
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 5 – Arithmetic
Functions and Circuits

Logic and Computer Design Fundamentals

Chapter 5 2

Overview

Iterative combinational circuits
Binary adders

• Half and full adders
• Ripple carry and carry lookahead adders

Binary subtraction
Binary adder-subtractors

• Signed binary numbers
• Signed binary addition and subtraction
• Overflow

Binary multiplication
Other arithmetic functions

• Design by contraction

2

Chapter 5 3

Iterative Combinational Circuits

Arithmetic functions
• Operate on binary vectors
• Use the same subfunction in each bit position

Can design functional block for subfunction
and repeat to obtain functional block for
overall function
Cell - subfunction block
Iterative array - a array of interconnected cells
An iterative array can be in a single dimension
(1D) or multiple dimensions

Chapter 5 4

Cell n-1
Xn-1

Yn-1

An-1Bn-1

Cn-1

Xn

Yn
Cell 1

X1

Y1

A1

C1

Cell 0
X0

Y0

B0

C0

X2

Y2

A0B1

Block Diagram of a 1D Iterative Array

Example: n = 32
• Number of inputs = ?
• Truth table rows = ?
• Equations with up to ? input variables
• Equations with huge number of terms
• Design impractical!

Iterative array takes advantage of the regularity to
make design feasible

3

Chapter 5 5

Functional Blocks: Addition

Binary addition used frequently
Addition Development:
• Half-Adder (HA), a 2-input bit-wise addition

functional block,
• Full-Adder (FA), a 3-input bit-wise addition

functional block,
• Ripple Carry Adder, an iterative array to

perform binary addition, and
• Carry-Look-Ahead Adder (CLA), a

hierarchical structure to improve
performance.

Chapter 5 6

Functional Block: Half-Adder

A 2-input, 1-bit width binary adder that performs the
following computations:

A half adder adds two bits to produce a two-bit sum
The sum is expressed as a
sum bit , S and a carry bit, C
The half adder can be specified
as a truth table for S and C ⇒

X 0 0 1 1
+ Y + 0 + 1 + 0 + 1
C S 0 0 0 1 0 1 1 0

X Y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

4

Chapter 5 7

Logic Simplification: Half-Adder

The K-Map for S, C is:
This is a pretty trivial map!
By inspection:

and

These equations lead to several implementations.

Y

X
0 1

321
1

S Y

X
0 1

32 1

C

)YX()YX(S
YXYXYXS

+⋅+=
⊕=⋅+⋅=

)(C
YXC

)YX(⋅=
⋅=

Chapter 5 8

Five Implementations: Half-Adder

We can derive following sets of equations for a half-
adder:

(a), (b), and (e) are SOP, POS, and XOR
implementations for S.
In (c), the C function is used as a term in the AND-
NOR implementation of S, and in (d), the function is
used in a POS term for S.

YXC
)(S)c(

YXC
)YX()YX(S)b(

YXC
YXYXS)a(

YXC
⋅=

=
⋅=

+⋅+=
⋅=

⋅+⋅=

⋅+
YXC
YXS)e(

)YX(C
C)YX(S)d(

⋅=
⊕=

+=
⋅+=

C

5

Chapter 5 9

Implementations: Half-Adder

The most common half
adder implementation is: (e)

A NAND only implementation is:

YXC
YXS

⋅=
⊕=

)(C
C)YX(S

)YX(⋅=
⋅+=

X
Y

C

S

X

Y

C

S

Chapter 5 10

Functional Block: Full-Adder

A full adder is similar to a half adder, but includes a
carry-in bit from lower stages. Like the half-adder, it
computes a sum bit, S and a carry bit, C.

