L ogic and Computer Design Fundamentals

Chapter 5 — Arithmetic
Functions and Circuits

CharlesKime & Thomas K aminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Overview

| ter ative combinational circuits
Binary adders
» Half and full adders
* Ripplecarry and carry lookahead adders
Binary subtraction
Binary adder-subtractors
 Signed binary numbers
 Signed binary addition and subtraction
* Overflow
Binary multiplication
Other arithmetic functions
» Design by contraction

Chapter 5 2

|terative Combinational Circuits

= Arithmetic functions
* Operate on binary vectors
» Usethe same subfunction in each bit position

= Can design functional block for subfunction
and repeat to obtain functional block for
overall function

= Cell - subfunction block
= |[terative array - a array of interconnected cells

= Aniterativearray can bein a single dimension
(1D) or multiple dimensions

Chapter 5 3

Block Diagram of a 1D Iterative Array

AI-lB[-l T 71 TJ Bf
<] <Xn—1 <X—2 % foreeeeee X
Celln-1| Y. e o Y, Cell 1 Y, Cell0 0
-------- > ———— —=>] i

Cn-l Cl C0
= Example: n =32

e Number of inputs="?
e Truthtablerows= ?
e Equationswith upto? input variables
» Equationswith huge number of terms
* Design impractical!
= |terative array takes advantage of theregularity to
make design feasible

Chapter 5 4

Functional Blocks: Addition

= Binary addition used frequently

= Addition Development:
« Half-Adder (HA), a 2-input bit-wise addition
functional block,
* Full-Adder (FA), a 3-input bit-wise addition
functional block,

* Ripple Carry Adder, an iterativearray to
perform binary addition, and

» Carry-Look-Ahead Adder (CLA), a
hierarchical structureto improve
per for mance.

Chapter5 5

Functional Block: Half-Adder

A 2-input, 1-bit width binary adder that performsthe
following computations:
X 0 0 1 1
+Y +0 +1 +0 +1
CS 00 01 01 10
A half adder addstwo bitsto produce a two-bit sum
= Thesum isexpressed asa Xy|lC S
sum bit , Sand acarry bit, C
= Thehalf adder can be specified
asatruth tablefor Sand C =

= = O O
R O+ O
= O O O
O = O

Chapter 5 6

L ogic Simplification: Half-Adder

= TheK-Mapfor S, Cis: S Y C Y

= Thisisapretty trivial map! 1
By inspection: of ~1 of 1
X1 1, , X .| 1,

S=X-Y+X-Y=XO®Y
S=(X+Y) (X+Y)
= and
C=X-Y
C=((x))
= Theseequationslead to several implementations.

Chapter5 7

Five Implementations. Half-Adder

= Wecan derivefollowing sets of equationsfor a half-
adder:

(@) S=X-Y+X-Y (d)S=(X+Y)-C
c=X-Y _ _ C=(X+Y)

(b) S=(X+Y)-(X+Y) (6)S=XO®Y
C=X-Y C=X-Y

(c) S=(C+X-Y)
C=X-Y
= (@), (b), and (e) are SOP, POS, and XOR
implementationsfor S.

= In(c), the C function isused asa term in the AND-
NOR implementation of S, and in (d), the C function is

used in aPOSterm for S.

Chapter 5 8

| mplementations. Half-Adder

= The most common half

adder implementation is: éH?D;S (e)
S=X@Y *:)7

C=X-Y

= A NAND only implementation is: [c

e Y L[:)Ji}s

Chapter 5 9

Functional Block: Full-Adder

= A full adder issimilar to a half adder, but includesa
carry-in bit from lower stages. Likethe half-adder, it
computesa sum bit, Sand acarry bit, C.

