
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Verilog 

Part 5 – Chapter 8 – Algorithmic State Machine 

Example: Binary Multiplier

Logic and Computer Design Fundamentals



Verilog - Part 4    2

Overview

 Part 5

• Conversion of ASM into Verilog description

 Decompose into:

• Sequencing - synchronous always for state, 
combinational always for next state

• Output values - combinational always

• Register transfers - synchronous always

 Use parameters to make state assignment

 Use case for more than two states

 Use if then else for scalar decisions

 Use case for vector decisions

• Illustrate using binary multiplier ASM chart 
in Figure 8-8 of text



Verilog - Part 4    3

Verilog for Alternative Binary Multiplier – 1

//Alternative Binary Multiplier with n = 4

//See Figure 8-8 of text

module alt_bin_multiplier (CLK, RESET, G, LOADB, 

LOADQ, MULT_IN, MULT_OUT);

input CLK, RESET, G, LOADB, LOADQ;

input [3:0] MULT_IN;

output[7:0] MULT_OUT;

reg state, next_state;

parameter IDLE = 0, MUL = 1;

reg [1:0] P;

reg [3:0] A, B, Q;

wire Z;

// Test P for value 0

assign Z = ~| P; // ~| is reduction NOR

// that NORs together all bits of P



Verilog - Part 4    4

Verilog for Alternative Binary Multiplier – 2

assign MULT_OUT = {A,Q}; 

//state register

always@(posedge CLK or posedge RESET)

begin

if (RESET == 1)

state <= IDLE;

else

state <= next_state;

end

//next state function

always@(G or Z or state)

begin

if (state == IDLE)

if (G == 1)

next_state <= MUL;



Verilog - Part 4    5

Verilog for Alternative Binary Multiplier – 3

else

next_state <= IDLE;

else // state = MUL

if (Z == 1) 

next_state <= IDLE;

else

next_state <= MUL;

end

//register transfers

always@(posedge CLK or posedge RESET)

begin

if (LOADB) 

B <= MULT_IN;

else      

if (LOADQ)

Q <= MULT_IN;

else 



Verilog - Part 4    6

Verilog for Alternative Binary Multiplier – 4

if (state == IDLE && G == 1)

begin

P <= 2'b11;

A <= 4'b0000;

end

else

if (state == MUL)

begin

P <= P - 1;

if (Q[0] == 1)

{A,Q} <= {{1'b0,A} + {1'b0,B},Q[3:1]};

//1’b0 is concatenated on the left to acquire the Cout value.

else

{A,Q} <= {1'b0,A,Q[3:1]};   

end

end 

endmodule



Verilog - Part 4    7

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson 

Education Legal Notice.

 Permission is given to  incorporate these materials into classroom 

presentations and handouts only to instructors adopting Logic and 

Computer Design Fundamentals as the course text. 

 Permission is granted to the instructors adopting the book to post these 

materials on a protected website or protected ftp site in original or 

modified form. All other website or ftp postings, including those 

offering the materials for a fee, are prohibited. 

 You may not remove or in any way alter this Terms of Use notice  or 

any trademark, copyright, or other proprietary notice, including the 

copyright watermark on each slide. 

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