• For a carry-in (Z) of
0, it is the same as
the half-adder:

• For a carry- in
(Z) of 1:

Z 0 0 0 0
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1
C S 0 0 0 1 0 1 1 0

Z 1 1 1 1
X 0 0 1 1

+ Y + 0 + 1 + 0 + 1
C S 0 1 1 0 1 0 1 1

6

Chapter 5 11

Logic Optimization: Full-Adder

Full-Adder Truth Table:

Full-Adder K-Map:

X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

X

Y

Z

0 1 3 2

4 5 7 6
1

1

1

1
S

X

Y

Z

0 1 3 2

4 5 7 6
1 11

1
C

Chapter 5 12

Equations: Full-Adder

From the K-Map, we get:

The S function is the three-bit XOR function (Odd
Function):

The Carry bit C is 1 if both X and Y are 1 (the sum is
2), or if the sum is 1 and a carry-in (Z) occurs. Thus C
can be re-written as:

The term X·Y is carry generate.
The term X⊕Y is carry propagate.

ZYZXYXC
ZYXZYXZYXZYXS

++=
+++=

ZYXS ⊕⊕=

Z)YX(YXC ⊕+=

7

Chapter 5 13

Implementation: Full Adder

Full Adder Schematic

Here X, Y, and Z, and C
(from the previous pages)
are A, B, Ci and Co,
respectively. Also,

G = generate and
P = propagate.

Note: This is really a combination
of a 3-bit odd function (for S)) and
Carry logic (for Co):

(G = Generate) OR (P =Propagate AND Ci = Carry In)
Co = G + P · Ci

AiBi

Ci

Ci+1

Gi

Pi

Si

Chapter 5 14

Binary Adders

To add multiple operands, we “bundle” logical signals
together into vectors and use functional blocks that
operate on the vectors

Example: 4-bit ripple carry
adder: Adds input vectors
A(3:0) and B(3:0) to get
a sum vector S(3:0)

Note: carry out of cell i
becomes carry in of cell
i + 1

Description Subscript
3 2 1 0

Name

Carry In 0 1 1 0 Ci

Augend 1 0 1 1 Ai

Addend 0 0 1 1 Bi

Sum 1 1 1 0 Si

Carry out 0 0 1 1 Ci+1

8

Chapter 5 15

4-bit Ripple-Carry Binary Adder

A four-bit Ripple Carry Adder made from four
1-bit Full Adders:

B3 A3

FA

B2 A2

FA

B1

S3C4

C0

C3 C2 C1

S2 S1 S0

A1

FA

B0 A0

FA

Chapter 5 16

Carry Propagation & Delay

One problem with the addition of binary numbers is
the length of time to propagate the ripple carry from
the least significant bit to the most significant bit.
The gate-level propagation path for a 4-bit ripple carry
adder of the last example:

Note: The "long path" is from A0 or B0 though the
circuit to S3.

A3 B3

S3

B2

S2

B1

S1 S0

B0

A2 A1 A0

C4

C3 C2 C1 C0

9

Chapter 5 17

Carry Lookahead

Given Stage i from a Full Adder, we know that
there will be a carry generated when Ai = Bi =
"1", whether or not there is a carry-in.
Alternately, there will be
a carry propagated if the
“half-sum” is "1" and a
carry-in, Ci occurs.
These two signal conditions
are called generate, denoted
as Gi, and propagate, denoted
as Pi respectively and are
identified in the circuit:

AiBi

Ci

Ci+1

Gi

Pi

Si

Chapter 5 18

Carry Lookahead (continued)

In the ripple carry adder:
• Gi, Pi, and Si are local to each cell of the adder
• Ci is also local each cell

In the carry lookahead adder, in order to reduce the
length of the carry chain, Ci is changed to a more
global function spanning multiple cells
Defining the equations for the Full Adder in term of the
Pi and Gi:

iiiiii BAGBAP =⊕=

iii1iiii CPGCCPS +=⊕= +

10

Chapter 5 19

Carry Lookahead Development

Ci+1 can be removed from the cells and used to
derive a set of carry equations spanning
multiple cells.
Beginning at the cell 0 with carry in C0:
C1 = G0 + P0 C0

