
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 4 – Combinational
Functions and Circuits

Logic and Computer Design Fundamentals

Chapter 4 2

Overview
Functions and functional blocks
Rudimentary logic functions
Decoding
Encoding
Selecting
Implementing Combinational Functions Using:

• Decoders and OR gates
• Multiplexers (and inverter)
• ROMs
• PLAs
• PALs
• Lookup Tables

2

Chapter 4 3

Functions and Functional Blocks

The functions considered are those found to be
very useful in design
Corresponding to each of the functions is a
combinational circuit implementation called a
functional block.
In the past, many functional blocks were
implemented as SSI, MSI, and LSI circuits.
Today, they are often simply parts within a
VLSI circuits.

Chapter 4 4

Rudimentary Logic Functions

Functions of a single variable X
Can be used on the
inputs to functional
blocks to implement
other than the block’s
intended function

0

1

F � 0

F � 1

(a)

F � 0

F � 1

VCC or VDD

(b)

X F � X

(c)

X F � X

(d)

TABLE 4-1
Functions of One Variable

X F = 0 F = X F = F = 1

0
1

0
0

0
1

1
0

1
1

X

3

Chapter 4 5

Multiple-bit Rudimentary Functions

Multi-bit Examples:

A wide line is used to represent
a bus which is a vector signal
In (b) of the example, F = (F3, F2, F1, F0) is a bus.

The bus can be split into individual bits as shown in (b)
Sets of bits can be split from the bus as shown in (c)
for bits 2 and 1 of F.
The sets of bits need not be continuous as shown in (d) for bits 3, 1, and
0 of F.

F
(d)

0

F3
1 F2

F1
A F0

(a)

0
1

A
1

2 3
4

F
0

(b)

4 2:1 F(2:1)
2

F
(c)

4 3,1:0 F(3), F(1:0)
3

A A

Chapter 4 6

Enabling Function

Enabling permits an input signal to pass
through to an output
Disabling blocks an input signal from passing
through to an output, replacing it with a fixed
value
The value on the output when it is disable can
be Hi-Z (as for three-state buffers and
transmission gates), 0 , or 1
When disabled, 0 output
When disabled, 1 output
See Enabling App in text

X
F

EN

(a)

EN
X

F

(b)

4

Chapter 4 7

Decoding - the conversion of an n-bit input
code to an m-bit output code with
n ≤ m ≤ 2n such that each valid code word
produces a unique output code
Circuits that perform decoding are called
decoders
Here, functional blocks for decoding are
• called n-to-m line decoders, where m ≤ 2n, and
• generate 2n (or fewer) minterms for the n input

variables

Decoding

Chapter 4 8

1-to-2-Line Decoder

2-to-4-Line Decoder

Note that the 2-4-line
made up of 2 1-to-2-
line decoders and 4 AND gates.

Decoder Examples
A D0 D1

0 1 0

1 0 1

(a) (b)

D1 � AA

D0 � A

A1

0
0
1
1

A0

0
1
0
1

D0

1
0
0
0

D1

0
1
0
0

D2

0
0
1
0

D3

0
0
0
1

(a)

D0 � A1 A0

D1 � A1 A0

D2 � A1 A0

D3 � A1 A0

(b)

A1

A0

5

Chapter 4 9

Decoder Expansion

General procedure given in book for any decoder with
n inputs and 2n outputs.
This procedure builds a decoder backward from the
outputs.
The output AND gates are driven by two decoders with
their numbers of inputs either equal or differing by 1.
These decoders are then designed using the same
procedure until 2-to-1-line decoders are reached.
The procedure can be modified to apply to decoders
with the number of outputs ≠ 2n

Chapter 4 10

Decoder Expansion - Example 1

3-to-8-line decoder
• Number of output ANDs = 8
• Number of inputs to decoders driving output ANDs = 3
• Closest possible split to equal

2-to-4-line decoder
1-to-2-line decoder

• 2-to-4-line decoder
Number of output ANDs = 4
Number of inputs to decoders driving output ANDs = 2
Closest possible split to equal

