
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Verilog

Part 3 – Chapter 6 – Finite State Machines

Logic and Computer Design Fundamentals

Verilog - Part 3 2

 Part 3

• Process (Procedural) Description

• Verilog Keywords and Constructs

• Process Verilog for a Positive Edge-triggered

D Flip-flop

• Process Verilog for Figure 6-19(a)

Overview

Verilog - Part 3 3

Process (Procedural) Description

 So far, we have done dataflow and behavioral
Verilog using continuous assignment statements
(assign)

 Continuous assignments are limited in the
complexity of what can be described

 A process can be viewed as a replacement for a
continuous assignment statement that permits
much more complex descriptions

 A process uses procedural assignment
statements much like those in a typical
programming language

Verilog - Part 3 4

 Because of the use of procedural rather than
continuous assignment statements, assigned
values must be retained over time.

• Register type: reg

• The reg in contrast to wire stores values between
executions of the process

• A reg type does not imply hardware storage!

 Process types

• initial – executes only once beginning at t = 0.

• always – executes at t = 0 and repeatedly thereafter.

• Timing or event control is exercised over an always
process using, for example, the @ followed by an
event control statement in ().

Verilog Keywords & Constructs - 1

Verilog - Part 3 5

Verilog Keywords & Constructs - 2

 Process begins with begin and ends with end.

 The body of the process consists of procedural

assignments

• Blocking assignments

 Example: C = A + B;

 Execute sequentially as in a programming language

• Non-blocking assignments

 Example: C <= A + B;

 Evaluate right-hand sides, but do not make any assignment

until all right-hand sides evaluated. Execute concurrently

unless delays are specified.

Verilog - Part 3 6

Verilog Keywords & Constructs - 3

 Conditional constructs

• The if-else

 If (condition)

 begin procedural statements end

 {else if (condition)

 begin procedural statements end}

 else

 begin procedural statements end

• The case

 case expression

 {case expression : statements}

 endcase;

Verilog - Part 3 7

Examples

always

begin

B = A;

C = B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B
= 0 and C = 0.
always

begin

B <= A;

C <= B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B
= 0 and C = 1.

Verilog - Part 3 8

Verilog for Positive Edge-Triggered D Flip-Flop

module dff (CLK, RESET, D, Q)

input CLK, RESET, D;

output Q;

reg Q;

always@ (posedge CLK or posedge RESET)

begin

if (RESET)

Q <= 0;

else

Q <= D;

end

endmodule

Verilog - Part 3 9

Describing Sequential Circuits

 There are many different ways to organize models for
sequential circuits. We will use a model that
corresponds to the following diagram:

 A process corresponds to each of the 3 blocks in the
diagram.

Next State

Function

Output

Function

CLK

Reset

FFs

State Register

Verilog - Part 3 10

Verilog for Figure 6-19(a) State Diagram

module fig_619 (CLK, RESET, X, Z);

input CLK, RESET, X;

output Z;

reg[1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01,

S2 = 2'b10, S3 = 2'b11;

//state register

always@(posedge CLK or posedge RESET)

begin

if (RESET == 1)

state <= S0;

else

state <= next_state;

end

Verilog - Part 3 11

Verilog State Diagram (continued)

//next state function

always@(X or state)

begin

case (state)

S0: if (X == 1) next_state <= S1;

else next_state <= S0;

S1: if (X == 1) next_state <= S3;

else next_state <= S0;

S2: if (X == 1) next_state <= S2;

else next_state <= S0;

S3: if (X == 1) next_state <= S2;

else next_state <= S0;

default: next_state <= 2'bxx;

endcase

end

Verilog - Part 3 12

Verilog State Diagram (continued)

reg Z;

//output function

always@(X or state)

begin

case (state)

S0: Z <= 1'b0;

S1: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S2: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S3: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

default: Z <= 1'bx;

endcase

end

endmodule

Verilog - Part 3 13

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson

Education Legal Notice.

 Permission is given to incorporate these materials into classroom

presentations and handouts only to instructors adopting Logic and

Computer Design Fundamentals as the course text.

 Permission is granted to the instructors adopting the book to post these

materials on a protected website or protected ftp site in original or

modified form. All other website or ftp postings, including those

offering the materials for a fee, are prohibited.

 You may not remove or in any way alter this Terms of Use notice or

any trademark, copyright, or other proprietary notice, including the

copyright watermark on each slide.

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