C4 = G3 + P3 C3 = G3 + P3G2 + P3P2G1
+ P3P2P1G0 + P3P2P1P0 C0

C2 = G1 + P1 C1 = G1 + P1(G0 + P0 C0)
= G1 + P1G0 + P1P0 C0

C3 = G2 + P2 C2 = G2 + P2(G1 + P1G0 + P1P0 C0)
= G2 + P2G1 + P2P1G0 + P2P1P0 C0

Chapter 5 20

Group Carry Lookahead Logic

Figure 5-6 in the text shows shows the implementation of
these equations for four bits. This could be extended to more
than four bits; in practice, due to limited gate fan-in, such
extension is not feasible.
Instead, the concept is extended another level by considering
group generate (G0-3) and group propagate (P0-3) functions:

Using these two equations:

Thus, it is possible to have four 4-bit adders use one of the
same carry lookahead circuit to speed up 16-bit addition

012330

0012312323330

PPPPP
GPPPPGPPGPGG

=
+++=

−

−

030304 CPGC −− +=

11

Chapter 5 21

Carry Lookahead Example

Specifications:
• 16-bit CLA
• Delays:

NOT = 1
XOR = Isolated AND = 3
AND-OR = 2

Longest Delays:
• Ripple carry adder* = 3 + 15 × 2 + 3 = 36
• CLA = 3 + 3 × 2 + 3 = 12

*See slide 16

CLA CLA CLA CLA
CLA

33

2

22

Chapter 5 22

Unsigned Subtraction

Algorithm:
• Subtract the subtrahend N from the minuend M
• If no end borrow occurs, then M ≥ N, and the result

is a non-negative number and correct.
• If an end borrow occurs, the N > M and the

difference M − N + 2n is subtracted from 2n, and a
minus sign is appended to the result.

Examples: 0 1
1001 0100

− 0111 − 0111
0010 1101

10000
− 1101

(−) 0011

12

Chapter 5 23

Unsigned Subtraction (continued)

The subtraction, 2n − N, is taking the 2’s
complement of N
To do both unsigned addition and unsigned
subtraction requires:
Quite complex!
Goal: Shared simpler
logic for both addition
and subtraction
Introduce complements
as an approach

A B

Binary adder Binary subtractor

Selective
2's complementer

Quadruple 2-to-1
multiplexer

Result

Borrow

Complement

S
0 1Subtract/Add

Chapter 5 24

Complements

Two complements:
• Diminished Radix Complement of N

(r − 1)’s complement for radix r
1’s complement for radix 2
Defined as (rn − 1) − Ν

• Radix Complement
r’s complement for radix r
2’s complement in binary
Defined as rn − N

Subtraction is done by adding the complement of
the subtrahend
If the result is negative, takes its 2’s complement

13

Chapter 5 25

Binary 1's Complement

For r = 2, N = 011100112, n = 8 (8 digits):
(rn – 1) = 256 -1 = 25510 or 111111112

The 1's complement of 011100112 is then:
11111111

– 01110011
10001100

Since the 2n – 1 factor consists of all 1's and
since 1 – 0 = 1 and 1 – 1 = 0, the one's
complement is obtained by complementing
each individual bit (bitwise NOT).

Chapter 5 26

Binary 2's Complement

For r = 2, N = 011100112, n = 8 (8 digits),
we have:
(rn) = 25610 or 1000000002
The 2's complement of 01110011 is then:

100000000
– 01110011

10001101
Note the result is the 1's complement plus
1, a fact that can be used in designing
hardware

14

Chapter 5 27

Alternate 2’s Complement Method

Given: an n-bit binary number, beginning at the
least significant bit and proceeding upward:
• Copy all least significant 0’s
• Copy the first 1
• Complement all bits thereafter.

2’s Complement Example:
10010100

• Copy underlined bits:
100

• and complement bits to the left:
01101100

Chapter 5 28

Subtraction with 2’s Complement

For n-digit, unsigned numbers M and N, find M
− N in base 2:

• Add the 2's complement of the subtrahend N to
the minuend M:

M + (2n − N) = M − N + 2n

• If M > N, the sum produces end carry rn which is
discarded; from above, M − N remains.

• If M < N, the sum does not produce an end carry
and, from above, is equal to 2n − (N − M), the 2's
complement of (N − M).

