Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 3 – Additional Gates and Circuits

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc. <u>Terms of Use</u> (Hyperlinks are active in View Show mode)

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Lingle and Computer Design Fundament PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Other Gate Types

- Why?
 - Implementation feasibility and low cost
 - Power in implementing Boolean functions
 - Convenient conceptual representation
- Gate classifications
 - Primitive gate a gate that can be described using a single primitive operation type (AND or OR) plus an optional inversion(s).
 - Complex gate a gate that requires more than one primitive operation type for its description
- Primitive gates will be covered first

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 3

Buffer

- A buffer is a gate with the function F =
 X:
 X F
- In terms of Boolean function, a buffer is the same as a connection!
- So why use it?
 - A buffer is an electronic amplifier used to improve circuit voltage levels and increase the speed of circuit operation.

NAND Gate

- The basic NAND gate has the following symbol, illustrated for three inputs:
 - AND-Invert (NAND)

 NAND represents <u>NOT AND</u>, i. e., the AND function with a NOT applied. The symbol shown is an AND-Invert. The small circle ("bubble") represents the invert function.

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stidss © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 5

NAND Gates (continued)

Applying DeMorgan's Law gives Invert-OR (NAND)

- This NAND symbol is called Invert-OR, since inputs are inverted and then ORed together.
- AND-Invert and Invert-OR both represent the NAND gate. Having both makes visualization of circuit function easier.
- A NAND gate with one input degenerates to an inverter.

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

NAND Gates (continued)

- The NAND gate is the natural implementation for the simplest and fastest electronic circuits
- *Universal gate* a gate type that can implement any Boolean function.
- The NAND gate is a universal gate as shown in Figure 2-30 of the text.
- NAND usually does not have a operation symbol defined since
 - the NAND operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

Logis and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Poersun Education, Inc.

Chapter 2 - Part 3 7

NOR Gate

- The basic NOR gate has the following symbol, illustrated for three inputs:
 - OR-Invert (NOR)

$$x = F(X,Y,Z) = \overline{X+Y+Z}$$

 NOR represents <u>NOT - OR</u>, i. e., the OR function with a NOT applied. The symbol shown is an OR-Invert. The small circle ("bubble") represents the invert function.

NOR Gate (continued)

 Applying DeMorgan's Law gives Invert-AND (NOR)

- This NOR symbol is called Invert-AND, since inputs are inverted and then ANDed together.
- OR-Invert and Invert-AND both represent the NOR gate. Having both makes visualization of circuit function easier.
- A NOR gate with one input degenerates to an inverter.

Logis and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Paerson Education, Inc.

Chapter 2 - Part 3 9

NOR Gate (continued)

- The NOR gate is another natural implementation for the simplest and fastest electronic circuits
- The NOR gate is a universal gate
- NOR usually does not have a defined operation symbol since
 - the NOR operation is not associative, and
 - we have difficulty dealing with non-associative mathematics!

Exclusive OR/ Exclusive NOR

- The *eXclusive OR* (*XOR*) function is an important Boolean function used extensively in logic circuits.
- The XOR function may be;
 - implemented directly as an electronic circuit (truly a gate) or
 - implemented by interconnecting other gate types (used as a convenient representation)
- The *eXclusive NOR* function is the complement of the XOR function
- By our definition, XOR and XNOR gates are complex gates.

Lingle and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 2 - Part 3 11

Exclusive OR/ Exclusive NOR

- Uses for the XOR and XNORs gate include:
 - Adders/subtractors/multipliers
 - Counters/incrementers/decrementers
 - Parity generators/checkers
- Definitions
 - The XOR function is: $X \oplus Y = X \overline{Y} + \overline{X} Y$
 - The eXclusive NOR (XNOR) function, otherwise known as *equivalence* is: $\overline{X \oplus Y} = X Y + \overline{X} \overline{Y}$
- Strictly speaking, XOR and XNOR gates do no exist for more that two inputs. Instead, they are replaced by odd and even functions.