• Two 1-to-2-line decoders

See next slide for result

6

Chapter 4 11

Decoder Expansion - Example 1

Result

3-to-8 Line decoder

1-to-2-Line decoders

4 2-input ANDs 8 2-input ANDs

2-to-4-Line
decoder

D0A0

A1

A2

D1

D2

D3

D4

D5

D6

D7

Chapter 4 12

Decoder Expansion - Example 2
7-to-128-line decoder

• Number of output ANDs = 128
• Number of inputs to decoders driving output ANDs

= 7
• Closest possible split to equal

4-to-16-line decoder
3-to-8-line decoder

• 4-to-16-line decoder
Number of output ANDs = 16
Number of inputs to decoders driving output ANDs = 2
Closest possible split to equal

• 2 2-to-4-line decoders

• Complete using known 3-8 and 2-to-4 line decoders

7

Chapter 4 13

In general, attach m-enabling circuits to the outputs
See truth table below for function

• Note use of X’s to denote both 0 and 1
• Combination containing two X’s represent four binary combinations

Alternatively, can be viewed as distributing value of signal
EN to 1 of 4 outputs
In this case, called a
demultiplexer

EN

A1

A0
D0

D1

D2

D3

(b)

EN A1 A0 D0 D1 D2 D3

0
1
1
1
1

X
0
0
1
1

X
0
1
0
1

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

(a)

Decoder with Enable

Chapter 4 14

Encoding
Encoding - the opposite of decoding - the conversion
of an m-bit input code to a n-bit output code with n ≤
m ≤ 2n such that each valid code word produces a
unique output code
Circuits that perform encoding are called encoders
An encoder has 2n (or fewer) input lines and n output
lines which generate the binary code corresponding
to the input values
Typically, an encoder converts a code containing
exactly one bit that is 1 to a binary code corres-
ponding to the position in which the 1 appears.

8

Chapter 4 15

Encoder Example

A decimal-to-BCD encoder
• Inputs: 10 bits corresponding to decimal

digits 0 through 9, (D0, …, D9)
• Outputs: 4 bits with BCD codes
• Function: If input bit Di is a 1, then the

output (A3, A2, A1, A0) is the BCD code for i,
The truth table could be formed, but
alternatively, the equations for each of the
four outputs can be obtained directly.

Chapter 4 16

Encoder Example (continued)

Input Di is a term in equation Aj if bit Aj is 1
in the binary value for i.
Equations:
A3 = D8 + D9

A2 = D4 + D5 + D6 + D7

A1 = D2 + D3 + D6 + D7

A0 = D1 + D3 + D5 + D7 + D9

F1 = D6 + D7 can be extracted from A2 and A1
Is there any cost saving?

9

Chapter 4 17

Priority Encoder

If more than one input value is 1, then the
encoder just designed does not work.
One encoder that can accept all possible
combinations of input values and produce
a meaningful result is a priority encoder.
Among the 1s that appear, it selects the
most significant input position (or the
least significant input position) containing
a 1 and responds with the corresponding
binary code for that position.

Chapter 4 18

Priority Encoder Example
Priority encoder with 5 inputs (D4, D3, D2, D1, D0) - highest priority to
most significant 1 present - Code outputs A2, A1, A0 and V where V
indicates at least one 1 present.

Xs in input part of table represent 0 or 1; thus table entries correspond to
product terms instead of minterms. The column on the left shows that all
32 minterms are present in the product terms in the table

16
8
4
2
1
1

No. of Min-
terms/Row

0XXX00000

1001XXXX1
1110XXX10
1010XX100
1100X1000
100010000

VA0A1A2D0D1D2D3D4

OutputsInputs

10

Chapter 4 19

Priority Encoder Example (continued)

Could use a K-map to get equations, but
can be read directly from table and
manually optimized if careful:
A2 = D4

A1 = D3 + D2 = F1, F1 = (D3 + D2)
A0 = D3 + D1 = (D3 + D1)
V = D4 + F1 + D1 + D0

D4 D3D4 D4

D4 D3D4 D2 D4 D2

Chapter 4 20

Selecting of data or information is a critical
function in digital systems and computers
Circuits that perform selecting have:

• A set of information inputs from which the selection
is made

• A single output
• A set of control lines for making the selection

Logic circuits that perform selecting are called
multiplexers
Selecting can also be done by three-state logic
or transmission gates

Selecting

11

Chapter 4 21

Multiplexers

A multiplexer selects information from an
input line and directs the information to
an output line
A typical multiplexer has n control inputs
(Sn − 1, … S0) called selection inputs, 2n

information inputs (I2
n

− 1, … I0), and one
output Y
A multiplexer can be designed to have m
information inputs with m < 2n as well as
n selection inputs

Chapter 4 22

2-to-1-Line Multiplexer

Since 2 = 21, n = 1
The single selection variable S has two values:

• S = 0 selects input I0

• S = 1 selects input I1

The equation:
Y = I0 + SI1

The circuit:
S

S

I0

I1

Decoder
Enabling
Circuits

Y

12

Chapter 4 23

2-to-1-Line Multiplexer (continued)

Note the regions of the multiplexer circuit shown:
• 1-to-2-line Decoder
• 2 Enabling circuits
• 2-input OR gate

To obtain a basis for multiplexer expansion, we
combine the Enabling circuits and OR gate into a 2 × 2
AND-OR circuit:

• 1-to-2-line decoder
• 2 × 2 AND-OR

In general, for an 2n-to-1-line multiplexer:
• n-to-2n-line decoder
• 2n × 2 AND-OR

Chapter 4 24

Example: 4-to-1-line Multiplexer

2-to-22-line decoder
22 × 2 AND-OR

S1
Decoder

S0

Y

S1
Decoder

S0

Y

S1
Decoder

4 � 2 AND-OR
S0

Y

I2

I3

I1

I0

13

Chapter 4 25

Multiplexer Width Expansion
Select “vectors of bits” instead of “bits”
Use multiple copies of 2n × 2 AND-OR in
parallel
Example:
4-to-1-line
quad multi-
plexer

4 � 2 AND-OR

2-to-4-Line decoder

4 � 2 AND-OR

4 � 2 AND-OR

4 � 2 AND-OR

I0,0

I3,0

I0,1

I3,1

I0,2

I3,2
I0,3

I3,3

Y0

D0

D3

A0

A1

Y1

Y2

Y3

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

Chapter 4 26

Other Selection Implementations

Three-state logic in place of AND-OR

Gate input cost = 14 compared to 22 (or
18) for gate implementation

I0

I1

I2

I3

S1

S0

(b)

Y

14

Chapter 4 27

Other Selection Implementations

Transmission Gate Multiplexer
Gate input
cost = 8
compared
to 14 for
3-state logic
and 18 or 22
for gate logic

S0

S1

I0

I1

I2

I3

Y

TG
(S0 � 0)

TG
(S1 � 0)

TG
(S1 � 1)

TG
(S0 � 1)

TG
(S0 � 0)

TG
(S0 � 1)

Chapter 4 28

Combinational Function Implementation

Alternative implementation techniques:
• Decoders and OR gates

• Multiplexers (and inverter)

• ROMs

• PLAs

• PALs

• Lookup Tables
Can be referred to as structured implementation
methods since a specific underlying structure is
assumed in each case

15

Chapter 4 29

Decoder and OR Gates

Implement m functions of n variables with:
• Sum-of-minterms expressions
• One n-to-2n-line decoder
• m OR gates, one for each output

Approach 1:
• Find the truth table for the functions
• Make a connection to the corresponding OR from

the corresponding decoder output wherever a 1
appears in the truth table

Approach 2
• Find the minterms for each output function
• OR the minterms together

Chapter 4 30

Decoder and OR Gates Example
Implement the following set of odd parity functions of
(A7, A6, A5, A3)
P1 = A7 A5 A3
P2 = A7 A6 A3
P4 = A7 A6 A5

Finding sum of
minterms expressions
P1 = Σm(1,2,5,6,8,11,12,15)
P2 = Σm(1,3,4,6,8,10,13,15)
P4 = Σm(2,3,4,5,8,9,14,15)
Find circuit
Is this a good idea?

