
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 2 – Combinational
Logic Circuits

Part 2 – Circuit Optimization

Logic and Computer Design Fundamentals

Chapter 2 - Part 2 2

Overview

Part 1 – Gate Circuits and Boolean Equations
• Binary Logic and Gates
• Boolean Algebra
• Standard Forms

Part 2 – Circuit Optimization
• Two-Level Optimization
• Map Manipulation
• Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits
• Other Gate Types
• Exclusive-OR Operator and Gates
• High-Impedance Outputs

2

Chapter 2 - Part 2 3

Circuit Optimization

Goal: To obtain the simplest
implementation for a given function
Optimization is a more formal approach
to simplification that is performed using
a specific procedure or algorithm
Optimization requires a cost criterion to
measure the simplicity of a circuit
Two distinct cost criteria we will use:
• Literal cost (L)
• Gate input cost (G)
• Gate input cost with NOTs (GN)

Chapter 2 - Part 2 4

D

Literal – a variable or it complement
Literal cost – the number of literal
appearances in a Boolean expression
corresponding to the logic circuit
diagram
Examples:
• F = BD + A C + A L = 8
• F = BD + A C + A + AB L =
• F = (A + B)(A + D)(B + C +)(+ + D) L =
• Which solution is best?

Literal Cost

DB C
B B D C

B C

3

Chapter 2 - Part 2 5

Gate Input Cost
Gate input costs - the number of inputs to the gates in the
implementation corresponding exactly to the given equation
or equations. (G - inverters not counted, GN - inverters counted)

For SOP and POS equations, it can be found from the
equation(s) by finding the sum of:
• all literal appearances
• the number of terms excluding terms consisting only of a single

literal,(G) and
• optionally, the number of distinct complemented single literals (GN).

Example:
• F = BD + A C + A G = 8, GN = 11
• F = BD + A C + A + AB G = , GN =
• F = (A +)(A + D)(B + C +)(+ + D) G = , GN =
• Which solution is best?

DB C
B B D C

B D B C

Chapter 2 - Part 2 6

Example 1:

F = A + B C +

Cost Criteria (continued)

A

B
C

F

B C L = 5

L (literal count) counts the AND inputs and the single
literal OR input.

G = L + 2 = 7

G (gate input count) adds the remaining OR gate inputs

GN = G + 2 = 9

GN(gate input count with NOTs) adds the inverter inputs

4

Chapter 2 - Part 2 7

Example 2:

F = A B C +
L = 6 G = 8 GN = 11
F = (A +)(+ C)(+ B)
L = 6 G = 9 GN = 12
Same function and same
literal cost
But first circuit has better
gate input count and better
gate input count with NOTs
Select it!

Cost Criteria (continued)

B C

A

A
B
C

F

C B

F

A
B
C

A

Chapter 2 - Part 2 8

Boolean Function Optimization
Minimizing the gate input (or literal) cost of a (a
set of) Boolean equation(s) reduces circuit cost.
We choose gate input cost.
Boolean Algebra and graphical techniques are
tools to minimize cost criteria values.
Some important questions:
• When do we stop trying to reduce the cost?
• Do we know when we have a minimum cost?

Treat optimum or near-optimum cost functions
for two-level (SOP and POS) circuits first.
Introduce a graphical technique using Karnaugh
maps (K-maps, for short)

5

Chapter 2 - Part 2 9

Karnaugh Maps (K-map)

A K-map is a collection of squares
• Each square represents a minterm
• The collection of squares is a graphical representation

of a Boolean function
• Adjacent squares differ in the value of one variable
• Alternative algebraic expressions for the same function

are derived by recognizing patterns of squares
The K-map can be viewed as
• A reorganized version of the truth table
• A topologically-warped Venn diagram as used to

visualize sets in algebra of sets

Chapter 2 - Part 2 10

Some Uses of K-Maps
Provide a means for:
• Finding optimum or near optimum

SOP and POS standard forms, and
two-level AND/OR and OR/AND circuit
implementations

for functions with small numbers of
variables

• Visualizing concepts related to manipulating
Boolean expressions, and

• Demonstrating concepts used by computer-
aided design programs to simplify large
circuits

6

Chapter 2 - Part 2 11

Two Variable Maps
A 2-variable Karnaugh Map:
• Note that minterm m0 and

minterm m1 are “adjacent”
and differ in the value of the
variable y

• Similarly, minterm m0 and
minterm m2 differ in the x variable.