« For acarry-in (Z) of Z 0 0 0 0
0, it isthesameas X 0 0 1 1
the half-adder: +Y +0 +1 +0 +1

cCsS 00 01 01 10

e For acarry-in
(2) of 1 Z 1 1 1 1
X 0 0 1 1

+Y +0 +1 +0 +1
cs 01 10 10 11

Chapter 5 10

L ogic Optimization: Full-Adder

= Full-Adder Truth Table:

x Yy z|lc s
0 00[O0 O
00 1[0 1
01 0[0 1
0111 o0
1 0 0[O0 1
10 1|1 o0
= Full-Adder K-Map: 11 0|1 0
11111 1
s Y c Y
1 1 (1]
0] 1] 3| 2 o] 1 2
X|1 1 X[(a2} 1)
4 5| "7 6 4
z z

Chapter 5 11

Equations. Full-Adder

From theﬁ-Map,iwegiet: -
S=XYZ+XY Z+XYZ+XYZ
C=XY+XZ+YZ
= The Sfunction isthethree-bit XOR function (Odd
Function):
S=X®@YdZ
= TheCarrybitCislif both X andY arel (thesumis
2), or if thesumislandacarry-in (Z) occurs. ThusC
can bere-written as;
C=XY+(X@®Y)Z
= Theterm XY iscarrygenerate.

= Theterm X®Y iscarry propagate.

Chapter 5 12

| mplementation: Full Adder

= Full Adder Schematic AiB;
Gi
= HereX,Y,and Z,and C

(from the previous pages)
areA, B, C,and C,,
respectively. Also,
G = generateand C
P = propagate. !
= Note: Thisisreally a combination
of a 3-bit odd function (for S)) and
Carry logic (for C,): i+1 S

(G = Generate) OR (P =Propagate AND C; = Carry In)
Co=G+P-Ci

Chapter 5 13

Binary Adders

= To add multiple operands, we “bundle” logical signals
together into vectorsand use functional blocksthat
oper ate on the vectors

Description | Subscript | Name
= Example: 4-bit ripple carry 3210
adder: Addsinput vectors CarryIn 0110 C,
A(3:0) and B(3:0) to get Augend 1011 | A
asum vector (3:0) Addend 0011 | B
= Note: carry out of cell i Sum 1110 | S
becomes carry in of cell Carry out 0011 |C,
i+1

Chapter 5 14

4-bit Ripple-Carry Binary Adder

= A four-bit Ripple Carry Adder made from four
1-bit Full Adders:

-

Gy

Carry Propagation & Delay

Sy

Sy

So

Chapter 5 15

= Oneproblem with the addition of binary numbersis
thelength of timeto propagate theripplecarry from
theleast significant bit to the most significant bit.

= Thegate-level propagation path for a 4-bit ripple carry

adder of the last example:

C,

As

S5

Bs

A,

S,

S,

So

= Note: The"long path" isfrom A, or B, though the
circuit to S,.

Chapter 5 16

Carry L ookahead

= Given Stagei from a Full Adder, we know that
therewill beacarry generated when A, = B, =
"1", whether or not thereisacarry-in. 5 g
1=

= Alternately, therewill be G
acarry propagated if the
“half-sum” is" 1" and a
carry-in, C, occurs.

= Thesetwo signal conditions ~ P

are called generate, denoted G
as G,, and propagate, denoted
as P, respectively and are
identified in the circuit: Ciit S
Chapter 5 17

Carry L ookahead (continued)

= Intheripplecarry adder:
* Gi, Pi,and Si arelocal to each cell of the adder
» Ciisalsolocal each cell

= Inthecarrylookahead adder, in order toreducethe
length of the carry chain, Ci ischanged to amore
global function spanning multiple cells

= Defining the equationsfor the Full Adder in term of the
P, and G;:
Fi=A; ®B; Gj =A;B;

S =R ®C Ci+1=G;+R C;

Chapter 5 18

Carry L ookahead Development

C,,; can beremoved from the cellsand used to
derive a set of carry equations spanning
multiple cdlls.

= Beginning at the cell O with carry in Cy:

C,=Gy+ Py Cy
C,=G+P;Ci= G+ Py(Gy+ Py Cp)
=Gy + PGy + PPy Co
C3=G,+P,C,y= G, + Py(Gy + PGy + PP, Cp)
= Gy + PGy + PP Gg + PP, P, Cg
C,=G3+P;C3=G3+ P3G, + P3P,G,
+ P3P,P,G, + P3P,P, P, Cg

Chapter 5 19

Group Carry Lookahead L ogic

Figure 5-6 in the text shows shows the implementation of
these equationsfor four bits. This could be extended to more
than four bits; in practice, dueto limited gate fan-in, such
extension isnot feasible.

