
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Verilog

Part 3 – Chapter 6 – Finite State Machines

Logic and Computer Design Fundamentals

Verilog - Part 3 2

 Part 3

• Process (Procedural) Description

• Verilog Keywords and Constructs

• Process Verilog for a Positive Edge-triggered

D Flip-flop

• Process Verilog for Figure 6-19(a)

Overview

Verilog - Part 3 3

Process (Procedural) Description

 So far, we have done dataflow and behavioral
Verilog using continuous assignment statements
(assign)

 Continuous assignments are limited in the
complexity of what can be described

 A process can be viewed as a replacement for a
continuous assignment statement that permits
much more complex descriptions

 A process uses procedural assignment
statements much like those in a typical
programming language

Verilog - Part 3 4

 Because of the use of procedural rather than
continuous assignment statements, assigned
values must be retained over time.

• Register type: reg

• The reg in contrast to wire stores values between
executions of the process

• A reg type does not imply hardware storage!

 Process types

• initial – executes only once beginning at t = 0.

• always – executes at t = 0 and repeatedly thereafter.

• Timing or event control is exercised over an always
process using, for example, the @ followed by an
event control statement in ().

Verilog Keywords & Constructs - 1

Verilog - Part 3 5

Verilog Keywords & Constructs - 2

 Process begins with begin and ends with end.

 The body of the process consists of procedural

assignments

• Blocking assignments

 Example: C = A + B;

 Execute sequentially as in a programming language

• Non-blocking assignments

 Example: C <= A + B;

 Evaluate right-hand sides, but do not make any assignment

until all right-hand sides evaluated. Execute concurrently

unless delays are specified.

Verilog - Part 3 6

Verilog Keywords & Constructs - 3

 Conditional constructs

• The if-else

 If (condition)

 begin procedural statements end

 {else if (condition)

 begin procedural statements end}

 else

 begin procedural statements end

• The case

 case expression

 {case expression : statements}

 endcase;

Verilog - Part 3 7

Examples

always

begin

B = A;

C = B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B
= 0 and C = 0.
always

begin

B <= A;

C <= B;

end

 Suppose initially A = 0, B = 1, and C = 2. After execution, B
= 0 and C = 1.

Verilog - Part 3 8

Verilog for Positive Edge-Triggered D Flip-Flop

module dff (CLK, RESET, D, Q)

input CLK, RESET, D;

output Q;

reg Q;

always@ (posedge CLK or posedge RESET)

begin

if (RESET)

Q <= 0;

else

Q <= D;

end

endmodule

Verilog - Part 3 9

Describing Sequential Circuits

 There are many different ways to organize models for
sequential circuits. We will use a model that
corresponds to the following diagram:

 A process corresponds to each of the 3 blocks in the
diagram.

Next State

Function

Output

Function

CLK

Reset

FFs

State Register

Verilog - Part 3 10

Verilog for Figure 6-19(a) State Diagram

module fig_619 (CLK, RESET, X, Z);

input CLK, RESET, X;

output Z;

reg[1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01,

S2 = 2'b10, S3 = 2'b11;

//state register

always@(posedge CLK or posedge RESET)

begin

if (RESET == 1)

state <= S0;

else

state <= next_state;

end

Verilog - Part 3 11

Verilog State Diagram (continued)

//next state function

always@(X or state)

begin

case (state)

S0: if (X == 1) next_state <= S1;

else next_state <= S0;

S1: if (X == 1) next_state <= S3;

else next_state <= S0;

S2: if (X == 1) next_state <= S2;

else next_state <= S0;

S3: if (X == 1) next_state <= S2;

else next_state <= S0;

default: next_state <= 2'bxx;

endcase

end

Verilog - Part 3 12

Verilog State Diagram (continued)

reg Z;

//output function

always@(X or state)

begin

case (state)

S0: Z <= 1'b0;

S1: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S2: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

S3: if (X == 1) Z <= 1'b0;

else Z <= 1'b1;

default: Z <= 1'bx;

endcase

end

endmodule

Verilog - Part 3 13

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson

Education Legal Notice.

 Permission is given to incorporate these materials into classroom

presentations and handouts only to instructors adopting Logic and

Computer Design Fundamentals as the course text.

 Permission is granted to the instructors adopting the book to post these

materials on a protected website or protected ftp site in original or

modified form. All other website or ftp postings, including those

offering the materials for a fee, are prohibited.

 You may not remove or in any way alter this Terms of Use notice or

any trademark, copyright, or other proprietary notice, including the

copyright watermark on each slide.

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

