Variable Map Simplification

)8,10,13,152,4,5,6,7,(0,Z)Y,X,F(W, mΣ=
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3,14,15

Four-Variable Map Simplification

)(3,4,5,7,9,1Z)Y,X,F(W, mΣ=
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Systematic Simplification

A Prime Implicant is a product term obtained by combining 
the maximum possible number of adjacent squares in the map 
into a rectangle with the number of squares a power of 2.

A prime implicant is called an Essential Prime Implicant if it is 
the only prime implicant that covers (includes) one or more 
minterms.

Prime Implicants and Essential Prime Implicants can be 
determined by inspection of a K-Map.

A set of prime implicants "covers all minterms" if, for each 
minterm of the function, at least one prime implicant in the 
set of prime implicants includes the minterm.
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DB

CB

1 1

1 1

1 1

B

D

A

1 1

1 1

1

Example of Prime Implicants

Find ALL Prime Implicants
ESSENTIAL Prime Implicants

C

BD

CD

BD

Minterms covered by single prime implicant

DB

1 1

1 1

1 1

B

C

D

A

1 1

1 1

1

AD

BA
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Prime Implicant Practice

Find all prime implicants for:
13,14,15),10,11,12,(0,2,3,8,9 D)C,B,F(A, mΣ=
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Another Example

Find all prime implicants for:

• Hint: There are seven prime implicants!
15),12,13,14,(0,2,3,4,7D)C,B,G(A, mΣ=
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Five Variable or More K-Maps

For five variable problems, we use two adjacent K-maps.   
It becomes harder to visualize adjacent minterms for 
selecting PIs.  You can extend the problem to six 
variables by using four K-Maps.

X

Y

Z

W

V = 0

X

Z

W

V = 1
Y
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Sometimes a function table or map contains entries for 
which it is known:
• the input values for the minterm will never occur, or
• The output value for the minterm is not used

In these cases, the output value need not be defined
Instead, the output value is defined as a “don't care”
By placing “don't cares” ( an “x” entry) in the function table 
or map, the cost of the logic circuit may be lowered.
Example  1:  A logic function having the binary codes for the 
BCD digits as its inputs. Only the codes for 0 through 9 are 
used.  The six codes, 1010 through 1111 never occur, so the 
output values for these codes are “x” to represent “don’t 
cares.”

Don't Cares in K-Maps
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Example 2: A circuit that represents a very common situation that 
occurs in computer design has two distinct sets of input variables:

• A, B, and C which take on all possible combinations, and
• Y which takes on values 0 or 1.

and a single output Z. The circuit that receives the output Z 
observes it only for (A,B,C) = (1,1,1) and otherwise ignores it.
Thus, Z is specified only for the combinations (A,B,C,Y) = 1110 
and 1111. For these two combinations, Z = Y. For all of the 14 
remaining input combinations, Z is a don’t care. 
Ultimately, each “x” entry may  take on either a 0 or 1 value in 
resulting solutions
For example, an “x” may take on value “0” in an SOP solution and 
value “1” in a POS solution, or vice-versa.
Any minterm with value “x” need not be covered by a prime 
implicant.

Don't Cares in K-Maps
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Example: BCD “5 or More”
The map below gives a function F1(w,x,y,z) which 
is defined as "5 or more" over BCD inputs.   With 
the don't cares used for the 6 non-BCD 
combinations:

F1 (w,x,y,z) = w + x z + x y  G = 7
This is much lower in cost than F2 where 
the “don't cares” were treated as "0s."

G = 12
For this particular function, cost G for the 
POS solution for F1(w,x,y,z) is not changed 
by using the don't cares.z

w

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

1

11

1

X X X

X X

X

0 0 0 0

0
x

y

yxwyxwzxwz) y,x,F2(w, ++=
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Product of Sums Example

Find the optimum POS solution:

• Hint: Use    and complement it to get the 
result.

      ,13,14,15)(3,9,11,12D)C,B,F(A, m +Σ=
(1,4,6) dΣ

F
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Optimization Algorithm

Find all prime implicants.
Include all essential prime implicants in the 
solution
Select a minimum cost set of non-essential 
prime implicants to cover all minterms not yet 
covered:
• Obtaining an optimum solution: See Reading 

Supplement - More on Optimization
• Obtaining a good simplified solution: Use the 

Selection Rule
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Prime Implicant Selection Rule

Minimize the overlap among prime 
implicants as much as possible. In 
particular, in the final solution, make 
sure that each prime implicant selected 
includes at least one minterm not 
included in any other prime implicant 
selected.
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Selection Rule Example

Simplify F(A, B, C, D) given on the K-
map. 