Instead, the concept is extended another level by considering
group generate (G,_5) and group propagate (P, 5) functions:
Go-3=G3tP3G+ P3P, G +P3 P P Ry Gg
.P0_3 = P3 P2 P]_ Po
Using these two equations:
C4=Go-3+P-3Co
Thus, it ispossible to have four 4-bit adders use one of the
same carry lookahead circuit to speed up 16-bit addition

Chapter 5 20

Carry Lookahead Example

= Specifications: ,
* 16-bit CLA
* Delays:
=NOT =1
= XOR = Isolated AND =3
= AND-OR =2
= Longest Delays:
* Ripplecarry adder* =3+ 15x2+ 3 =36
*CLA=3+3x2+3=12

* Seedide 16 Chapter 5 21

Unsigned Subtraction

= Algorithm:
e Subtract the subtrahend N from the minuend M

* |f noend borrow occurs, then M = N, and theresult
iIsanon-negative number and correct.

e |f an end borrow occurs, theN > M and the
differenceM — N + 2n issubtracted from 2n, and a
minus sign is appended to theresult.

= Examples: 1
amplies: 4001 0100
—0111 -0111
0010 1101
10000
—1101
(-) 0011

Chapter 5 22

Unsigned Subtraction (continued)

= Thesubtraction, 2" — N, istakingthe2's
complement of N

* Todo both unsigned add/jtion and unsigned
subtraction requires:

= Quite complex! a7
. . Borrow .
n Goaj Shar ed S mpl er Binary adder Binary subtractor
logic for both addition
and subtraction selectve
Complement| ~ 2's complementer
= | ntroduce complements J
P = =
as an approach suntracticd [0 I
5 Ve
W
Result Chapter 5 23

Complements

= Two complements:

* Diminished Radix Complement of N
= (r — 1)’scomplement for radix r
= 1'scomplement for radix 2
= Defined as(r"-1)-N
* Radix Complement
= r’scomplement for radix r
= 2'scomplement in binary
* Defined asr"—N
= Subtraction isdone by adding the complement of
the subtrahend

= |f theresult isnegative, takesits 2's complement

Chapter 5 24

Binary 1's Complement

= For r =2, N =01110011,, n = 8 (8digits):
(rm—1) =256 -1=255,, or 11111111,
= The1'scomplement of 01110011, isthen:
11111111
— 01110011
10001100
= Sincethe 2"—1 factor consistsof all 1'sand
sincel-0=1and 1-1=0, theone's

complement is obtained by complementing
each individual bit (bitwise NOT).

Chapter 5 25

Binary 2's Complement

= For r =2,N =01110011,, n = 8 (8 digits),
we have:
(r") = 256,, or 100000000,
= The 2'scomplement of 01110011 isthen:
100000000

— 01110011
10001101

= Notetheresult isthe 1's complement plus
1, afact that can be used in designing
hardware

Chapter 5 26

Alternate 2's Complement Method

= Given: an n-bit binary number, beginning at the
least significant bit and proceeding upward:
* Copy all least significant 0's
* Copy thefirst 1
* Complement all bitsther eafter.
= 2'sComplement Example:
10010100
* Copy underlined bits:
100
* and complement bitsto the left:
01101100

Chapter 5 27

Subtraction with 2's Complement

= For n-digit, unsigned numbersM and N, find M
—Nin base2:

* Add the 2's complement of the subtrahend N to

the minuend M:
M+(@2"-N)=M -N+2"

* If M >N, thesum producesend carry r" which is
discarded; from above, M — N remains.

* If M <N, thesum doesnot producean end carry
and, from above, isequal to2"— (N —-M), the2's
complement of (N—M).

* Toobtain theresult — (N—-M) , takethe2's
complement of the sum and place a—toits|eft.

Chapter 5 28

Unsigned 2's Complement Subtraction Example 1

» Find 01010100, — 01000011,

01010100 101010100
— 01000011 2'scomp + 10111101
00010001

= Thecarry of 1indicatesthat no
correction of theresult isrequired.