• Also, m1 and m3 differ in the x variable as
well.

• Finally, m2 and m3 differ in the value of the
variable y

y = 0 y = 1

x = 0 m0 = m1 =

x = 1 m2 = m3 =
yx yx

yx yx

Chapter 2 - Part 2 12

K-Map and Truth Tables

The K-Map is just a different form of the truth table.
Example – Two variable function:
• We choose a,b,c and d from the set {0,1} to

implement a particular function, F(x,y).
Function Table K-Map
Input
Values
(x,y)

Function
Value
F(x,y)

0 0 a
0 1 b
1 0 c
1 1 d

y = 0 y = 1
x = 0 a b
x = 1 c d

7

Chapter 2 - Part 2 13

K-Map Function Representation

Example: F(x,y) = x

For function F(x,y), the two adjacent cells
containing 1’s can be combined using the
Minimization Theorem:

F = x y = 0 y = 1

x = 0 0 0

x = 1 1 1

xyxyx)y,x(F =+=

Chapter 2 - Part 2 14

K-Map Function Representation

Example: G(x,y) = x + y

For G(x,y), two pairs of adjacent cells containing
1’s can be combined using the Minimization
Theorem:

G = x+y y = 0 y = 1

x = 0 0 1

x = 1 1 1

() () yxyxxyyxyx)y,x(G +=+++=

Duplicate xy

8

Chapter 2 - Part 2 15

Three Variable Maps

A three-variable K-map:

Where each minterm corresponds to the product
terms:

Note that if the binary value for an index differs in one
bit position, the minterms are adjacent on the K-Map

yz=00 yz=01 yz=11 yz=10

x=0 m0 m1 m3 m2

x=1 m4 m5 m7 m6

yz=00 yz=01 yz=11 yz=10

x=0

x=1

zyx zyx zyx zyx
zyx zyx zyx zyx

Chapter 2 - Part 2 16

Alternative Map Labeling

Map use largely involves:
• Entering values into the map, and
• Reading off product terms from the

map.
Alternate labelings are useful:

y

z
x

10 2

4

3

5 67

x
y

zz

yy z

z

10 2

4

3

5 67

x
0

1

00 01 11 10

x

9

Chapter 2 - Part 2 17

Example Functions

By convention, we represent the minterms of F by a "1"
in the map and leave the minterms of blank
Example:

Example:

Learn the locations of the 8
indices based on the variable
order shown (x, most significant
and z, least significant) on the
map boundaries

y

x
10 2

4

3

5 67

1
11

1

z

x

y
10 2

4

3

5 671 11
1

z

(2,3,4,5) z)y,F(x, mΣ=

(3,4,6,7) c)b,G(a, mΣ=

F

Chapter 2 - Part 2 18

Combining Squares
By combining squares, we reduce number of
literals in a product term, reducing the literal cost,
thereby reducing the other two cost criteria

On a 3-variable K-Map:
• One square represents a minterm with three

variables
• Two adjacent squares represent a product term

with two variables
• Four “adjacent” terms represent a product term

with one variable
• Eight “adjacent” terms is the function of all ones (no

variables) = 1.