+
+
+

+
+
+

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

A7
A6
A5
A4

P1

P4

P2

16

Chapter 4 31

Multiplexer Approach 1
Implement m functions of n variables with:

• Sum-of-minterms expressions
• An m-wide 2n-to-1-line multiplexer

Design:
• Find the truth table for the functions.
• In the order they appear in the truth table:

Apply the function input variables to the multiplexer
inputs Sn − 1, … , S0

Label the outputs of the multiplexer with the output
variables

• Value-fix the information inputs to the multiplexer
using the values from the truth table (for don’t
cares, apply either 0 or 1)

Chapter 4 32

Example: Gray to Binary Code

Design a circuit to
convert a 3-bit Gray
code to a binary code
The formulation gives
the truth table on the
right
It is obvious from this
table that X = C and the
Y and Z are more complex

Gray
A B C

Binary
x y z

0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 1 1 1 0 1
1 0 1 1 1 0
0 0 1 1 1 1

17

Chapter 4 33

Gray to Binary (continued)

Rearrange the table so
that the input combinations
are in counting order

Functions y and z can
be implemented using
a dual 8-to-1-line
multiplexer by:

• connecting A, B, and C to the multiplexer select inputs
• placing y and z on the two multiplexer outputs
• connecting their respective truth table values to the inputs

Gray
A B C

Binary
x y z

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 0 1
1 0 1 1 1 0
1 1 0 0 1 0
1 1 1 1 0 1

Chapter 4 34

Note that the multiplexer with fixed inputs is identical to a
ROM with 3-bit addresses and 2-bit data!

Gray to Binary (continued)

D04
D05
D06
D07

S1
S0

A
B

S2

D03
D02
D01
D00

Out

C

D14
D15
D16
D17

S1
S0

A
B

S2

D13
D12
D11
D10

Out

C

1
1

1

1

1
1

1
1

0
0

0

0

0

0

0

0

Y Z

8-to-1
MUX

8-to-1
MUX

18

Chapter 4 35

Multiplexer Approach 2

Implement any m functions of n + 1 variables by using:
• An m-wide 2n-to-1-line multiplexer
• A single inverter

Design:
• Find the truth table for the functions.
• Based on the values of the first n variables, separate the truth

table rows into pairs
• For each pair and output, define a rudimentary function of the

final variable (0, 1, X,)
• Using the first n variables as the index, value-fix the

information inputs to the multiplexer with the corresponding
rudimentary functions

• Use the inverter to generate the rudimentary function

X

X

Chapter 4 36

Example: Gray to Binary Code

Design a circuit to
convert a 3-bit Gray
code to a binary code
The formulation gives
the truth table on the
right
It is obvious from this
table that X = C and the
Y and Z are more complex

Gray
A B C

Binary
x y z

0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 1 1 1 0 1
1 0 1 1 1 0
0 0 1 1 1 1

19

Chapter 4 37

Gray to Binary (continued)
Rearrange the table so that the input combinations are in
counting order, pair rows, and find rudimentary functions

1 0 11 1 1
0 1 01 1 0
1 1 01 0 1
0 0 11 0 0
1 0 00 1 1
0 1 10 1 0
1 1 10 0 1
0 0 00 0 0

Rudimentary
Functions of

C for z

Rudimentary
Functions of

C for y

Binary
x y z

Gray
A B C

F = C

F = C

F = C

F = C

F = C

F = CF = C

F = C

Chapter 4 38

Assign the variables and functions to the multiplexer inputs:

Note that this approach (Approach 2) reduces the cost by
almost half compared to Approach 1.
This result is no longer ROM-like
Extending, a function of more than n variables is decomposed
into several sub-functions defined on a subset of the variables.
The multiplexer then selects among these sub-functions.

