L_ogic and Computer Design Fundamentals

VHDL

Part 1 — Chapter 4 — Basics and Constructs

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Overview

= Part 1 - Basics and Constructs

« VHDL basics
= Notation
= Types & constructs
= Signals
= Entities and architectures
= Libraries and packages

 Structural VHDL Example
 VHDL Operators
« Concurrent VHDL Examples

= Part 2 - Behavioral and Hierarchical Description
= Part 3 - Finite State Machines
= Part 4 - Registers and Counters

= Part 5 - Algorithmic State Machine Example: Binary
Multiplier

VHDL - Part1 2

VHDL Notation - 1

= VHDL is:
- Case Insensitive
» Based on the programming language ADA
- Strongly-typed language

= Comments

-— [end of line]

= List separator: ,
= Statement terminator: ;

VHDL - Part1 3

VHDL Notation - 2

= Types and values

» Determined by use of packages (discussed later) that
define various types and type conversions
» |[EEE 1076 predefined types:
= type bit has two values 0 and 1
= type bit vector is an array of bits with integers as indices
= type integer has values over a specified range of integers
= type booleanis (TRUE, FALSE)

» |[EEE 1164 predefined types:
= type std ulogic hasninevaluesU, X,0,1,Z W, L, H, -

= type std ulogic_vector Isan array of bits with
natural (non-negative) numbers as the indices

= subtype std logicis std ulogic with definitions for
multiple signals applied to a single wire

= subtype X01Z is std_logic with the range X, 0,1, Z

VHDL -Partl 4

VHDL Notation - 3

= More on types
 Most frequently used type: std logic
= Provides values needed for simulation, notably X and z

* Frequently used type: integer

= Due to strong typing, essential for arithmetic operations

= Requires additional packages to be used to perform type
conversion between std logic and integer

VHDL -Partl 5

VHDL Notation - 4

= Constants

* Binary
= Single bit: 'O0', '1°
= Multiple bit: B"110001", B"11 0001"

(underline permitted for readability)

« Other bases
= Octal 0"61", O"6 1"
= Hex X"31", X"3 1"
= Decimal 49
= Real 49E+1

VHDL - Part1l 6

VHDL Notation - 5

= |dentifiers
- Examples:A, B1, abc, run, stop, c_in
= Keywords

- Words reserved for special meanings

« Cannot be used as identifiers
- Examples: entity, architecture, and, if

« Shown here in color
- Shown In text in bold

VHDL - Part1 7

VHDL Constructs

= Structural:
 Describes interconnections of components (entities)
» Analogous to logic diagrams or netlists

= Concurrent VHDL or Dataflow:

» Consists of a collection of statements and processes
that execute concurrently

= Sequential VHDL.:

 Consists of the sequences of statements within
Processes

* Logic described may be combinational or sequential

VHDL - Part1 8

Signal Declaration

= Signals can be viewed as "'wires""

= Signals are concurrent and sequential objects

= Aport declarationis a signal declaration with in or out
added

= Examples: signal a, b: std logic;
signal widget: std logic vector (0 to 7);

-- 0 is MSB and 7 is LSB
signal c: std logic vector (2 downto 0);

-- 2 is MSB and 0 is LSB
port (DATA: in std logic_vector (15 downto 0));
signal product: std logic vector (0 to 31);
port (NA: out std logic);

VHDL -Partl 9

Entities and Architectures

"= entity

* The primary hardware abstraction in VHDL
* Provides: the entity name, the inputs and outputs
« Analogous to a symbol in a block diagram

" architecture

« Specifies the relationships between the inputs and outputs of a design
entity

« May be a mixture of structural, concurrent and sequential VHDL.
= Agiven entity may have multiple, different architectures.
= Examples of entities and architectures follow.

VHDL - Part1 10

Libraries and Packages

A library typically contains VHDL code or compiled VHDL code

A package consists of compiled VHDL code for multiple entities
and associated architectures

A package is stored in a library
Example: package func_prims is stored in library 1cdf vhdl

func_prims provides compiled code for the following delay-free
gates: and2, ..., and5, or2, ... or5, nand2, ..., nand5, nor2,
..., nor5, not, xor2, and xnor2 in which integers 2 through 5
specify the number of gate inputs.

Generation of the 1edf vhdl library and the func_prims
package:
- Generate a new library named 1cdf vhdl.

 Using the 1cdf vhdl library as the "work™ library, compile the file
func_prims.vhd (available from the VHDL web page) that contains
the component, entity and architecture descriptions for the package.

VHDL -Part1 11

First Example to lllustrate Entities,
Architectures and Constructs

= |[C7283 - a 1-bit adder from a commercial IC

Cy

B

>
Ag y

Y Y

VHDL - Part1 12

A Structural VHDL Example

library IEEE, lcdf vhdl; Instantiation of two packages
use IEEE.std logic 1164.all, from two libraries. Applies

lcdf vhdl.func prims.all; only to the following entity.
entity IC7283 is Declaration of entity IC7283
port (A0,BO,CO: in std logic;/Declaration of 3 inputs and
Cl,S0: out std logic); |2 outputs of type std logic.

end IC7283; End of entity declaration

architecture structure of Declaration of architecture

IC7283 1is named structure for entity IC7283
component NOT1 Declarations of the gate com-
port(inl: in std logic; ponents to be used from package

outl: out std logic) |func_prims in library lcdf_vhdl
end component;
component NAND2
port(inl,in2: in std logic;
outl: out std logic);
end component;

