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Overview

= Part 1-—Gate Circuitsand Boolean Equations
* Binary Logic and Gates
* Boolean Algebra
» Standard Forms
= Part 2— Circuit Optimization
* Two-L evel Optimization
* Map Manipulation
* Multi-Level Circuit Optimization
= Part 3— Additional Gatesand Circuits
* Other Gate Types
* Exclusive-OR Operator and Gates
* High-Impedance Outputs

Chapter 2 - Part 2



Circuit Optimization

= Goal: To obtain the smplest
implementation for a given function

= Optimization isa more formal approach
to simplification that is performed using
a specific procedure or algorithm

= Optimization requiresacost criterion to
measur e the simplicity of a circuit

= Two distinct cost criteria we will use:
 Literal cost (L)
» Gateinput cost (G)
» Gateinput cost with NOTs (GN)
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Literal Cost

= Literal —avariable or it complement

= Literal cost —the number of literal
appear ancesin a Boolean expression
corresponding to thelogic cir cuit

diagram

= Examples:
- F=BD+ABC+ACD L=8
- F=BD+ABC+ABD+ABC L =

cF=(A+B)A+D)B+C+D)[B +C+D)L =
* Which solution is best?
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Gate | nput Cost

= Gateinput costs - thenumber of inputsto the gatesin the
implementation corresponding exactly to the given equation
or equations. (G - invertersnot counted, GN - inverters counted)
= For SOP and POS equations, it can be found from the
equation(s) by finding the sum of:
« all literal appearances
* thenumber of termsexcluding terms consisting only of a single

literal ,(G) and
 optionally, the number of distinct complemented single literals (GN).
= Example:
- F=BD+ABC+ACD G=8 GN=11
- F=BD+ABC+ABD+ABC G= ,GN=
- F=(A+B)A+D)B+C+D)B+C+D)G=,GN=
=~ Which solution is best? Chopter2-Part2 5

Cost Criteria (continued)

L (literal count) countsthe AND inputsand the single
literal OR input.
G (gateinput count) addsthe remaining OR gate inputs

GN(gate input count with NOTs) addstheinverter inputs
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Cost Criteria (continued)

Example 2: é
F=ABC+ABC—_~

L=6 G=8GN=11 N :::]:D‘F
F=(A+ C)(B+C)A+B)\ [ r

L=6 G=9GN=12

Same function and same

literal cost

But first circuit has better
gate input count and better
gate input count with NOTs

Select it!
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Boolean Function Optimization

= Minimizing the gateinput (or literal) cost of a (a
set of) Boolean equation(s) reduces cir cuit cost.
= We choose gate input cost.

= Boolean Algebra and graphical techniquesare
toolsto minimize cost criteria values.

= Someimportant questions:
* When do we stop trying to reduce the cost?
* Do we know when we have a minimum cost?

= Treat optimum or near-optimum cost functions
for two-level (SOP and POS) circuitsfirst.

= |ntroduce a graphical technique using Karnaugh
maps (K-maps, for short)
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Karnaugh Maps (K-map)

= A K-map isa collection of squares
* Each squarerepresentsa minterm

* The collection of squaresisa graphical representation
of a Boolean function

* Adjacent squaresdiffer in the value of onevariable
* Alternative algebraic expressionsfor the same function
arederived by recognizing patter ns of squares
= The K-map can beviewed as
* A reorganized version of thetruth table

* A topologically-warped Venn diagram as used to
visualize setsin algebra of sets
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Some Uses of K-Maps

= Providea meansfor:

 Finding optimum or near optimum
= SOP and POS standard forms, and
= two-level AND/OR and OR/AND circuit
implementations
for functionswith small numbers of
variables
* Visualizing conceptsrelated to manipulating
Boolean expressions, and
« Demonstrating concepts used by computer -
aided design programsto simplify large
circuits
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Two Variable Maps

= A 2-variable Karnaugh Map:

* Notethat minterm mO and y=0]y=1
minterm m1are“adjacent”  _ | my=|m, =
and differ in thevalue of the Xy | xy
variabley x=1 M,= |m;=

* Similarly, minterm mO and xy | XY
minterm m2 differ in the x variable.

* Also, m1 and m3 differ inthex variable as
well.

* Finally, m2 and m3 differ in the value of the
variabley
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K-Map and Truth Tables

= TheK-Map isjust adifferent form of thetruth table.
= Example—Two variable function:
* Wechoose a,b,c and d from the set {0,1} to
implement a particular function, F(x,y).