1

1

1

1 1

1

1

B

D

A

C

1

1

1

1

1

1

1 1

1

1

B

D

A

C

1

1

Essential

Minterms covered by essential prime implicants

Selected
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Selection Rule Example with Don't Cares

Simplify F(A, B, C, D) given on the K-map. 
Selected

Minterms covered by essential prime implicants

1

1

x

x

x x

x

1

B

D

A

C

1

1 1

1

x

x

x x

x

1

B

D

A

C

1

1

Essential
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Multiple-Level Optimization

Multiple-level circuits - circuits that are 
not two-level (with or without input 
and/or output inverters)
Multiple-level circuits can have reduced 
gate input cost compared to two-level 
(SOP and POS) circuits
Multiple-level optimization is performed 
by applying transformations to circuits 
represented by equations while 
evaluating cost
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Transformations

Factoring - finding a factored form from 
SOP or POS expression
• Algebraic - No use of axioms specific to 

Boolean algebra such as complements or 
idempotence 

• Boolean - Uses axioms unique to Boolean 
algebra

Decomposition - expression of a function 
as a set of new functions
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Transformations (continued)

Substitution of G into F - expression 
function F as a function of G and some or 
all of its original variables
Elimination - Inverse of substitution
Extraction - decomposition applied to 
multiple functions simultaneously
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Transformation Examples

Algebraic Factoring
F =            +    B    + ABC + AC          G = 16
• Factoring:

F =     (        +  B   ) + A (BC + C    )    G = 16
• Factoring again:

F =        ( B +     ) + AC (B +    )           G = 12
• Factoring again:

F = (       +  AC) (B +    )                      G = 10

DCAA

A

A

C

C

D

CC D

D

D

A C D D
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Transformation Examples

Decomposition
• The terms B +    and        + AC can be defined 

as new functions E and H respectively, 
decomposing F:

F = E H, E = B +    , and H =        + AC    G = 10
This series of transformations has reduced G from 
16 to 10, a substantial savings. The resulting 
circuit has three levels plus input inverters.   

ACD

D AC
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Transformation Examples

Substitution of E into F
• Returning to F just before the final factoring step:

F =        ( B +     ) + AC (B +    )           G = 12
• Defining E = B +    , and substituting in F: 

F =         E  + ACE                               G = 10
• This substitution has resulted in the same cost as the 

decomposition

A C DD

A C
D
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Transformation Examples

Elimination
• Beginning with a new set of functions:

X = B + C
Y = A + B
Z =    X + C Y                                      G = 10  
• Eliminating X and Y from Z:

Z =    (B + C) + C (A + B)                   G = 10
• “Flattening” (Converting to SOP expression):

Z =     B +     C + AC + BC                  G = 12
• This has increased the cost, but has provided an new 

SOP expression for two-level optimization.

A

A

A

A
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Transformation Examples

Two-level Optimization
• The result of 2-level optimization is:

Z =     B +  C                                              G = 4
This example illustrates that:
• Optimization can begin with any set of equations, 

not just with minterms or a truth table
• Increasing gate input count G temporarily during a 

series of transformations can result in a final 
solution with a smaller G

A
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Transformation Examples
Extraction
• Beginning with two functions:

E =            +    BD    
H =    C     + BCD                                   G = 16 
• Finding a common factor and defining it as a 

function:

F =        + BD
• We perform extraction by  expressing E and H as 

the three functions:

F =        + BD, E =    F, H =  CF            G = 10
• The reduced cost G results from the sharing of logic 

between the two output functions

BA A

A

B

B

D
D

D

BD

Chapter 2 - Part 2         54

Terms of Use
© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard 
Pearson Education Legal Notice.
Permission is given to  incorporate these materials into classroom 
presentations and handouts only to instructors adopting Logic and 
Computer Design Fundamentals as the course text. 
Permission is granted to the instructors adopting the book to post 
these materials on a protected website or protected ftp site in 
original or modified form. All other website or ftp postings, 
including those offering the materials for a fee, are prohibited. 
You may not remove or in any way alter this Terms of Use notice  
or any trademark, copyright, or other proprietary notice, 
including the copyright watermark on each slide.
Return to Title Page