Truth Tables for XOR/XNOR

Operator Rules: XOR

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

X	Y	(X⊕Y)	
		or	X≡Y
0	0		1
0	1		0
1	0		0
1	1	-	1

 The XOR function means: X OR Y, but NOT BOTH

Why is the XNOR function also known as the equivalence function, denoted by the operator ≡?

Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 13

XOR/XNOR (Continued)

The XOR function can be extended to 3 or more variables. For more than 2 variables, it is called an *odd function* or *modulo 2 sum* (*Mod 2 sum*), not an XOR:

 $\mathbf{X} \oplus \mathbf{Y} \oplus \mathbf{Z} = \overline{\mathbf{X}} \, \overline{\mathbf{Y}} \, \mathbf{Z} + \overline{\mathbf{X}} \, \mathbf{Y} \, \overline{\mathbf{Z}} + \mathbf{X} \, \overline{\mathbf{Y}} \, \overline{\mathbf{Z}} + \mathbf{X} \, \mathbf{Y} \, \mathbf{Z}$

- The complement of the odd function is the even function.
- The XOR identities:

 $X \oplus 0 = X \qquad X \oplus 1 = \overline{X}$ $X \oplus X = 0 \qquad X \oplus \overline{X} = 1$ $X \oplus Y = Y \oplus X$ $(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$

Logis and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Pearson Education, Inc.

Symbols For XOR and XNOR

• XOR symbol:

XNOR symbol:

Symbols exist only for two inputs

Logic and Computer Denign Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 15

XOR Implementations

The simple SOP implementation uses the following structure: x

• A NAND only implementation is:

Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Peerson Education, Inc.

Odd and Even Functions

- The odd and even functions on a K-map form "checkerboard" patterns.
- The 1s of an odd function correspond to minterms having an index with an odd number of 1s.
- The 1s of an even function correspond to minterms having an index with an even number of 1s.
- Implementation of odd and even functions for greater than 4 variables as a two-level circuit is difficult, so we use "trees" made up of :
 - 2-input XOR or XNORs
 - 3- or 4-input odd or even functions

Logic and Computer Design Fundamentals PowerPoint® Slides © 2004 Pearson Education, Inc.

Chapter 2 - Part 3 17

Example: Odd Function Implementation

- Design a 3-input odd function F = X⊕Y⊕Z with 2-input XOR gates
- Factoring, $\mathbf{F} = (\mathbf{X} \oplus \mathbf{Y}) \oplus \mathbf{Z}$
- The circuit:

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Example: Even Function Implementation

- Design a 4-input odd function F = W⊕X⊕Y⊕Z with 2-input XOR and XNOR gates
- Factoring, $\mathbf{F} = (\mathbf{W} \oplus \mathbf{X}) \oplus (\mathbf{Y} \oplus \mathbf{Z})$
- The circuit:

Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 19

Parity Generators and Checkers

- In Chapter 1, a parity bit added to n-bit code to produce an n + 1 bit code:
 - Add odd parity bit to generate code words with even parity
 - · Add even parity bit to generate code words with odd parity
 - · Use odd parity circuit to check code words with even parity
 - Use even parity circuit to check code words with odd parity
- Example: n = 3. Generate even X
 parity code words of length 4 with Y
 odd parity generator:
- Check even parity code words of length 4 with odd parity checker: Y
- Operation: (X,Y,Z) = (0,0,1) gives (X,Y,Z,P) = (0,0,1,1) and E = 0. Z
 If Y changes from 0 to 1 between P
 generator and checker, then E = 1 indicates an error.

PowerPoint[®] Slides © 2004 Poorson Education, Inc.

Chapter 2 - Part 3 20

Hi-Impedance Outputs

- Logic gates introduced thus far
 - have 1 and 0 output values,
 - <u>cannot</u> have their outputs connected together, and
 - transmit signals on connections in <u>only one</u> direction.
- Three-state logic adds a third logic value, Hi-Impedance (Hi-Z), giving three states: 0, 1, and Hi-Z on the outputs.
- The presence of a Hi-Z state makes a gate output as described above behave quite differently:
 - "1 and 0" become "1, 0, and Hi-Z"
 - "cannot" becomes "can," and

Lugic and Component becomes "two" PowerPoint[®] Sides 0 2000 Person Education, Inc.

