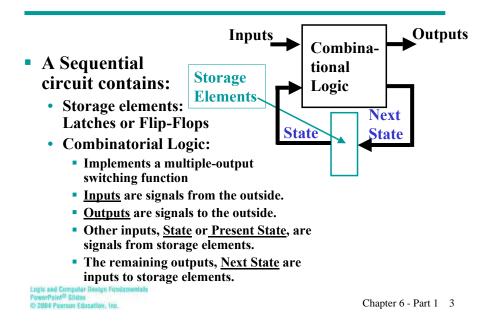
Logic and Computer Design Fundamentals

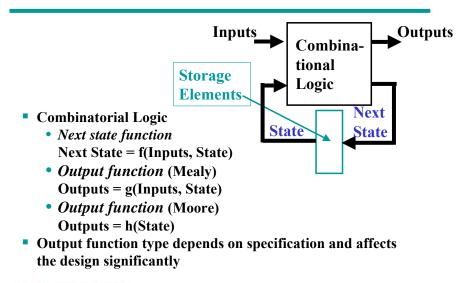
Chapter 6 – Sequential Circuits

Part 1 – Storage Elements and Sequential Circuit Analysis

Charles Kime & Thomas Kaminski


© 2004 Pearson Education, Inc. <u>Terms of Use</u> (Hyperlinks are active in View Show mode)

Overview


- Part 1 Storage Elements and Analysis
 - Introduction to sequential circuits
 - Types of sequential circuits
 - Storage elements
 - Latches
 - Flip-flops
 - Sequential circuit analysis
 - State tables
 - State diagrams
 - Circuit and System Timing
- Part 2 Sequential Circuit Design
 - Specification
 - Assignment of State Codes

• Implementation Logic and Computer Design Fundamentals SowerPoint[®] Stitles © 2004 Peerson Education, Inc.

Introduction to Sequential Circuits

Introduction to Sequential Circuits

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Types of Sequential Circuits

- Depends on the <u>times</u> at which:
 - storage elements observe their inputs, and
 - storage elements change their state

Synchronous

- Behavior defined from knowledge of its signals at <u>discrete</u> instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (<u>clock pulses</u> from a <u>clock</u>)

Asynchronous

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!
- Nevertheless, the synchronous abstraction makes complex designs tractable!

Logic and Computer Design Fundamentals PowerPoint[®] Stites © 2004 Poersun Education, Inc.

Chapter 6 - Part 1 5

Discrete Event Simulation

 In order to understand the time behavior of a sequential circuit we use <u>discrete event</u> <u>simulation</u>.

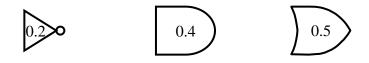
Rules:

- Gates modeled by an <u>ideal</u> (instantaneous) function and a <u>fixed gate delay</u>
- Any <u>change in input values</u> is evaluated to see if it causes a <u>change in output value</u>
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

Simulated NAND Gate

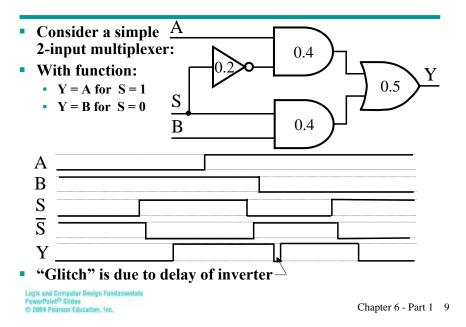
• Example: A 2-Input NAND gate with a 0.5 ns. delay:

- Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t= 0.8 ns, back to 1.

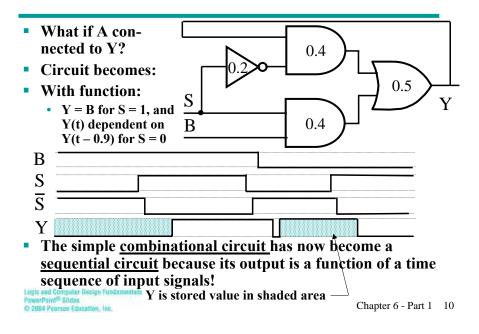

t (ns)	А	В	F(I)	F	Comment
- 8	1	1	0	0	A=B=1 for a long time
0	1⇒0	1	1⇐0	0	F(I) changes to 1
0.5	0	1	1	1 ⇐ 0	F changes to 1 after a 0.5 ns delay
0.8	1⇐0	1	1⇒0	1	F(Instantaneous) changes to 0
0.13	1	1	0	$1 \Rightarrow 0$	F changes to 0 after a 0.5 ns delay

PownrPoint[®] Stitles © 2004 Pearson Education, Inc.

