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Overview

 Part 5

• Conversion of ASM into Verilog description

 Decompose into:

• Sequencing - synchronous always for state, 
combinational always for next state

• Output values - combinational always

• Register transfers - synchronous always

 Use parameters to make state assignment

 Use case for more than two states

 Use if then else for scalar decisions

 Use case for vector decisions

• Illustrate using binary multiplier ASM chart 
in Figure 8-8 of text
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Verilog for Alternative Binary Multiplier – 1

//Alternative Binary Multiplier with n = 4

//See Figure 8-8 of text

module alt_bin_multiplier (CLK, RESET, G, LOADB, 

LOADQ, MULT_IN, MULT_OUT);

input CLK, RESET, G, LOADB, LOADQ;

input [3:0] MULT_IN;

output[7:0] MULT_OUT;

reg state, next_state;

parameter IDLE = 0, MUL = 1;

reg [1:0] P;

reg [3:0] A, B, Q;

wire Z;

// Test P for value 0

assign Z = ~| P; // ~| is reduction NOR

// that NORs together all bits of P
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Verilog for Alternative Binary Multiplier – 2

assign MULT_OUT = {A,Q}; 

//state register

always@(posedge CLK or posedge RESET)

begin

if (RESET == 1)

state <= IDLE;

else

state <= next_state;

end

//next state function

always@(G or Z or state)

begin

if (state == IDLE)

if (G == 1)

next_state <= MUL;
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Verilog for Alternative Binary Multiplier – 3

else

next_state <= IDLE;

else // state = MUL

if (Z == 1) 

next_state <= IDLE;

else

next_state <= MUL;

end

//register transfers

always@(posedge CLK or posedge RESET)

begin

if (LOADB) 

B <= MULT_IN;

else      

if (LOADQ)

Q <= MULT_IN;

else 
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Verilog for Alternative Binary Multiplier – 4

if (state == IDLE && G == 1)

begin

P <= 2'b11;

A <= 4'b0000;

end

else

if (state == MUL)

begin

P <= P - 1;

if (Q[0] == 1)

{A,Q} <= {{1'b0,A} + {1'b0,B},Q[3:1]};

//1’b0 is concatenated on the left to acquire the Cout value.

else

{A,Q} <= {1'b0,A,Q[3:1]};   

end

end 

endmodule
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