Function Table K-Map
Input | Function
Values | Value y=0 y=1
(x.y) F(x.y) _
50 " x=0 a b
01 b x=1 ¢ d
10 C
11 d
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K-Map Function Representation

= Example: F(x,y) =x  F=x|y=0y=1
x=0[0 |0
x=1|1 |1

® For function F(x,y), the two adjacent cells
containing 1's can be combined using the

Minimization Theorem:
F(X,y) =Xy +Xxy=xX

K-Map Function Representation
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= Example: G(x,y) =X+y G=x+y|ly=0[y=1
x=0 0
x=1 |1 |1

= For G(x,y), two pairs of adjacent cells containing
1's can be combined using the Minimization

Theorem:
G(x,y) =y +xy )l ky+xy)=

X+y

Duplicate xy
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Three Variable Maps

= A three-variable K-map:
yz=00 | yz=01 | yz=11| yz=10

x=0] m, m; my m,

x=1] m, Mg m, Mg

= Where each minterm correspondsto the product

terms: yZ:OO yz:Ol yZ:ll yZ::I_O

x=0| Xyz | Xyz | xyz | xyz

x=1| Xyz | xyz | Xyz | xyz
= Notethat if the binary valuefor an index differsin one
bit position, the minterms are adjacent on the K-Map
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Alternative Map Labeling

= Map uselargely involves:
* Entering valuesinto the map, and
* Reading off product termsfrom the

map.
= Alternate labelingsare USEfL)I/|Z
— Z
y Yy ! 00 01 11 10
Ylo |1 [3 |2 ofo [1 [3 |2
X |4 5 7 6 X [14 5 7 6
7 Z Z ‘—Z’
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Example Functions

= By convention, we represent the mintermsof Fby a" 1"
in the map and leave the mintermsof F blank

= Example y
F(X, Y, Z) = Zm(2,3,4,5) 0 1 31 21

X41 517 6

= Example: y4
G(a,b,c) =Xn(3,4,6,7) y
= Learn thelocationsof the 8 O |1 %1 |2

indices based on the variable x|41 [5 |71 |61
order shown (X, most significant

and z, least significant) on the z
map boundaries
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Combining Squar es

" By combining squar es, we reduce number of
literalsin a product term, reducing theliteral cost,
thereby reducing the other two cost criteria

" Ona3-variableK-Map:
* Onesquarerepresentsaminterm with three
variables

* Two adjacent squaresrepresent a product term
with two variables

* Four “adjacent” termsrepresent a product term
with onevariable

* Eight “adjacent” termsisthe function of all ones(no
variables) = 1.
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Example: Combining Sguares

= Example: Let F=Xm(2,3,6,7) y
0 1 31 21
X |4 5 71 61
Z

= Applying the Minimization Theorem three
times:
F(X,y,2)=Xyz+Xyz+Xyz+Xxyz
=yz+yZ

. Thusthefour_termsthat forma2 X 2square
correspond totheterm "y".
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Three-Variable Maps

= Reduced literal product termsfor SOP standard

forms correspond to rectangles on K-maps
containing cell countsthat are powersof 2.

= Rectanglesof 2 cellsrepresent 2 adjacent
minterms; of 4 cellsrepresent 4 mintermsthat
form a*“ pairwise adjacent” ring.

= Rectangles can contain non-adjacent cellsas
illustrated by the “ pairwise adjacent” ring
above.
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Three-Variable Maps

= Topological war ps of 3-variable K-maps
that show all adjacencies:

= Venn Diagram = Cylinder
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Chapter 2 - Part 2

Three-Variable Maps

= Example Shapes of 2-cell Rectangles:

y
1 IC
w| 4 5U 6

= Read off the product termsfor the
rectangles shown
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Three-Variable Maps

= Example Shapes of 4-cell Rectangles:

y

—

]

(

]
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Z

= Read off the product termsfor the
rectangles shown

ThreeVariable Maps
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" K-Maps can be used to simplify Boolean functions by
systematic methods. Termsare selected to cover the

“1s’in the map.