• To obtain the result − (N – M) , take the 2's
complement of the sum and place a − to its left.

15

Chapter 5 29

Unsigned 2’s Complement Subtraction Example 1

Find 010101002 – 010000112

01010100 01010100
– 01000011 + 10111101

00010001
The carry of 1 indicates that no
correction of the result is required.

1
2’s comp

Chapter 5 30

Unsigned 2’s Complement Subtraction Example 2

Find 010000112 – 010101002

01000011 01000011
– 01010100 + 10101100

11101111
00010001

The carry of 0 indicates that a correction
of the result is required.
Result = – (00010001)

0

2’s comp
2’s comp

16

Chapter 5 31

Subtraction with Diminished Radix Complement

For n-digit, unsigned numbers M and N, find M − N in
base 2:
• Add the 1's complement of the subtrahend N to the minuend

M:
M + (2n − 1 − N) = M − N + 2n − 1

• If M > N, the result is excess by 2n − 1. The end carry 2n when
discarded removes 2n, leaving a result short by 1. To fix this
shortage, whenever and end carry occurs, add 1 in the LSB
position. This is called the end-around carry.

• If M < N, the sum does not produce an end carry and, from
above, is equal to 2n − 1 − (N − M), the 1's complement of
(N − M).

• To obtain the result − (N – M) , take the 1's complement of the
sum and place a − to its left.

Chapter 5 32

Unsigned 1’s Complement Subtraction - Example 1

Find 010101002 – 010000112

01010100 01010100
– 01000011 + 10111100

00010000
+1

00010001
The end-around carry occurs.

1

1’s comp

17

Chapter 5 33

Unsigned 1’s Complement Subtraction Example 2

Find 010000112 – 010101002

01000011 01000011
– 01010100 + 10101011

11101110
00010001

The carry of 0 indicates that a correction
of the result is required.
Result = – (00010001)

1’s comp

1’s comp

0

Chapter 5 34

Signed Integers

Positive numbers and zero can be represented by
unsigned n-digit, radix r numbers. We need a
representation for negative numbers.
To represent a sign (+ or –) we need exactly one more
bit of information (1 binary digit gives 21 = 2 elements
which is exactly what is needed).
Since computers use binary numbers, by convention,
the most significant bit is interpreted as a sign bit:

s an–2 … a2a1a0
where:
s = 0 for Positive numbers
s = 1 for Negative numbers

and ai = 0 or 1 represent the magnitude in some form.

18

Chapter 5 35

Signed Integer Representations

Signed-Magnitude – here the n – 1 digits are
interpreted as a positive magnitude.
Signed-Complement – here the digits are

interpreted as the rest of the complement of the
number. There are two possibilities here:

• Signed 1's Complement
Uses 1's Complement Arithmetic

• Signed 2's Complement
Uses 2's Complement Arithmetic

Chapter 5 36

Signed Integer Representation Example

r =2, n=3

Number Sign -Mag. 1's Comp. 2's Comp.
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
– 0 100 111 —
– 1 101 110 111
– 2 110 101 110
– 3 111 100 101
– 4 — — 100

19

Chapter 5 37

Signed-Magnitude Arithmetic

If the parity of the three signs is 0:
1. Add the magnitudes.
2. Check for overflow (a carry out of the MSB)
3. The sign of the result is the same as the sign of the

first operand.

If the parity of the three signs is 1:
1. Subtract the second magnitude from the first.
2. If a borrow occurs:

• take the two’s complement of result
• and make the result sign the complement of the

sign of the first operand.
3. Overflow will never occur.

Chapter 5 38

Example 1: 0010
+0101

Example 2: 0010
+1101

Example 3: 1010
− 0101

Sign-Magnitude Arithmetic Examples

20

Chapter 5 39

Signed-Complement Arithmetic

Addition:
1. Add the numbers including the sign bits,

discarding a carry out of the sign bits (2's
Complement), or using an end-around carry (1's
Complement).

