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 Part 3

• Process (Procedural) Description

• Verilog Keywords and Constructs

• Process Verilog for a Positive Edge-triggered 

D Flip-flop

• Process Verilog for Figure 6-19(a)

Overview
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Process (Procedural) Description

 So far, we have done dataflow and behavioral 
Verilog using continuous assignment statements 
(assign)

 Continuous assignments are limited in the 
complexity of what can be described

 A process can be viewed as a replacement for a 
continuous assignment statement that permits 
much more complex descriptions

 A process uses procedural assignment 
statements much like those in a typical 
programming language
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 Because of the use of procedural rather than 
continuous assignment statements, assigned 
values must be retained over time. 

• Register type: reg 

• The reg in contrast to wire stores values between 
executions of the process

• A reg type does not imply hardware storage!

 Process types

• initial – executes only once beginning at t = 0.

• always – executes at t = 0 and repeatedly thereafter.

• Timing or event control is exercised over an always 
process using, for example, the @ followed by an 
event control statement in (  ). 

Verilog Keywords & Constructs - 1
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Verilog Keywords & Constructs - 2

 Process begins with begin and ends with end.

 The body of the process consists of procedural 

assignments

• Blocking assignments

 Example: C = A + B;

 Execute sequentially as in a programming language

• Non-blocking assignments

 Example: C <= A + B;

 Evaluate right-hand sides, but do not make any assignment 

until all right-hand sides evaluated. Execute concurrently 

unless delays are specified.



Verilog - Part 3    6

Verilog Keywords & Constructs - 3

 Conditional constructs

• The if-else

 If (condition)

 begin procedural statements end

 {else if (condition)

 begin procedural statements end}

 else

 begin procedural statements end

• The case

 case expression

 {case expression : statements}

 endcase;
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Examples

always

begin

B  = A;

C  = B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B 
= 0 and C = 0.
always

begin

B <= A;

C <= B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B 
= 0 and C = 1.



Verilog - Part 3    8

Verilog for  Positive Edge-Triggered D Flip-Flop

module dff (CLK, RESET, D, Q)

input CLK, RESET, D;

output Q;

reg Q;

always@ (posedge CLK or posedge RESET)

begin

if (RESET)

Q <= 0;

else

Q <= D;

end

endmodule
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Describing Sequential Circuits

 There are many different ways to organize models for 
sequential circuits. We will use a model that 
corresponds to the following diagram:

 A process corresponds to each of the 3 blocks in the 
diagram.

Next State 

Function 

Output 

Function

CLK 

Reset

FFs

State Register
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Verilog for  Figure 6-19(a) State Diagram

module fig_619 (CLK, RESET, X, Z);

input CLK, RESET, X;

output Z;

reg[1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01,

S2 = 2'b10, S3 = 2'b11;

//state register

always@(posedge CLK or posedge RESET)

begin

if (RESET == 1)

state <= S0;

else

state <= next_state;

end
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Verilog State Diagram (continued)

//next state function

always@(X or state)

begin

case (state)

S0: if (X == 1) next_state <= S1;

else next_state <= S0;

S1: if (X == 1) next_state <= S3;

else next_state <= S0;

S2: if (X == 1) next_state <= S2;

else next_state <= S0;

S3: if (X == 1) next_state <= S2;

else next_state <= S0;

default: next_state <= 2'bxx;

endcase

end
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Verilog State Diagram (continued)

reg Z;

//output function

always@(X or state)

begin

case (state)

S0: Z <= 1'b0;

S1: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S2: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S3: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

default: Z <= 1'bx;

endcase

end

endmodule
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