= Example: Simplify F(X,Y, Z) =Xm(1,2,3,5,7)

y /7

z

4

= nyr

i

z

F(x,y,2)=

Z+XY
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Three-Variable Map Simplification

= Usea K-map to find an optimum SOP
equation for F(X,Y,Z)=%mn(0,1,2,4,6,7)
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Four Variable Maps

= Map and location of minterms:

0 1 ?/ 2
4 5 /7 6

VariableOnj;zZ 12| 13 /15 14
11

[
3

10
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Four Variable Terms

= Four variable maps can haverectangles
corresponding to:

* Asinglel =4variables, (i.e. Minterm)

* Two 1s= 3variables,

* Four 1s=2variables

* Eight 1s= 1 variable,

» Sixteen 1s= zerovariables(i.e.

Constant " 1")
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Four-Variable Maps

= Example Shapes of Rectangles:

[

4

12
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Four-Variable Maps

= Example Shapes of Rectangles:
Y

N
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Four-Variable Map Simplification

"F(W,X,Y,Z)=2n(0,245,6,7,8,10,13,15)
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Four-Variable Map Simplification

= F(W,X,Y,Z2)=2n(3,4,5,7,9,13,14,15)
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Systematic Simplification

® A Prime Implicant isa product term obtained by combining
the maximum possible number of adjacent squaresin the map
into arectangle with the number of squaresa power of 2.

= A primeimplicant is called an Essential Prime Implicant if it is
the only primeimplicant that covers (includes) one or more
minterms.

" Prime Implicants and Essential Prime Implicants can be
determined by inspection of a K-Map.

" A set of primeimplicants” coversall minterms” if, for each
minterm of the function, at least one primeimplicant in the
set of primeimplicantsincludesthe minterm.
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Example of Prime Implicants

= Find ALL Prime Implicants
CcD ESSENTIAL Prime Implicants
S C
vB D\ :

gﬁj‘_d _________ T <) B

1
BD — fl .......................... » BD — 1
e 1,
(1

A —EE 11 1] 1|1 [1

| o D
AD g ce Minterms covered by single prime implicant

[

F
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Prime Implicant Practice

= Find all primeimplicantsfor:
F(A,B,C,D)=2r(0,2,3,8,9,10,11,12,13,14,15)
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Another Example

= Find all primeimplicantsfor:
G(A,B,C,D)=%x(0,2,3,4,7,12,13,14,15)

* Hint: Thereare seven primeimplicants!
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Five Variableor More K-Maps

= For fivevariable problems, we use two adjacent K-maps.
It becomes harder to visualize adjacent mintermsfor
selecting PIs. You can extend the problem to six
variables by using four K-Maps.
V=0 V=1
Y Y
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Don't Caresin K-Maps

= Sometimes a function table or map containsentriesfor
which it isknown:
« theinput valuesfor the minterm will never occur, or
* Theoutput valuefor the minterm isnot used
= |nthese cases, the output value need not be defined
= Instead, the output valueisdefined asa “don't care”
= By placing “don't cares’ (an “x” entry) in the function table
or map, the cost of the logic circuit may be lowered.
= Example 1: A logic function having the binary codesfor the
BCD digitsasitsinputs. Only the codesfor O through 9 are
used. Thesix codes, 1010 through 1111 never occur, so the
output valuesfor these codesare”x” torepresent “don’t
cares.”
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Don't Caresin K-Maps

= Example2: A circuit that representsavery common situation that
occursin computer design hastwo distinct sets of input variables:
* A, B, and C which take on all possible combinations, and
* Y which takeson valuesO or 1.
and a single output Z. The circuit that receivesthe output Z
observesit only for (A,B,C) = (1,1,1) and otherwiseignoresit.
Thus, Z is specified only for the combinations (A,B,C,Y) = 1110
and 1111. For thesetwo combinations, Z =Y. For all of the 14
remaining input combinations, Z isadon’t care.
= Ultimately, each “x” entry may takeon either a0 or 1valuein
resulting solutions
= For example, an “x” may take on value“ 0" in an SOP solution and
value“1” in a POS solution, or vice-versa.
= Any minterm with value“x” need not be covered by aprime
implicant.
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Example: BCD “5or More”

= The map below givesa function F1(w,x,y,z) which
isdefined as" 5 or more" over BCD inputs. With
thedon't caresused for the 6 non-BCD
combinations:

5To oyo F1(wxX\Yy,2)=W+Xz+Xy G=7
o 1l 3| 2 = Thisismuch lower in cost than F2 where
oLl 1) ,  the“don't cares’ weretreated as" 0s"
(XX, Fo(W,X,Y,2)=WXZ+WXYy+WwXyG=12
w ll 1| x| x = For thisparticular function, cost G for the
S S POS solution for F,(w,x,y,2) is not changed
z by using thedon't cares.