10

Chapter 2 - Part 2 19

Example: Combining Squares

Example: Let

Applying the Minimization Theorem three
times:

Thus the four terms that form a 2 × 2 square
correspond to the term "y".

y=
zyyz +=

zyxzyxzyxzyx)z,y,x(F +++=

x

y
10 2

4

3

5 671 1
11

z

m(2,3,6,7)F Σ=

Chapter 2 - Part 2 20

Three-Variable Maps

Reduced literal product terms for SOP standard
forms correspond to rectangles on K-maps
containing cell counts that are powers of 2.
Rectangles of 2 cells represent 2 adjacent
minterms; of 4 cells represent 4 minterms that
form a “pairwise adjacent” ring.
Rectangles can contain non-adjacent cells as
illustrated by the “pairwise adjacent” ring
above.

11

Chapter 2 - Part 2 21

Three-Variable Maps

Topological warps of 3-variable K-maps
that show all adjacencies:

Venn Diagram Cylinder

Y Z

X

1
3
76 5

4

2

0

Chapter 2 - Part 2 22

Three-Variable Maps

Example Shapes of 2-cell Rectangles:

Read off the product terms for the
rectangles shown

y
0 1 3 2

5 64 7x
z

12

Chapter 2 - Part 2 23

Three-Variable Maps

Example Shapes of 4-cell Rectangles:

Read off the product terms for the
rectangles shown

y
0 1 3 2

5 64 7x
z

Chapter 2 - Part 2 24

Three Variable Maps

z)y,F(x, =

y

11

x

z

1 1

1

z

z

yx+

yx

K-Maps can be used to simplify Boolean functions by
systematic methods. Terms are selected to cover the
“1s”in the map.

Example: Simplify)(1,2,3,5,7z)y,F(x, mΣ=

13

Chapter 2 - Part 2 25

Three-Variable Map Simplification
Use a K-map to find an optimum SOP
equation for ,7)(0,1,2,4,6Z)Y,F(X, mΣ=

Chapter 2 - Part 2 26

Four Variable Maps

Map and location of minterms:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W
Variable Order

14

Chapter 2 - Part 2 27

Four Variable Terms

Four variable maps can have rectangles
corresponding to:

• A single 1 = 4 variables, (i.e. Minterm)
• Two 1s = 3 variables,
• Four 1s = 2 variables
• Eight 1s = 1 variable,
• Sixteen 1s = zero variables (i.e.

Constant "1")

Chapter 2 - Part 2 28

Four-Variable Maps

Example Shapes of Rectangles:

8 9 1011

12 13 1415

0 1 3 2

5 64 7

X

Y

Z

W

15

Chapter 2 - Part 2 29

Four-Variable Maps

Example Shapes of Rectangles:

X

Y

Z

8 9 1011

12 13 1415

0 1 3 2

5 64 7

W

Chapter 2 - Part 2 30

Four-Variable Map Simplification

)8,10,13,152,4,5,6,7,(0,Z)Y,X,F(W, mΣ=

16

Chapter 2 - Part 2 31

3,14,15

Four-Variable Map Simplification

)(3,4,5,7,9,1Z)Y,X,F(W, mΣ=

Chapter 2 - Part 2 32

Systematic Simplification

A Prime Implicant is a product term obtained by combining
the maximum possible number of adjacent squares in the map
into a rectangle with the number of squares a power of 2.

A prime implicant is called an Essential Prime Implicant if it is
the only prime implicant that covers (includes) one or more
minterms.

Prime Implicants and Essential Prime Implicants can be
determined by inspection of a K-Map.

A set of prime implicants "covers all minterms" if, for each
minterm of the function, at least one prime implicant in the
set of prime implicants includes the minterm.