Chapter 5 29

Unsigned 2's Complement Subtraction Example 2

= Find 01000011, — 01010100,

01000011 O01000011

~ 01010100 ¢ omp + 10101100
T 11101111 2scomp
00010001

= Thecarry of Oindicatesthat a correction
of theresult isrequired.

= Result = — (00010001)

Chapter 5 30

Subtraction with Diminished Radix Complement

= For n-digit, unsigned numbersM and N, find M — N in
base 2:

e Add the 1's complement of the subtrahend N to the minuend
M:

M+(@2"-1-N)=M-N+2"-1

e If M >N, theresult isexcesshy 2"— 1. Theend carry 2" when
discarded removes 2", leaving a result short by 1. To fix this
shortage, whenever and end carry occurs, add 1in theL SB
position. Thisis called the end-around carry.

e If M <N, thesum does not produce an end carry and, from
above, isequal to2"—-1— (N —M), the1'scomplement of
(N=M).

* Toobtaintheresult — (N —M) , takethe 1's complement of the
sum and place a—to itsleft.

Chapter 5 31

Unsigned 1's Complement Subtraction - Example 1

* Find 01010100, — 01000011,

01010100 101010100
— 01000011 1'scomp + 10111100
00010000
+]«
00010001

= The end-around carry occurs.

Chapter 5 32

Unsigned 1's Complement Subtraction Example 2

= Find 01000011, — 01010100,

01000011 0 01000011
— 01010100 1'scomp + 10101011
- — 0
11101110 1'scomp
—_—)
00010001

= Thecarry of Oindicatesthat a correction
of theresult isrequired.

= Result = —(00010001)

Chapter 5 33

Signed Integers

= Positive numbersand zero can berepresented by
unsigned n-digit, radix r numbers. Weneed a
representation for negative numbers.

= Torepresent asign (+ or —) we need exactly one more
bit of information (1 binary digit gives 2! = 2 elements
which isexactly what is needed).

= Since computers use binary numbers, by convention,
the most significant bit isinterpreted asa sign bit:

Sa, ... a4ay
where:
S=0for Positive numbers

S=1for Negative numbers
and g = 0 or 1 represent the magnitude in some form.

Chapter 5 34

Signed Integer Representations

=Signed-Magnitude - herethen -1 digitsare
inter preted as a positive magnitude.
=Signed-Complement — herethe digitsare
inter preted astherest of the complement of the
number. Therearetwo possibilities here:
« Signed 1's Complement
= Uses 1's Complement Arithmetic

+ Signed 2's Complement
= Uses2's Complement Arithmetic

Chapter5 35

Signed Integer Representation Example

"r =2,n=3
Number |Sign-Mag. | I'sComp. | 2'sComp.
+3 011 011 011
+2 010 010 010
+1 001 001 001
+0 000 000 000
-0 100 111 —
-1 101 110 111
-2 110 101 110
-3 111 100 101
-4 — — 100

Chapter 5 36

Signed-M agnitude Arithmetic

= If the parity of thethreesignsisO:
1. Add the magnitudes.
2. Check for overflow (a carry out of the M SB)
3. Thesign of theresult isthe same asthe sign of the
first operand.
=|1f the parity of thethreesignsis 1:
1. Subtract the second magnitude from thefirst.
2. 1f aborrow occurs:
* takethe two’'s complement of result

» and maketheresult sign the complement of the
sign of thefirst operand.
3. Overflow will never occur.

Chapter 5 37

Sign-Magnitude Arithmetic Examples

= Examplel: 0010
+0101

= Example2: 0010
+1101

= Example 3: 1010
— 0101

Chapter 5 38

Signed-Complement Arithmetic

* Addition:

1. Add the numbersincluding the sign bits,
discarding a carry out of the sign bits(2's
Complement), or using an end-around carry (1's
Complement).

2. If the sign bitswere the samefor both
numbersand the sign of theresult isdifferent, an
overflow hasoccurred.

3. Thesign of theresult iscomputed in step 1.
= Subtraction:

Form the complement of the number you are
subtracting and follow therulesfor addition.