2. If the sign bits were the same for both
numbers and the sign of the result is different, an
overflow has occurred.

3. The sign of the result is computed in step 1.

Subtraction:
Form the complement of the number you are

subtracting and follow the rules for addition.

Chapter 5 40

Example 1: 1101
+0011

Example 2: 1101
−0011

Signed 2’s Complement Examples

21

Chapter 5 41

Example 1: 1101
+0011

Example 2: 1101
−0011

Signed 1’s Complement Examples

Chapter 5 42

2’s Complement Adder/Subtractor

Subtraction can be done by addition of the 2's Complement.
1. Complement each bit (1's Complement.)
2. Add 1 to the result.

The circuit shown computes A + B and A – B:
For S = 1, subtract,
the 2’s complement
of B is formed by using
XORs to form the 1’s
comp and adding the 1
applied to C0.
For S = 0, add, B is
passed through
unchanged

FA FA FA FA

S

B3

C3

S2 S1 S0S3C4

C2 C1 C0

A3 B2 A2 B1 A1 B0 A0

22

Chapter 5 43

Overflow Detection

Overflow occurs if n + 1 bits are required to contain the
result from an n-bit addition or subtraction
Overflow can occur for:

• Addition of two operands with the same sign
• Subtraction of operands with different signs

Signed number overflow cases with correct result sign
0 0 1 11

+ 0 − 1 − 0 + 1
0 0 1 1

Detection can be performed by examining the result
signs which should match the signs of the top operand

Chapter 5 44

Overflow Detection

Signed number cases with carries Cn and Cn−1 shown for correct
result signs:

0 0 0 0 1 1 1 1
0 0 1 11

+ 0 −1 − 0 +1
0 0 1 1

Signed number cases with carries shown for erroneous result signs
(indicating overflow):

0 1 0 1 1 0 1 0
0 0 1 11

+ 0 − 1 −0 + 1
1 1 0 0

Simplest way to implement overflow V = Cn + Cn − 1
This works correctly only if 1’s complement and the addition of the
carry in of 1 is used to implement the complementation! Otherwise
fails for − 10 ... 0

23

Chapter 5 45

Binary Multiplication

The binary digit multiplication table is
trivial:

This is simply the Boolean AND
function.
Form larger products the same way we
form larger products in base 10.

(a × b) b = 0 b = 1
a = 0 0 0
a = 1 0 1

Chapter 5 46

Review - Decimal Example: (237 × 149)10

Partial products are: 237 × 9, 237 × 4,
and 237 × 1
Note that the partial product
summation for n digit, base 10
numbers requires adding up
to n digits (with carries).
Note also n × m digit
multiply generates up
to an m + n digit result.

2 3 7
× 1 4 9

2 1 3 3
9 4 8 -

+ 2 3 7 - -

3 5 3 1 3

24

Chapter 5 47

Binary Multiplication Algorithm

We execute radix 2 multiplication by:
• Computing partial products, and
• Justifying and summing the partial products. (same as

decimal)
To compute partial products:
• Multiply the row of multiplicand digits by each

multiplier digit, one at a time.
• With binary numbers, partial products are very

simple! They are either:
all zero (if the multiplier digit is zero), or
the same as the multiplicand (if the multiplier digit is one).

Note: No carries are added in partial product
formation!

Chapter 5 48

Example: (101 x 011) Base 2

Partial products are: 101 × 1, 101 × 1,
and 101 × 0
Note that the partial product
summation for n digit, base 2
numbers requires adding up
to n digits (with carries) in
a column.
Note also n × m digit
multiply generates up to an m + n digit
result (same as decimal).