Chapter 6 - Part 1 7


Gate Delay Models

 Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:



Logic and Computer Design Fundamentals PowerPoint® Stides © 2004 Poursun Education, Inc.

Circuit Delay Model

Storing State

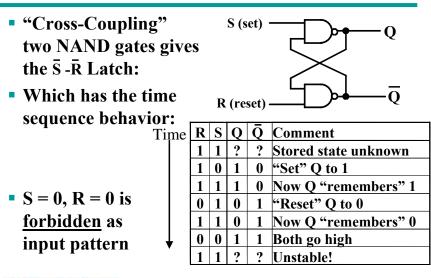
Storing State (Continued)

• Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

Time	В	S	Y	Comment
	1	0	0	Y "remembers" 0
	1	1	1	Y = B when $S = 1$
	1	0	1	Now Y "remembers" $B = 1$ for $S = 0$
	0	0	1	No change in Y when B changes
	0	1	0	Y = B when $S = 1$
	0	0	0	Y "remembers" $B = 0$ for $S = 0$
♦	1	0	0	No change in Y when B changes

• Y represent the state of the circuit, not just an output.

Logic and Computer Design Fundamentals PowerPoint[®] Stidss © 2004 Poerson Education, Inc.


Chapter 6 - Part 1 11

Storing State (Continued)

 Suppose we place an inverter in the "feedback path." 		0.2	-	
■ S B ■ The following behav	vior r	esult	s:	0.4 Y
• The circuit is said	В	S	Y	Comment
to be unstable.	0	1	0	Y = B when $S = 1$
For $S = 0$, the	1	1	1	
,	1	0	1	Now Y "remembers" A
circuit has become	1	0	0	Y, 1.1 ns later
what is called an	1	0	1	Y, 1.1 ns later
<i>oscillator</i> . Can be	1	0	0	Y, 1.1 ns later
used as crude <u>clock</u> .		•		•

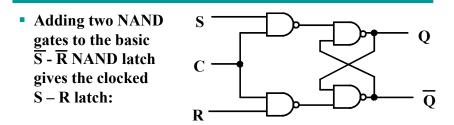
Logic and Computer Dealgn Fundamental PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Basic (NAND) $\overline{S} - \overline{R}$ Latch

Logic and Computer Dealgn Fundamentals PowerPoint® Stides © 2004 Pearson Education, Inc.

Chapter 6 - Part 1 13

Basic (NOR) S – R Latch


Cross-coupling two NOR gates gives the S – R Latch:
Which has the time S (set)

saguanca				,	-
sequence behavior:	R	S	Q	Q	Comment
benavior:	0	0	?	?	Stored state unknown
	0	1	1	0	"Set" Q to 1
	0	0	1	0	Now Q "remembers" 1
	1	0	0	1	"Reset" Q to 0
	0	0	0	1	Now Q "remembers" 0
Ļ	1	1	0	0	Both go low
·	0	0	?	?	Unstable!

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Peerson Education, Inc.

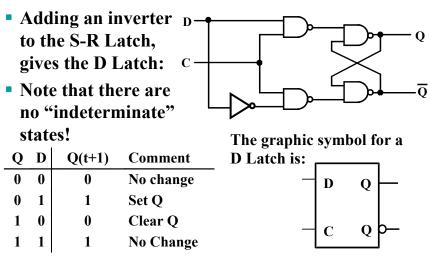
Chapter 6 - Part 1 14

Clocked S - R Latch

- Has a time sequence behavior similar to the basic S-R latch <u>except that</u> the S and R inputs are only observed when the line C is high.
- C means "control" or "clock".

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.