Chapter 5 39

Signed 2's Complement Examples

= Example 1. 1101
+0011

= Example2: 1101
—0011

Chapter 5 40

Signed 1's Complement Examples

= Example 1: 1101
+0011

= Example2: 1101
—0011

Chapter 5 41

2's Complement Adder/Subtractor

Subtraction can be done by addition of the 2's Complement.
1. Complement each bit (1's Complement.)
2. Add 1totheresult.
The circuit shown computesA + Band A —B:
For S=1, subtract,
the 2's complement
of B isformed by using
XORstoformthel's
comp and adding the 1
applied to C,,.
For S=0,add,Bis FAICSIFAICZIFAICIIFA N
passed through
unchanged G S

Bs Ag A,

—v ¢
9
—®

A By Ao

Chapter 5 42

Overflow Detection

= Overflow occursif n + 1 bitsarerequired to contain the
result from an n-bit addition or subtraction
= Overflow can occur for:
» Addition of two operands with the same sign
* Subtraction of operandswith different signs

= Signed number overflow cases with correct result sign

0 0 1 1
+0 -1 -0 +1
0 0 1 1

= Detection can be performed by examining the result
signs which should match the signs of the top operand

Chapter 5 43

Overflow Detection

Signed number caseswith carriesC, and C,_; shown for correct
result signs:
0 00 01 111

0 0 1 1
+0 -1 -0 +1
0 0 1 1

= Signed number caseswith carries shown for erroneousresult signs
(indicating over flow):
0 10 11 01 0

0 0 1 1
+0 -1 -0 +1
1 10 0

= Simplest way to implement overflow V=C,®C,_;

= Thisworkscorrectly only if 1's complement and the addition of the
carry in of 1isused toimplement the complementation! Otherwise
failsfor—10...0

Chapter 5 44

Binary Multiplication

=Thebinary digit multiplication tableis
trivial:

(axb) b=0 b

a=0

o O 1
= O

a=1
= Thisissimply the Boolean AND
function.

= Form larger productsthe same way we
form larger productsin base 10.

Chapter 5 45

Review - Decimal Example: (237 x 149),,

= Partial productsare: 237 x 9, 237 x 4,
and 237 x 1

2 3
= Notethat the partial product x 1 4
summation for n digit, base10 , ; 3
numbersrequiresaddingup 4 4 g
to n digits (with c.ar.rles). v 203 7
= Note also n x m digit 3 5 3 1 3

multiply generates up
toan m+ n digit result.

Chapter 5 46

Binary Multiplication Algorithm

= Weexecuteradix 2 multiplication by:
« Computing partial products, and
 Justifying and summing the partial products. (same as
decimal)
= Tocompute partial products:

* Multiply therow of multiplicand digits by each
multiplier digit, oneat atime.

* With binary numbers, partial productsarevery
simple! They areeither:
= all zero (if the multiplier digit iszero), or
= the same asthe multiplicand (if the multiplier digit isone).
= Note: Nocarriesareadded in partial product
formation!

Chapter 5 47

Example: (101 x 011) Base 2

= Partial productsare: 101 x 1, 101 x 1,
and 101 x O Lo 1

= Notethat the partial product 0 1 1
summation for n digit, base 2
numbersrequires adding up 1 o1
to n digits (with carries) in 1 01
a column. 0 0 O

= Note also n x m digit 0 0 1 1 11
multiply generates up to an m + n digit
result (same asdecimal).

Chapter 5 48

Multiplier Boolean Equations

= Wecan also make an n x m“block” multiplier
and usethat to form partial products.