1 0 1

× 0 1 1

1 0 1

1 0 1

0 0 0

0 0 1 1 1 1

25

Chapter 5 49

Multiplier Boolean Equations

We can also make an n × m “block” multiplier
and use that to form partial products.
Example: 2 × 2 – The logic equations for each
partial-product binary digit are shown below:
We need to "add" the columns to get
the product bits P0, P1, P2, and P3.
Note that some
columns may
generate carries.

b1 b0

× a1 a0
(a0 . b1) (a0 . b0)

+ (a1
. b1) (a1

. b0)
P3 P2 P1 P0

Chapter 5 50

Multiplier Arrays Using Adders

An implementation of the 2 × 2
multiplier array is
shown:

C0C3

HA HA

C2 C1

A0

A1
B1 B0

B1 B0

26

Chapter 5 51

Multiplier Using Wide Adders

A more “structured” way to develop an n × m
multiplier is to sum partial products using adder
trees
The partial products are formed using an n × m
array of AND gates
Partial products are summed using m – 1 adders
of width n bits
Example: 4-bit by 3-bit adder
Text figure 5-11 shows a 4 × 3 = 12 element
array of AND gates and two 4-bit adders

Chapter 5 52

Cellular Multiplier Array

Another way to imple-
ment multipliers is to use
an n × m cellular array
structure of uniform
elements as shown:
Each element computes a
single bit product equal
to ai·bj, and implements
a single bit full adder

Carry [j, (k - 1)]

a[j]

b[k]

pp [j , k]

Cell [j , k]

Column Sum from above

Carry [j , k]

Column Sum to below

A B
Co

SFA
Ci

27

Chapter 5 53

Other Arithmetic Functions

Convenient to design the functional
blocks by contraction - removal of
redundancy from circuit to which input
fixing has been applied
Functions
• Incrementing
• Decrementing
• Multiplication by Constant
• Division by Constant
• Zero Fill and Extension

Chapter 5 54

Design by Contraction

Contraction is a technique for simplifying
the logic in a functional block to
implement a different function
• The new function must be realizable from

the original function by applying
rudimentary functions to its inputs

• Contraction is treated here only for
application of 0s and 1s (not for X and X)

• After application of 0s and 1s, equations or
the logic diagram are simplified by using
rules given on pages 224 - 225 of the text.

28

Chapter 5 55

Design by Contraction Example

Contraction of a ripple carry adder to incrementer for n = 3
• Set B = 001

• The middle cell can be repeated to make an incrementer with n > 3.

A2 A1 A0

S2 S1 S0

(b)

C3 � X
C0 � 0

S2

A2
X

X

0
A1 A0

1

C1

5
4

3

1

2

00

S1 S0

(a)

0

Chapter 5 56

Incrementing & Decrementing

Incrementing
• Adding a fixed value to an arithmetic variable
• Fixed value is often 1, called counting (up)
• Examples: A + 1, B + 4
• Functional block is called incrementer

Decrementing
• Subtracting a fixed value from an arithmetic variable
• Fixed value is often 1, called counting (down)
• Examples: A − 1, B − 4
• Functional block is called decrementer

29

Chapter 5 57

Multiplication/Division by 2n

(a) Multiplication
by 100

• Shift left by 2
(b) Division

by 100
• Shift right by 2
• Remainder

preserved

B0B1B2B3

C0C1

0 0

C2C3C4C5
(a)

B0B1B2B3

C0 C�1 C�2C1C2

00

C3

(b)

Chapter 5 58

Multiplication by a Constant

Multiplication of B(3:0) by 101
See text Figure 513 (a) for contraction

B 1B 2B 300 B 0B 1B 2B 3

Carry

output

4-bit Adder

Sum

B 0

C 0C 1C2C3C4C5C6

30

Chapter 5 59

Zero Fill

Zero fill - filling an m-bit operand with 0s
to become an n-bit operand with n > m
Filling usually is applied to the MSB end
of the operand, but can also be done on
the LSB end
Example: 11110101 filled to 16 bits
• MSB end: 0000000011110101
• LSB end: 1111010100000000

Chapter 5 60

Extension

Extension - increase in the number of bits at the
MSB end of an operand by using a complement
representation

• Copies the MSB of the operand into the new
positions

• Positive operand example - 01110101 extended to 16
bits:

0000000001110101
• Negative operand example - 11110101 extended to 16

bits:
1111111111110101

31

Chapter 5 61

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard Pearson
Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.
Return to Title Page

