_ogic and Computer Design Fundamentals

Verilog

Part 3 — Chapter 6 — Finite State Machines

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Overview

= Part 3
 Process (Procedural) Description
» Verilog Keywords and Constructs

* Process Verilog for a Positive Edge-triggered
D Flip-flop

* Process Verilog for Figure 6-19(a)

Verilog - Part3 2

Process (Procedural) Description

= So far, we have done dataflow and behavioral
Verilog using continuous assignment statements
(assign)

= Continuous assignments are limited in the
complexity of what can be described

= A process can be viewed as a replacement for a
continuous assignment statement that permits
much more complex descriptions

= A process uses procedural assignment
statements much like those In a typical
programming language

Verilog - Part3 3

Verilog Keywords & Constructs - 1

= Because of the use of procedural rather than
continuous assignment statements, assigned
values must be retained over time.
 Register type: reg
« The reg In contrast to wire stores values between
executions of the process
» Areg type does not imply hardware storage!

= Process types
* Initial — executes only once beginning at t = 0.
 always — executes at t = 0 and repeatedly thereafter.

« Timing or event control is exercised over an always
process using, for example, the @ followed by an
event control statement in ().

Verilog - Part3 4

Verilog Keywords & Constructs - 2

= Process begins with begin and ends with end.

= The body of the process consists of procedural
assignments

 Blocking assignments

= Example: C=A+ B;

= Execute sequentially as in a programming language
* Non-blocking assignments

= Example: C <= A+ B;

= Evaluate right-hand sides, but do not make any assignment
until all right-hand sides evaluated. Execute concurrently
unless delays are specified.

Verilog - Part3 5

Verilog Keywords & Constructs - 3

= Conditional constructs

« The if-else
= |f (condition)
: begin procedural statements end
= {else if (condition)
: begin procedural statements end}
= else
i begin procedural statements end

* The case
= case expression
: {case expression : statements}
= endcase;

Verilog - Part3 6

Examples

always
begin
B = A;
C = B;
end

Suppose Iinitially A=0, B =1, and C = 2. After execution, B
=0and C =0.
always
begin
B <= A;
C <= B;
end
Suppose Iinitially A=0, B =1, and C = 2. After execution, B
=0and C =1.

Verilog - Part3 7

Verilog for Positive Edge-Triggered D Flip-Flop

module dff (CLK, RESET, D, Q)
input CLK, RESET, D;
output Q;
reg Q;
always@ (posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 0;
else
Q <= D;
end
endmodule

Verilog - Part3 8

Describing Sequential Circuits

= There are many different ways to organize models for
sequential circuits. We will use a model that
corresponds to the following diagram:

CLK

Next State
Function

Output —
Function

Reset State Register

= A process corresponds to each of the 3 blocks in the
diagram.

Verilog - Part3 9

Verilog for Figure 6-19(a) State Diagram

module fig 619 (CLK, RESET, X, Z);

input CLK, RESET, X;

output Z;

reg[l:0] state, next state;

parameter SO0 = 2'b00, S1 = 2'b01,

S2 = 2'bl0, S3 = 2'bll;

//state register

always@ (posedge CLK or posedge RESET)

begin
if (RESET == 1)
state <= S0O;
else
state <= next state;
end

Verilog - Part 3 10

Verilog State Diagram (continued)

//next state function
always@Q (X or state)
begin
case (state)
SO0: if (X == 1) next state <= S1;
else next state <= SO0;
Sl: if (X == 1) next state <= S3;
else next state <= S0;
S2: if (X == 1) next state <= S2;
else next state <= S0;
S3: if (X == 1) next state <= S2;
else next state <= S0;
default: next state <= 2'bxx;
endcase
end

Verilog - Part3 11

Verilog State Diagram (continued)

reg 4;

//output function
always@ (X or state)

begin

case (state)

SO:
S1:

S2:

S3:

Z <= 1'b0;
if (X == 1) Z <= 1'bO0;
else Z <= 1'bl;

if (X == 1) Z <= 1'b0;

else Z <= 1'bl;

if (X == 1) Z <= 1'b0;

else Z <= 1'bl;

default: Z <= 1'bx;
endcase

end
endmodule

Verilog - Part3 12

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.

The following terms of use apply in addition to the standard Pearson
Education Legal Notice.

Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.

Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.

You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.

Return to Title Page

Verilog - Part 3

13

http://www.pearsoned.com/legal/index.htm