Gray to Binary (continued)

S1
S0

A
B

D03
D02
D01
D00

Out Y

8-to-1
MUX

C
C

C

C D13
D12
D11
D10

Out Z

8-to-1
MUX

S1
S0

A
B

C

C

C
CC C

20

Chapter 4 39

Read Only Memory
Functions are implemented by storing the truth
table
Other representations such as equations more
convenient
Generation of programming information from
equations usually done by software
Text Example 4-10 Issue

• Two outputs are generated outside of the ROM
• In the implementation of the system, these two

functions are “hardwired” and even if the ROM is
reprogrammable or removable, cannot be corrected
or updated

Chapter 4 40

Programmable Array Logic
There is no sharing of AND gates as in
the ROM and PLA
Design requires fitting functions within
the limited number of ANDs per OR gate
Single function optimization is the first
step to fitting
Otherwise, if the number of terms in a
function is greater than the number of
ANDs per OR gate, then factoring is
necessary

21

Chapter 4 41

Product
term

AND Inputs

OutputsA B C D W

1
2
3

W = C

4
5
6

F1 = X = A
+ B + W

7
8
9

10
11
12

—
—
—

—
—
—

—
—
—

—
—
—

—
—
—

AB

C

+ ABC

F2 = Y
= AB + BC +AC

B C
A

1
0
—

0
1
—

0
0
—

—
—
—

—
—
1

— —

0
1

0
1

1
1
—

—

—

—
—
—

—

1
—
1

1
1
—

—
1
1

—

—

—
—
—

—

Equations: F1 = A + B + C + ABC
F2 = AB + BC + AC

F1 must be
factored
since four
terms
Factor out
last two
terms as W

A BB C C A

Programmable Array Logic Example

Chapter 4 42

Programmable Array Logic Example

X

XX

XX

XX

X XX

X X X

XX X

X X X

AND gates inputs

A C WProduct
term

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

W

F1

F2

All fuses intact
(always � 0)

X Fuse intact

X

A B B C D D W

A C WA B B C D D W

� Fuse blown

22

Chapter 4 43

Programmable Logic Array

The set of functions to be implemented must fit the
available number of product terms
The number of literals per term is less important in
fitting
The best approach to fitting is multiple-output, two-
level optimization (which has not been discussed)
Since output inversion is available, terms can
implement either a function or its complement
For small circuits, K-maps can be used to visualize
product term sharing and use of complements
For larger circuits, software is used to do the
optimization including use of complemented functions

Chapter 4 44

Programmable Logic Array Example

K-map
specification
How can this
be implemented
with four terms?
Complete the
programming table

Outputs

1
2
3

4

F2

1
1

–
1

AB
AC
BC

Inputs

–
1
1

C

1
1
–

A

1
–
1

B

PLA programming table

(T)
F1

()Product
term

F1 � ABC + A B C + A B C
F1 � AB + AC + BC + A B C

0

C

0

1

0 1

0 0

00 01 11 10
BC

A

0

B

1

1A

0

C

0

1 0

1 1

00 01 11 10
BC

A

1

B

0

1A

F2 � AB + AC+ BC
F2 � AC + AB + BC

0

23

Chapter 4 45

Programmable Logic Array Example

X Fuse intact

� Fuse blown

0

1

F1

F2

A

B

C

C B AC B A

1

2

4

3

X X

X X

X X

X XX

X

X

X X

X

X

X

X

X

Chapter 4 46

Lookup Tables
Lookup tables are used for implementing logic
in Field-Programmable Gate Arrays (FPGAs)
and Complex Logic Devices (CPLDs)
Lookup tables are typically small, often with
four inputs, one output, and 16 entries
Since lookup tables store truth tables, it is
possible to implement any 4-input function
Thus, the design problem is how to optimally
decompose a set of given functions into a set of
4-input two- level functions.
We will illustrate this by a manual attempt

24

Chapter 4 47

Lookup Table Example

Equations to be implemented:
F1(A,B,C,D,E) = A D E + B D E + C D E
F2(A,B,D,E,F) = A E D + B D E + F D E
Extract 4-input function:
F3(A,B,D,E) = A D E + B D E
F1(C,D,E,F3) = F3 + C D E
F2(D,E,F,F3) = F3 + F D E
The cost of the solution is 3 lookup tables

Chapter 4 48

Terms of Use
© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard Pearson
Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.
Return to Title Page