17

Chapter 2 - Part 2 33

DB

CB

1 1

1 1

1 1

B

D

A

1 1

1 1

1

Example of Prime Implicants

Find ALL Prime Implicants
ESSENTIAL Prime Implicants

C

BD

CD

BD

Minterms covered by single prime implicant

DB

1 1

1 1

1 1

B

C

D

A

1 1

1 1

1

AD

BA

Chapter 2 - Part 2 34

Prime Implicant Practice

Find all prime implicants for:
13,14,15),10,11,12,(0,2,3,8,9 D)C,B,F(A, mΣ=

18

Chapter 2 - Part 2 35

Another Example

Find all prime implicants for:

• Hint: There are seven prime implicants!
15),12,13,14,(0,2,3,4,7D)C,B,G(A, mΣ=

Chapter 2 - Part 2 36

Five Variable or More K-Maps

For five variable problems, we use two adjacent K-maps.
It becomes harder to visualize adjacent minterms for
selecting PIs. You can extend the problem to six
variables by using four K-Maps.

X

Y

Z

W

V = 0

X

Z

W

V = 1
Y

19

Chapter 2 - Part 2 37

Sometimes a function table or map contains entries for
which it is known:
• the input values for the minterm will never occur, or
• The output value for the minterm is not used

In these cases, the output value need not be defined
Instead, the output value is defined as a “don't care”
By placing “don't cares” (an “x” entry) in the function table
or map, the cost of the logic circuit may be lowered.
Example 1: A logic function having the binary codes for the
BCD digits as its inputs. Only the codes for 0 through 9 are
used. The six codes, 1010 through 1111 never occur, so the
output values for these codes are “x” to represent “don’t
cares.”

Don't Cares in K-Maps

Chapter 2 - Part 2 38

Example 2: A circuit that represents a very common situation that
occurs in computer design has two distinct sets of input variables:

• A, B, and C which take on all possible combinations, and
• Y which takes on values 0 or 1.

and a single output Z. The circuit that receives the output Z
observes it only for (A,B,C) = (1,1,1) and otherwise ignores it.
Thus, Z is specified only for the combinations (A,B,C,Y) = 1110
and 1111. For these two combinations, Z = Y. For all of the 14
remaining input combinations, Z is a don’t care.
Ultimately, each “x” entry may take on either a 0 or 1 value in
resulting solutions
For example, an “x” may take on value “0” in an SOP solution and
value “1” in a POS solution, or vice-versa.
Any minterm with value “x” need not be covered by a prime
implicant.

Don't Cares in K-Maps

20

Chapter 2 - Part 2 39

Example: BCD “5 or More”
The map below gives a function F1(w,x,y,z) which
is defined as "5 or more" over BCD inputs. With
the don't cares used for the 6 non-BCD
combinations:

F1 (w,x,y,z) = w + x z + x y G = 7
This is much lower in cost than F2 where
the “don't cares” were treated as "0s."

G = 12
For this particular function, cost G for the
POS solution for F1(w,x,y,z) is not changed
by using the don't cares.z

w

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

1

11

1

X X X

X X

X

0 0 0 0

0
x

y

yxwyxwzxwz) y,x,F2(w, ++=

Chapter 2 - Part 2 40

Product of Sums Example

Find the optimum POS solution:

• Hint: Use and complement it to get the
result.

 ,13,14,15)(3,9,11,12D)C,B,F(A, m +Σ=
(1,4,6) dΣ

F

21

Chapter 2 - Part 2 41

Optimization Algorithm

Find all prime implicants.
Include all essential prime implicants in the
solution
Select a minimum cost set of non-essential
prime implicants to cover all minterms not yet
covered:
• Obtaining an optimum solution: See Reading

Supplement - More on Optimization
• Obtaining a good simplified solution: Use the

Selection Rule

Chapter 2 - Part 2 42

Prime Implicant Selection Rule

Minimize the overlap among prime
implicants as much as possible. In
particular, in the final solution, make
sure that each prime implicant selected
includes at least one minterm not
included in any other prime implicant
selected.

22

Chapter 2 - Part 2 43

Selection Rule Example

Simplify F(A, B, C, D) given on the K-
map.