VHDL - Part1 13

A Structural VHDL Example (continued)

component NOR2

port(inl,in2: in std logic;
outl: out std logic);

end component;

component AND2

port(inl,in2: in std logic;
outl: out std logic);

end component;

component XOR2

port(inl,in2: in std logic;
outl: out std logic);

end component;

signal N1,N2,N3,N4,N5,N6,6,N7:

std logic;

Declarations of 7 signals for

use in interconnecting the gates

VHDL - Part1 14

A Structural VHDL Example (continued)

begin

g0: NOT1l port map (CO,N3);
gl: NOT1l port map (N2,N5);
g2: NOT1l port map (N3,N6) ;
g3: NAND2 port map (AO,BO,N1);
g4: NOR2 port map (AO,BO,N2);
g5: NOR2 port map (N2,N4,Cl);
g6: AND2 port map (N1,N3,N4);
g7: AND2 port map (N1,N5,N7);
g8: XOR2 port map (N6,N7,S0);
end structure;

Beginning of the body of the
architecture. There is an entry
for each gate: gate identifier:
gate name keywords port map
signal list: (input, output) or
(inputl, input2, output)

End of architecture and
description

VHDL - Part1 15

VHDL Operators

Logical: and, or, nand, nor, xor, xnor, not
Relational: =, /=, <, <=, >, >=
Shift: s11, srl, sla, sra, rol, ror

« Formissdt - sis for shift, dis direction (d = 1 is for left,d = r is for
right, and tis type (t = 1 is for logical, and t = r is for rotate).

Adding +, -, &

* & iIs concatenation which permits one-dimensional operands to be place
end-to-end to form a combined operand.

- Example: ForC_inandA(3:0),C_in & Aisequivalent to a 5-bit
register with C_in as the MSB and A (0) as the LSB.

Sign +, -

Multiplying: * (multiply), /(divide), mod (modulus), rem
(remainder)

Miscellaneous: abs (absolute value), ** (exponentiation)

VHDL - Part1 16

Concurrent VHDL

= Signal assignment
» Uses signal assignment operator <=

« Asignal is assigned its value after a delay, whether real
or a delta time, an infinitesimal interval required in
VHDL simulator implementations

= Examples:

*zZ <= a Oor b, --z assigned after an
--infinitesimal delta time

ez <= a nand b after 10 ns; -- z assigned
-—- after inertial delay of 10 ns

- widget <= transport ("00" & a & b) after
10 ns;
-- assigned after transport delay of 10 ns;
-- & Is the concatenation operator.
VHDL - Part 1 17

Concurrent VHDL Example Using Boolean
Equations

= The entity Is the same as for the structural VHDL example
architecture dataflow 1 of IC7283 is

signal N1,N2: std logic;

begin -- The assignment statements are
-- Boolean equations.

N1l <= not (A0 and BO0);

N2 <= not (A0 or BO);

Cl <= not((N1l and (not CO0)) or N2);

SO0 <= ((not N2) and N1l) xor (not(not CO0));
end dataflow 1;

VHDL - Part1 18

Concurrent VHDL Example Using "with
select™

library IEEE, lcdf vhdl;

use IEEE.std logic 1164.all;

entity IC7283 ws is

port (Z: in std logic vector (2 downto 0);
CS: out std logic vector(l downto 0));

end IC7283 ws;

architecture dataflow 2 of IC7283 ws is
begin

VHDL - Part1 19

Concurrent VHDL Example Using "with

select™

with Z select

CS <=

HOOH
HOl"
"01"
" 10 "
"01"
1} 10 1}
" 10 "
1A} 11 1A}
HXXH

when "000",
when "001",
when "010",
when "O011",
when "100",
when "101",
when "110",
when "111",
when
others;

end dataflow_z;

Defines Z as the
conditioning signal.

Forms truth table
with inputs on the
right and outputs on
the left.

Assigns XX to CS for
the other std logic

triples on Z

VHDL - Part1 20

Second Example to Illustrate Entities,
Architectures and Constructs

= Priority Encoder

Inputs Outputs
D4 (D3 | D2 | D1 | DO| A2 | A1l | A0 | V
0 0 0 0 0 X X X 0
0 0 0 0 1 0 0 0 1
0 0 0 1 | X 0 0 1 1
0 0 1 | X | X 0 1 0 1
0 1 | X | X | X 0 1 1 1
1 | X | X | X | X 1 0 0 1

VHDL - Part1 21

Concurrent VHDL Example Using
"when else"

library IEEE
use IEEE.std logic 1164.all;
entity priority encoder we is
port (D: in std logic vector (4 downto 0);
A: out std logic vector (2 downto 0);
V. out std logic);
end priority encoder we;
architecture dataflow 3 of priority encoder we is

begin

A <= "100" when D(4) = 'l' -- Can customize condition
else "01l1l" when D(4 downto 3) = "0l1l" -- on each
else "010" when D(4 downto 2) = "001" -- 1line.
else "001" when D(4 downto 1) = "0001"
else "000" when D = "00001"

else "XXX";
V <= not(D = "00000") ;
end dataflow 3;

VHDL - Part1 22

Concurrent ""when else'" vs. ""with select"

= with select

» Has simple form with
= condition signal stated only once
= only one word per line, otherwise

» ldeal for implementing binary (0,1) truth tables

= when else
» Has more complex form, but
 Able to Implement much more complex decision
functions

= condensed truth tables with 0, 1, X entries in rows

= situations with limited cases of multiple condition
signals

VHDL - Part1 23

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.

The following terms of use apply in addition to the standard Pearson
Education Legal Notice.

Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.

Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.

You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.

Return to Title Page

VHDL - Part1 24

http://www.pearsoned.com/legal/index.htm