Chapter 6 - Part 1 15


Clocked S - R Latch (continued)

• The Clocked S-R Latch can be described by a table: Q(t) S RQ(t+1) Comment S Q 0 0 0 0 No change C 0 Clear Q 0 1 0 0 Set O 0 1 1 ō R· 0 1 ??? Indeterminate 1 0 1 0 1 No change The table describes 1 0 1 0 Clear Q what happens after the 1 1 0 Set O 1 clock [at time (t+1)] 1 1 1 ??? Indeterminate based on:

- current inputs (S,R) and
- current state Q(t).

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Pearson Education, Inc.

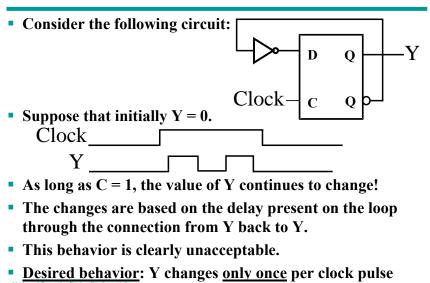
D Latch

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Pearsun Education, Inc.

Chapter 6 - Part 1 17

Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops
- Flip-flop timing


The Latch Timing Problem

- In a sequential circuit, paths may exist through combinational logic:
 - From one storage element to another
 - From a storage element back to the same storage element
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

Logic and Computer Dealgn Fundamentals PowerPoint⁴⁰ Stidss © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 19

The Latch Timing Problem (continued)

Logic and Computer Dealon Fundam PowerPoint[®] States © 2004 Pearson Education, Inc.

Chapter 6 - Part 1 20

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to <u>break</u> the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
 - a master-slave flip-flop
 - an edge-triggered flip-flop

Logic and Computer Design Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 21

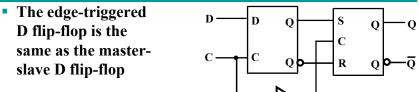
S-R Master-Slave Flip-Flop

- Consists of two clocked S-R latches in series with the clock on the second latch inverted
- The input is observed by the first latch with C = 1
- $S \xrightarrow{S} Q \xrightarrow{S} Q \xrightarrow{Q} Q$ $C \xrightarrow{R} Q \xrightarrow{C} R Q \xrightarrow{Q} Q$ $R \xrightarrow{Q} Q \xrightarrow{C} R Q \xrightarrow{Q} Q$ $R \xrightarrow{Q} Q \xrightarrow{Q} Q$ $R \xrightarrow{Q} Q \xrightarrow{Q} Q$
- The output is changed by the second latch with C = 0
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

Logiç and Computer Dealgn Fundamentalı: PowerPoint[®] Stides © 2004 Peerson Education, Inc.

Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while C = 1
 - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0
 - The master latch sets to 1
 - A 1 is transferred to the slave
 - Suppose Q = 0 and S goes to 1 and back to 0 and R goes to 1 and back to 0
 - The master latch sets and then resets
 - A 0 is transferred to the slave
 - This behavior is called 1s catching

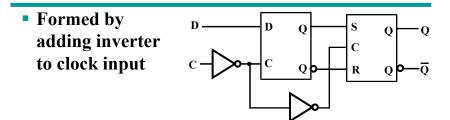

Logic and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.

Chapter 6 - Part 1 23

Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An *edge-triggered* flip-flop ignores the pulse while it is at a constant level and triggers only during a <u>transition</u> of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A <u>master-slave</u> D flip-flop which also exhibits <u>edge-triggered behavior</u> can be used.

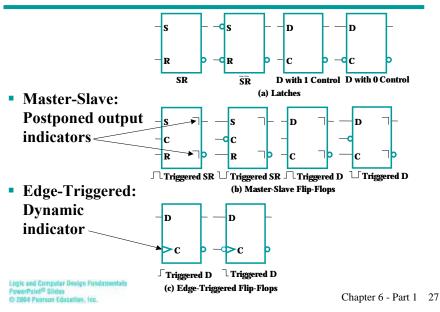
Edge-Triggered D Flip-Flop


- It can be formed by:
 - Replacing the first clocked S-R latch with a clocked D latch or
 - Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1s-catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

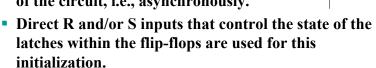
 Logis and Computer Design Fundamentals

 ProverPoint[®] States

 Chapter 6 Part 1 25


Positive-Edge Triggered D Flip-Flop

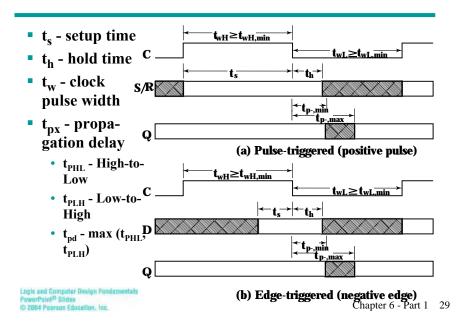
- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the <u>standard flip-flop</u> for most sequential circuits


Logis and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Pearson Education, Inc.