Chapter 2 - Part 3 21

Hi-Impedance Outputs (continued)

- What is a Hi-Z value?
 - The Hi-Z value behaves as an open circuit
 - This means that, looking back into the circuit, the output appears to be disconnected.
 - It is as if a switch between the internal circuitry and the output has been opened.
- Hi-Z may appear on the output of any gate, but we restrict gates to:
 - a 3-state buffer, or
 - a transmission gate,

each of which has one data input and one control input

Logic and Computer Genign Fundamentals PowerPoint® Stides © 2004 Pearsun Education, Inc.

The 3-State Buffer

- For the symbol and truth table, IN is the <u>data input</u>, and EN, the <u>control input</u>.
- For EN = 0, regardless of the value on IN (denoted by X), the output value is Hi-Z.
- For EN = 1, the output value follows the input value.
- Variations:
 - Data input, IN, can be inverted
 - Control input, EN, can be inverted by addition of "bubbles" to signals.

Truth Table

EN	IN	OUT
0	Х	Hi-Z
1	0	0
1	1	1

Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 2 - Part 3 23

Resolving 3-State Values on a Connection

- Connection of two 3-state buffer outputs, B1 and B0, to a wire, OUT
- Assumption: Buffer data inputs can take on any combination of values 0 and 1
- Resulting Rule: At least one buffer output value must be Hi-Z. Why?
- How many valid buffer output combinations exist?
- What is the rule for *n* 3-state buffers connected to wire, OUT?
- How many valid buffer output combinations exist?

Logic and Computer Dealgn Fundame PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Resolution Table				
B1	B0	OUT		
0	Hi-Z	0		
1	Hi-Z	1		
Hi-Z	0	0		
Hi-Z	1	1		
Hi-Z	Hi-Z	Hi-Z		

3-State Logic Circuit

- Data Selection Function: If s = 0, OL = IN0, else OL = IN1
- Performing data selection with 3-state buffers:

Since EN0 = S and EN1 = S, one of the two buffer outputs is always Hi-Z plus the last row of the table never occurs.

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.

Chapter 2 - Part 3 25

Transmission Gates

 The transmission gate is one of the designs for an electronic switch for connecting and disconnecting two points in a circuit:

Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Poerson Education, Inc.

Transmission Gates (continued)

- In many cases, X can be regarded as a data input and Y as an output. C and C, with complementary values applied, is a control input.
- With these definitions, the transmission gate, provides a 3-state output:
 - C = 1, Y = X (X = 0 or 1)
 - C = 0, Y = Hi-Z
- Care must be taken when using the TG in design, however, since X and Y as input and output are interchangeable, and signals can pass in both directions.

Logic and Computer Design Fundamentals PowerPoint® Sildes © 2004 Poerson Education, Inc.

```
Chapter 2 - Part 3 27
```

Circuit Example Using TG

Logis and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Pearson Education, Inc.

More Complex Gates

- The remaining complex gates are SOP or POS structures with and without an output inverter.
- The names are derived using:
 - A AND
 - O OR
 - I Inverter
 - Numbers of inputs on first-level "gates" or directly to second-level "gates"

Logic and Computer Denign Fundamentals PowerPoint[®] Stitles © 2004 Pearson Education, Inc.

Chapter 2 - Part 3 29

More Complex Gates (continued)

- Example: AOI AND-OR-Invert consists of a single gate with AND functions driving an OR function which is inverted.
- Example: 2-2-1 AO has two 2-input ANDS driving an OR with one additional OR input
- These gate types are used because:
 - the number of transistors needed is fewer than required by connecting together primitive gates
 - potentially, the circuit delay is smaller, increasing the circuit operating speed

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education <u>Legal Notice</u>.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these
 materials on a protected website or protected ftp site in original or
 modified form. All other website or ftp postings, including those
 offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- <u>Return to Title Page</u>

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 2 - Part 3 31