1

1

1

1 1

1

1

B

D

A

C

1

1

1

1

1

1

1 1

1

1

B

D

A

C

1

1

Essential

Minterms covered by essential prime implicants

Selected

Chapter 2 - Part 2 44

Selection Rule Example with Don't Cares

Simplify F(A, B, C, D) given on the K-map.
Selected

Minterms covered by essential prime implicants

1

1

x

x

x x

x

1

B

D

A

C

1

1 1

1

x

x

x x

x

1

B

D

A

C

1

1

Essential

23

Chapter 2 - Part 2 45

Multiple-Level Optimization

Multiple-level circuits - circuits that are
not two-level (with or without input
and/or output inverters)
Multiple-level circuits can have reduced
gate input cost compared to two-level
(SOP and POS) circuits
Multiple-level optimization is performed
by applying transformations to circuits
represented by equations while
evaluating cost

Chapter 2 - Part 2 46

Transformations

Factoring - finding a factored form from
SOP or POS expression
• Algebraic - No use of axioms specific to

Boolean algebra such as complements or
idempotence

• Boolean - Uses axioms unique to Boolean
algebra

Decomposition - expression of a function
as a set of new functions

24

Chapter 2 - Part 2 47

Transformations (continued)

Substitution of G into F - expression
function F as a function of G and some or
all of its original variables
Elimination - Inverse of substitution
Extraction - decomposition applied to
multiple functions simultaneously

Chapter 2 - Part 2 48

Transformation Examples

Algebraic Factoring
F = + B + ABC + AC G = 16
• Factoring:

F = (+ B) + A (BC + C) G = 16
• Factoring again:

F = (B +) + AC (B +) G = 12
• Factoring again:

F = (+ AC) (B +) G = 10

DCAA

A

A

C

C

D

CC D

D

D

A C D D

25

Chapter 2 - Part 2 49

Transformation Examples

Decomposition
• The terms B + and + AC can be defined

as new functions E and H respectively,
decomposing F:

F = E H, E = B + , and H = + AC G = 10
This series of transformations has reduced G from
16 to 10, a substantial savings. The resulting
circuit has three levels plus input inverters.

ACD

D AC

Chapter 2 - Part 2 50

Transformation Examples

Substitution of E into F
• Returning to F just before the final factoring step:

F = (B +) + AC (B +) G = 12
• Defining E = B + , and substituting in F:

F = E + ACE G = 10
• This substitution has resulted in the same cost as the

decomposition

A C DD

A C
D

26

Chapter 2 - Part 2 51

Transformation Examples

Elimination
• Beginning with a new set of functions:

X = B + C
Y = A + B
Z = X + C Y G = 10
• Eliminating X and Y from Z:

Z = (B + C) + C (A + B) G = 10
• “Flattening” (Converting to SOP expression):

Z = B + C + AC + BC G = 12
• This has increased the cost, but has provided an new

SOP expression for two-level optimization.

A

A

A

A

Chapter 2 - Part 2 52

Transformation Examples

Two-level Optimization
• The result of 2-level optimization is:

Z = B + C G = 4
This example illustrates that:
• Optimization can begin with any set of equations,

not just with minterms or a truth table
• Increasing gate input count G temporarily during a

series of transformations can result in a final
solution with a smaller G

A

27

Chapter 2 - Part 2 53

Transformation Examples
Extraction
• Beginning with two functions:

E = + BD
H = C + BCD G = 16
• Finding a common factor and defining it as a

function:

F = + BD
• We perform extraction by expressing E and H as

the three functions:

F = + BD, E = F, H = CF G = 10
• The reduced cost G results from the sharing of logic

between the two output functions

BA A

A

B

B

D
D

D

BD

Chapter 2 - Part 2 54

Terms of Use
© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard
Pearson Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post
these materials on a protected website or protected ftp site in
original or modified form. All other website or ftp postings,
including those offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice
or any trademark, copyright, or other proprietary notice,
including the copyright watermark on each slide.
Return to Title Page

