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Overview

= Part 3
 Process (Procedural) Description
» Verilog Keywords and Constructs

* Process Verilog for a Positive Edge-triggered
D Flip-flop

* Process Verilog for Figure 6-19(a)
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Process (Procedural) Description

= So far, we have done dataflow and behavioral
Verilog using continuous assignment statements
(assign)

= Continuous assignments are limited in the
complexity of what can be described

= A process can be viewed as a replacement for a
continuous assignment statement that permits
much more complex descriptions

= A process uses procedural assignment
statements much like those In a typical
programming language
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Verilog Keywords & Constructs - 1

= Because of the use of procedural rather than
continuous assignment statements, assigned
values must be retained over time.
 Register type: reg
« The reg In contrast to wire stores values between
executions of the process
» Areg type does not imply hardware storage!

= Process types
* Initial — executes only once beginning at t = 0.
 always — executes at t = 0 and repeatedly thereafter.

« Timing or event control is exercised over an always
process using, for example, the @ followed by an
event control statement in ( ).
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Verilog Keywords & Constructs - 2

= Process begins with begin and ends with end.

= The body of the process consists of procedural
assignments

 Blocking assignments

= Example: C=A+ B;

= Execute sequentially as in a programming language
* Non-blocking assignments

= Example: C <= A+ B;

= Evaluate right-hand sides, but do not make any assignment
until all right-hand sides evaluated. Execute concurrently
unless delays are specified.
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Verilog Keywords & Constructs - 3

= Conditional constructs

« The if-else
= |f (condition)
: begin procedural statements end
= {else if (condition)
: begin procedural statements end}
= else
i begin procedural statements end

* The case
= case expression
: {case expression : statements}
= endcase;
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Examples

always
begin
B = A;
C = B;
end

Suppose Iinitially A=0, B =1, and C = 2. After execution, B
=0and C =0.
always
begin
B <= A;
C <= B;
end
Suppose Iinitially A=0, B =1, and C = 2. After execution, B
=0and C =1.
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Verilog for Positive Edge-Triggered D Flip-Flop

module dff (CLK, RESET, D, Q)
input CLK, RESET, D;
output Q;
reg Q;
always@ (posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 0;
else
Q <= D;
end
endmodule
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Describing Sequential Circuits

= There are many different ways to organize models for
sequential circuits. We will use a model that
corresponds to the following diagram:

CLK

Next State
Function

Output —
Function

Reset State Register

= A process corresponds to each of the 3 blocks in the
diagram.
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Verilog for Figure 6-19(a) State Diagram

module fig 619 (CLK, RESET, X, Z);

input CLK, RESET, X;

output Z;

reg[l:0] state, next state;

parameter SO0 = 2'b00, S1 = 2'b01,

S2 = 2'bl0, S3 = 2'bll;

//state register

always@ (posedge CLK or posedge RESET)

begin
if (RESET == 1)
state <= S0O;
else
state <= next state;
end
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Verilog State Diagram (continued)

//next state function
always@Q (X or state)
begin
case (state)
SO0: if (X == 1) next state <= S1;
else next state <= SO0;
Sl: if (X == 1) next state <= S3;
else next state <= S0;
S2: if (X == 1) next state <= S2;
else next state <= S0;
S3: if (X == 1) next state <= S2;
else next state <= S0;
default: next state <= 2'bxx;
endcase
end
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Verilog State Diagram (continued)

reg 4;

//output function
always@ (X or state)

begin

case (state)

SO:
S1:

S2:

S3:

Z <= 1'b0;
if (X == 1) Z <= 1'bO0;
else Z <= 1'bl;

if (X == 1) Z <= 1'b0;

else Z <= 1'bl;

if (X == 1) Z <= 1'b0;

else Z <= 1'bl;

default: Z <= 1'bx;
endcase

end
endmodule
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