Standard Symbols for Storage Elements

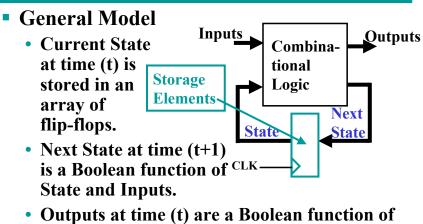
Direct Inputs

- At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.



- For the example flip-flop shown
 - 0 applied to $\overline{\mathbf{R}}$ resets the flip-flop to the 0 state
 - 0 applied to \overline{S} sets the flip-flop to the 1 state

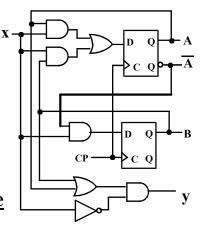
Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.


Flip-Flop Timing Parameters

Flip-Flop Timing Parameters (continued)

- t_s setup time
 - Master-slave Equal to the width of the triggering pulse
 - Edge-triggered Equal to a time interval that is generally much less than the width of the the triggering pulse
- t_h hold time Often equal to zero
- t_{px} propagation delay
 - Same parameters as for gates <u>except</u>
 - Measured from clock edge that triggers the output change to the output change

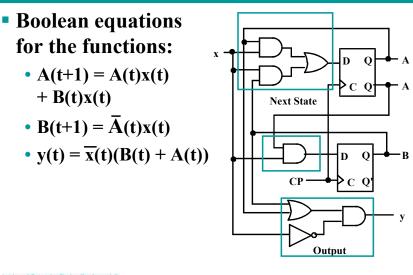
Sequential Circuit Analysis


 Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stitles © 2004 Poursun Education, Inc.

Chapter 6 - Part 1 31

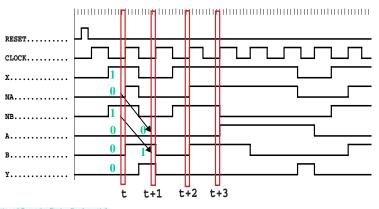
Example 1 (from Fig. 6-17)


- Input: x(t)
- <u>Output:</u> y(t)
- <u>State:</u> (A(t), B(t))
- What is the <u>Output</u> <u>Function</u>?
- What is the <u>Next State</u> <u>Function</u>?

Logic and Computer Dealgn Fundamentals PowerPoint[®] Slides © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 32

Example 1 (from Fig. 6-17) (continued)



Logic and Computer Design Fundamentale PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 33

Example 1(from Fig. 6-17) (continued)

Where in time are inputs, outputs and states defined?

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 34

State Table Characteristics

State table – a multiple variable table with the following four sections:

- *Present State* the values of the state variables for each allowed state.
- Input the input combinations allowed.
- *Next-state* the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
- *Output* the value of the output as a function of the <u>present state</u> and (sometimes) the <u>input</u>.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 35

Example 1: State Table (from Fig. 6-17)

- The state table can be filled in using the next state and output equations: A(t+1) = A(t)x(t) + B(t)x(t) B(t+1) = A(t)x(t) y(t)
 - = x (t)(B(t) + A(t))

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

Logic and Computer Denign Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

Example 1: Alternate State Table

- 2-dimensional table that matches well to a K-map. Present state rows and input columns in Gray code order.
 - A(t+1) = A(t)x(t) + B(t)x(t)
 - $B(t+1) = \overline{A}(t)x(t)$
 - $y(t) = \overline{x}(t)(B(t) + A(t))$

Present	Next	Output		
State	x(t)=0	x(t)=1	x(t)=0	x(t)=1
A(t) B(t)	A(t+1)B(t+1)	A(t+1)B(t+1)	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	11	1	0
10	0 0	10	1	0
11	0 0	10	1	0

PowerPoint[®] Slides © 2004 Pearson Education, Inc.