Chapter 2 - Part 2 39

Product of Sums Example

= Find the optimum POS solution:
F(A,B,C,D)=32n(3,9,11,12,13,14,15) +
>d (1,4,6)
« Hint: UseF and complement it to get the
result.
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Optimization Algorithm

= Find all primeimplicants.

* |nclude all essential primeimplicantsin the
solution

= Select a minimum cost set of non-essential
primeimplicantsto cover all mintermsnot yet
covered:

* Obtaining an optimum solution: See Reading
Supplement - More on Optimization

* Obtaining a good simplified solution: Usethe
Selection Rule
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Prime Implicant Selection Rule

= Minimizethe overlap among prime
implicants as much as possible. In
particular, in thefinal solution, make
surethat each primeimplicant selected
includes at least one minterm not
included in any other primeimplicant
selected.

Chapter 2 - Part 2
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Selection Rule Example

= Simplify F(A, B, C, D) given on theK -
map. Selected  Essential

C C
1 — 1 *
1 & 1 1|l 1
Wi ) ENEL W
| B B
1 yi
A ; A __]
(ERIIEN 1|1
| -
D D

Vv~ Minterms covered by essential prime implicants
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Selection Rule Examplewith Don't Cares

= Simplify F(A, B, C, D) given on the K-map.
Selected  Essential

C \ C
1 xl \ 1_xJ
7 xlx & IR x| x 1)
— B v B
X X
A \ A \\
1 1| x D [1 x]l
D D |

v Minterms covered by essential prime implicants
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Multiple-Level Optimization

= Multiple-level circuits- circuitsthat are
not two-level (with or without input
and/or output inverters)

= Multiple-level circuits can havereduced
gate input cost compared to two-level
(SOP and POS) circuits

= Multiple-level optimization is performed
by applying transfor mationsto circuits
represented by equationswhile
evaluating cost
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Transformations

= Factoring - finding a factored form from
SOP or POS expression

 Algebraic - No use of axioms specificto
Boolean algebra such as complements or
idempotence

* Boolean - Uses axioms unique to Boolean
algebra

= Decomposition - expression of a function
asa set of new functions

Chapter 2 - Part 2
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Transfor mations (continued)

= Substitution of G into F - expression
function F asafunction of G and some or
all of itsoriginal variables

= Elimination - Inver se of substitution

= Extraction - decomposition applied to
multiple functions ssimultaneously
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Transformation Examples

= Algebraic Factoring
F=ACD+ABC+ABC+ACD G=16
 Factoring:
F=A(CD+ BC)+A(BC+CD) G=16
* Factoring again:

F=AC(B+D)+AC(B+D) G=12
* Factoring again:
F=(AC+ AC)(B+ D) G=10
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Transformation Examples

= Decomposition
« ThetermsB +Dand AC + AC can be defined
as new functions E and H respectively,
decomposing F:
F=EH,E=B+D,andH=AC+AC G=10
= Thisseriesof transformations hasreduced G from

16 to 10, a substantial savings. Theresulting
circuit hasthreelevels plusinput inverters.
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Transformation Examples

= Substitution of E into F
* ReturningtoF just beforethefinal factoring step:

F=AC(B+ D)+AC (B +D) G=12
* Defining E = B + D, and substituting in F:
F=ACE +ACE G=10

e Thissubstitution hasresulted in the same cost asthe
decomposition
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Transformation Examples

= Elimination
* Beginning with a new set of functions:

X=B+C

Y=A+B

Z=AX+CY G=10
* Eliminating X and Y from Z:
Z=A(B+C)+C(A+B) G=10
* “Flattening” (Converting to SOP expression):
Z=AB+AC+AC+BC G=12

* Thishasincreased the cost, but has provided an new
SOP expression for two-level optimization.
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Transformation Examples

= Two-level Optimization
* Theresult of 2-level optimization is:
Z=AB+ C G=4
= Thisexampleillustratesthat:
* Optimization can begin with any set of equations,
not just with mintermsor atruth table
* Increasing gate input count G temporarily during a
series of transformations can result in afinal
solution with a smaller G
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51

52



Transformation Examples

= Extraction
* Beginning with two functions:

E=ABD +ABD

H=BCD +BCD G=16

* Finding a common factor and defining it asa
function:

F=BD +BD

* Weperform extraction by expressing E and H as
the threefunctions:

F=BD+BD,E=AF,H= CF G=10

* Thereduced cost G resultsfrom the sharing of logic

between the two output functions
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