= Example: 2 x 2—Thelogic equationsfor each
partial-product binary digit are shown below:

= Weneed to" add" the columnsto get
the product bits PO, P1, P2, and P3. b, b,

= Notethat some X a a,
columns may (8-by) (8- bo)
generatecarries M (@ b)) (& -by

: P3 P2 Pl PO
Chapter 5 49

Multiplier ArraysUsing Adders

= An implementation of the 2 x 2

multiplier arrayis ™ ek
shown:

Ay
B, By
HA HA
C; C, C, Co

Chapter 5 50

Multiplier Using Wide Adders

A more“structured” way todevelopann xm
multiplier isto sum partial productsusing adder
trees

The partial productsareformed usingann xm
array of AND gates

Partial productsare summed usingm —1 adders
of width n bits

Example: 4-bit by 3-bit adder
Text figure5-11 showsa 4 x 3 =12 element
array of AND gates and two 4-bit adders

Chapter 5 51

Célular Multiplier Array

= Another way to Imple- Column Sum from above

= Each element computesa

ment multipliersistouse /b[kl
Cell [j,k]

an n x mcellular array /(

- 4[]

structure of uniform 7
elements as shown:

pp[j . K]

single bit product equal < & _
. Carry[j . k] Carry[j, (k-1)]

to a-b;, and implements l

a single bit full adder

Column Sum to below

Chapter 5 52

Other Arithmetic Functions

= Convenient to design the functional
blocks by contraction - removal of
redundancy from circuit to which input
fixing has been applied
= Functions
* Incrementing
« Decrementing
« Multiplication by Constant
* Division by Constant
« Zero Fill and Extension

Chapter 5 53

Design by Contraction

= Contraction isatechniquefor simplifying
thelogicin afunctional block to
implement a different function
* The new function must berealizable from

theoriginal function by applying
rudimentary functionsto itsinputs

- Contraction istreated hereonly for
application of Osand 1s (not for X and X)
 After application of Osand 1s, equations or
thelogic diagram are simplified by using
rules given on pages 224 - 225 of thetext.

Chapter 5 54

Design by Contraction Example

= Contraction of aripple carry adder toincrementer for n =3

* Set B=001
x o 0 My T (CTop
dLl J
Cs =4 L \ Cy d‘ Co+0
s, s So

(@)

Sz Sy So

®)
e Themiddle cell can be repeated to make an incrementer withn > 3.

Chapter 5 55

I ncrementing & Decrementing

= |ncrementing
* Adding a fixed value to an arithmetic variable
* Fixed valueisoften 1, called counting (up)
* Examples: A+1,B+4
* Functional block is called incrementer
= Decrementing
» Subtracting a fixed value from an arithmetic variable
* Fixed valueisoften 1, called counting (down)
* Examples. A-1,B-4
* Functional block is called decrementer

Chapter 5 56

Multiplication/Division by 2"

= (a) Multiplication

by 100

- Shiftleftby2 & &
= (b) Division

by 100

 Shift right by 2
* Remainder
preserved

Bs
0
]

G

G

B B

‘\?“\‘\‘

G (o} G Ca Co
(b)

@

Multiplication by a Constant

Chapter 5 57

= Multiplication of B(3:0) by 101
= Seetext Figure 513 (a) for contraction

B, B, B, Bo 0 0 Bs B,
A 2 20 20 2 2 2
4-bit Adder

Carry
output Sum
iS i5 g4 g3 ClZZ

B, B,

Chapter 5 58

Zero Fill

= Zero fill - filling an m-bit operand with Os
to become an n-bit operand with n > m

= Filling usually is applied tothe M SB end
of the operand, but can also be done on
the LSB end

= Example: 11110101 filled to 16 bits
« MSB end: 0000000011110101
« LSB end: 1111010100000000

Chapter 5 59

Extension

= Extension - increase in the number of bitsat the
M SB end of an operand by using a complement
representation
» Copiesthe M SB of the operand into the new
positions
¢ Positive operand example - 01110101 extended to 16
bits:
0000000001110101

* Negative operand example - 11110101 extended to 16
bits:
1111111111110101

Chapter 5 60

Termsof Use

= © 2004 by Pearson Education,Inc. All rights reserved.

= Thefollowing terms of use apply in addition to the standard Pearson
Education Legal Notice.

= Permission isgivento incorporate these materialsinto classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamental's as the course text.

= Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp sitein original or
modified form. All other website or ftp postings, including those
offering the materials for afee, are prohibited.

= You may hot remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each dlide.

= Return to Title Page

Chapter 5 61