Chapter 6 - Part 1 37

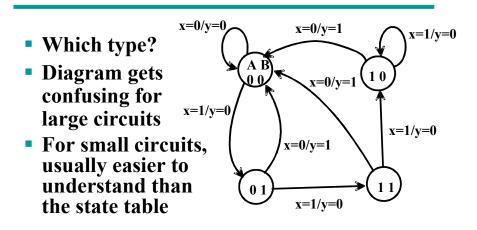
State Diagrams

- The sequential circuit function can be represented in graphical form as a <u>state</u> <u>diagram</u> with the following components:
 - A circle with the state name in it for each state
 - A <u>directed arc</u> from the <u>Present State</u> to the <u>Next</u> <u>State</u> for each <u>state transition</u>
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the <u>state transition</u>, and
 - A label:
 - On each <u>circle</u> with the <u>output</u> value produced, or
 - On each <u>directed arc</u> with the <u>output</u> value produced.

State Diagrams

Label form:
On <u>circle</u> with output included:

state/output
Moore type output depends only on state


On <u>directed arc</u> with the <u>output</u> included:

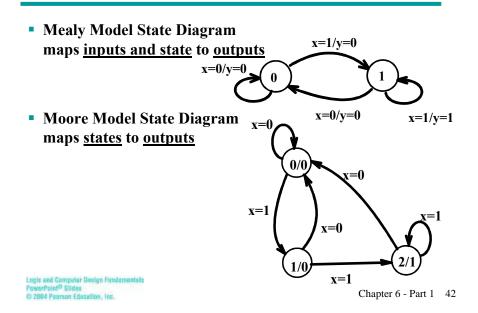
input/output
Mealy type output depends on state and input

Logis and Computer Dealgn Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 39

Example 1: State Diagram

Logis and Computer Dealon Fundamentals PowerPoint[®] Stides © 2004 Poersun Education, Inc.


Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:
- Moore Model
 - Named after E.F. Moore.
 - Outputs are a function ONLY of <u>states</u>
 - Usually specified on the states.
- Mealy Model
 - Named after G. Mealy
 - Outputs are a function of <u>inputs</u> AND <u>states</u>
 - Usually specified on the state transition arcs.
- In contemporary design, models are sometimes mixed Moore and Mealy

Lugic and Computer Design Fundamentals PowerPoint[®] Slidss © 2004 Pearson Education, Inc.

Chapter 6 - Part 1 41

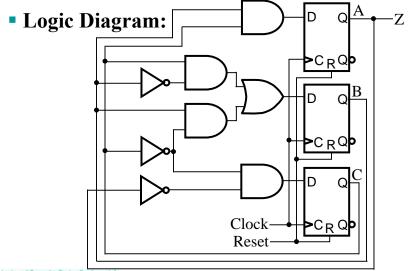
Moore and Mealy Example Diagrams

Moore and Mealy Example Tables

Mealy Model state table maps inputs and state to outputs

Present	Next State	Output
State	x=0 x=1	x=0 x=1
0	0 1	0 0
1	0 1	0 1

Moore Model state table maps state to


outputs

Present	Next	State	Output
State	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.

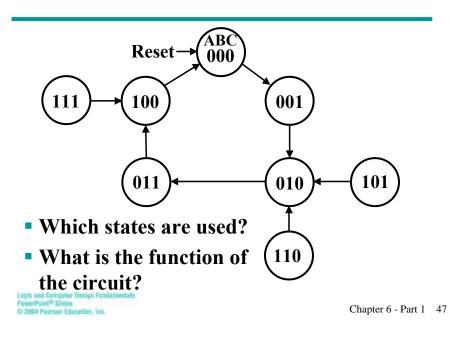
Chapter 6 - Part 1 43

Example 2: Sequential Circuit Analysis

Example 2: Flip-Flop Input Equations

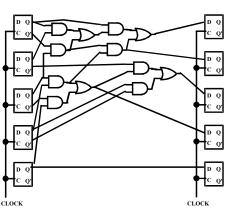
- Variables
 - Inputs: None
 - Outputs: Z
 - State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations
 - A(t+1) = Z =
 - B(t+1) =
 - C(t+1) =

Logic and Computer Design Fundamentals PowerPoint[®] Stides © 2004 Poerson Education, Inc.


Chapter 6 - Part 1 45

Example 2: State Table

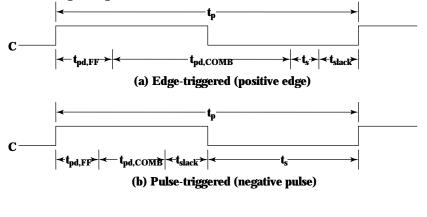
X' = X(t+1)	A B C	A'B'C'	Z
	000		
	001		
	0 1 0		
	0 1 1		
	100		
	101		
	1 1 0		
	1 1 1		


Logis and Computer Dealgn Fundamentals PowerPoint[®] Stitles © 2004 Poerson Education, Inc.

Example 2: State Diagram

Circuit and System Level Timing

- Consider a system comprised of ranks of flip-flops connected by logic:
- If the <u>clock period</u> is too short, some data changes will not propagate through the circuit to flip-flop inputs before the setup time interval begins



Logic and Computer Design Fundamentals PowerPoint[®] Slides © 2004 Postson Education, Inc.

Chapter 6 - Part 1 48

Circuit and System Level Timing (continued)

Timing components along a path from flip-flop to flip-flop

Logic and Computer Design Fundamentals PowerPoint[®] Sildes © 2004 Peerson Education, Inc.

Chapter 6 - Part 1 49

Circuit and System Level Timing (continued)

New Timing Components

- t_p clock period The interval between occurrences of a specific clock edge in a periodic clock
- $t_{pd,COMB}$ total delay of combinational logic along the path from flip-flop output to flip-flop input
- t_{slack} extra time in the clock period in addition to the sum of the delays and setup time on a path
 - Can be either positive or negative
 - Must be greater than or equal to zero on all paths for correct operation

Circuit and System Level Timing (continued)

Timing Equations

 $\mathbf{t}_{\mathrm{p}} = \mathbf{t}_{\mathrm{slack}} + (\mathbf{t}_{\mathrm{pd,FF}} + \mathbf{t}_{\mathrm{pd,COMB}} + \mathbf{t}_{\mathrm{s}})$

- For t_{slack} greater than or equal to zero,
 - $$\label{eq:tp} \begin{split} t_p &\geq max \; (t_{pd,FF} + t_{pd,COMB} + t_s) \\ \text{for all paths from flip-flop output to flip-flop input} \end{split}$$
- Can be calculated more precisely by using t_{PHL} and t_{PLH} values instead of t_{pd} values, but requires consideration of inversions on paths

Logic and Computer Denign Fundamentals PowerPoint[®] Stittss © 2004 Poerson Education, Inc.

Chapter 6 - Part 1 51

Calculation of Allowable t_{pd,COMB}

- Compare the allowable combinational delay for a specific circuit:
 - a) Using edge-triggered flip-flops
 - b) Using master-slave flip-flops

Parameters

- $t_{pd,FF}(max) = 1.0 ns$
- t_s(max) = 0.3 ns for edge-triggered flip-flops
- $t_s = t_{wH} = 1.0$ ns for master-slave flip-flops
- Clock frequency = 250 MHz

Calculation of Allowable $t_{pd,COMB}$ **(continued)**

- Calculations: t_p = 1/clock frequency = 4.0 ns
 - Edge-triggered: $4.0 \ge 1.0 + t_{pd,COMB} + 0.3$, $t_{pd,COMB} \le 2.7$ ns
 - Master-slave: $4.0 \ge 1.0 + t_{pd,COMB} + 1.0, t_{pd,COMB} \le 2.0$ ns
- Comparison: Suppose that for a gate, average t_{pd} = 0.3 ns
 - Edge-triggered: Approximately 9 gates allowed on a path
 - Master-slave: Approximately 6 to 7 gates allowed on a path

Logic and Computer Design Fundamentals PowerPoint[®] Stites © 2004 Poersun Education, Inc.

Chapter 6 - Part 1 53

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education <u>Legal Notice</u>.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these
 materials on a protected website or protected ftp site in original or
 modified form. All other website or ftp postings, including those
 offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page