
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

VHDL
Part 1 – Chapter 4 – Basics and Constructs

Logic and Computer Design Fundamentals

VHDL - Part 1 2

Overview

 Part 1 - Basics and Constructs

• VHDL basics

 Notation

 Types & constructs

 Signals

 Entities and architectures

 Libraries and packages

• Structural VHDL Example

• VHDL Operators

• Concurrent VHDL Examples

 Part 2 - Behavioral and Hierarchical Description

 Part 3 - Finite State Machines

 Part 4 - Registers and Counters

 Part 5 - Algorithmic State Machine Example: Binary
Multiplier

VHDL - Part 1 3

VHDL Notation - 1

 VHDL is:

• Case insensitive

• Based on the programming language ADA

• Strongly-typed language

 Comments

-- [end of line]

 List separator: ,

 Statement terminator: ;

VHDL - Part 1 4

VHDL Notation - 2

 Types and values

• Determined by use of packages (discussed later) that
define various types and type conversions

• IEEE 1076 predefined types:
 type bit has two values 0 and 1

 type bit_vector is an array of bits with integers as indices

 type integer has values over a specified range of integers

 type boolean is (TRUE, FALSE)

• IEEE 1164 predefined types:
 type std_ulogic has nine values U, X, 0, 1, Z, W, L, H, -

 type std_ulogic_vector is an array of bits with
natural (non-negative) numbers as the indices

 subtype std_logic is std_ulogic with definitions for
multiple signals applied to a single wire

 subtype X01Z is std_logic with the range X, 0, 1, Z

VHDL - Part 1 5

VHDL Notation - 3

 More on types

• Most frequently used type: std_logic

 Provides values needed for simulation, notably X and Z

• Frequently used type: integer

 Due to strong typing, essential for arithmetic operations

 Requires additional packages to be used to perform type

conversion between std_logic and integer

VHDL - Part 1 6

VHDL Notation - 4

 Constants

• Binary

 Single bit: '0', '1'

 Multiple bit: B"110001", B"11_0001"

(underline permitted for readability)

• Other bases

 Octal O"61", O"6_1"

 Hex X"31", X"3_1"

 Decimal 49

 Real 49E+1

VHDL - Part 1 7

VHDL Notation - 5

 Identifiers

• Examples: A, B1, abc, run, stop, c_in

 Keywords

• Words reserved for special meanings

• Cannot be used as identifiers

• Examples: entity, architecture, and, if

• Shown here in color

• Shown in text in bold

VHDL - Part 1 8

VHDL Constructs

 Structural:

• Describes interconnections of components (entities)

• Analogous to logic diagrams or netlists

 Concurrent VHDL or Dataflow:

• Consists of a collection of statements and processes

that execute concurrently

 Sequential VHDL:

• Consists of the sequences of statements within

processes

• Logic described may be combinational or sequential

VHDL - Part 1 9

Signal Declaration

 Signals can be viewed as "wires"

 Signals are concurrent and sequential objects

 A port declaration is a signal declaration with in or out

added

 Examples: signal a, b: std_logic;

signal widget: std_logic_vector(0 to 7);

-- 0 is MSB and 7 is LSB

signal c: std_logic_vector(2 downto 0);

-- 2 is MSB and 0 is LSB

port (DATA: in std_logic_vector(15 downto 0));

signal product: std_logic_vector(0 to 31);

port (NA: out std_logic);

VHDL - Part 1 10

 entity

• The primary hardware abstraction in VHDL

• Provides: the entity name, the inputs and outputs

• Analogous to a symbol in a block diagram

 architecture

• Specifies the relationships between the inputs and outputs of a design

entity

• May be a mixture of structural, concurrent and sequential VHDL.

 A given entity may have multiple, different architectures.

 Examples of entities and architectures follow.

Entities and Architectures

VHDL - Part 1 11

Libraries and Packages

 A library typically contains VHDL code or compiled VHDL code

 A package consists of compiled VHDL code for multiple entities
and associated architectures

 A package is stored in a library

 Example: package func_prims is stored in library lcdf_vhdl

 func_prims provides compiled code for the following delay-free
gates: and2, …, and5, or2, … or5, nand2, …, nand5, nor2,
…, nor5, not, xor2, and xnor2 in which integers 2 through 5
specify the number of gate inputs.

 Generation of the lcdf_vhdl library and the func_prims
package:

• Generate a new library named lcdf_vhdl.

• Using the lcdf_vhdl library as the "work" library, compile the file
func_prims.vhd (available from the VHDL web page) that contains
the component, entity and architecture descriptions for the package.

VHDL - Part 1 12

First Example to Illustrate Entities,

Architectures and Constructs

 IC7283 - a 1-bit adder from a commercial IC

B0

•

•

••

•

•A0

C0

C1

S0

•

•

•

•

•

VHDL - Part 1 13

A Structural VHDL Example

Instantiation of two packages

from two libraries. Applies

only to the following entity.

Declaration of entity IC7283

Declaration of 3 inputs and

2 outputs of type std_logic.

End of entity declaration

Declaration of architecture

named structure for entity IC7283

Declarations of the gate com-

ponents to be used from package

func_prims in library lcdf_vhdl

library IEEE, lcdf_vhdl;

use IEEE.std_logic_1164.all,

lcdf_vhdl.func_prims.all;

entity IC7283 is

port (A0,B0,C0: in std_logic;

C1,S0: out std_logic);

end IC7283;

architecture structure of

IC7283 is

component NOT1

port(in1: in std_logic;

out1: out std_logic)

end component;

component NAND2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

VHDL - Part 1 14

A Structural VHDL Example (continued)

component NOR2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

component AND2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

component XOR2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

signal N1,N2,N3,N4,N5,N6,N7:

std_logic;

Declarations of 7 signals for

use in interconnecting the gates

VHDL - Part 1 15

A Structural VHDL Example (continued)

begin

g0: NOT1 port map (C0,N3);

g1: NOT1 port map (N2,N5);

g2: NOT1 port map (N3,N6);

g3: NAND2 port map (A0,B0,N1);

g4: NOR2 port map (A0,B0,N2);

g5: NOR2 port map (N2,N4,C1);

g6: AND2 port map (N1,N3,N4);

g7: AND2 port map (N1,N5,N7);

g8: XOR2 port map (N6,N7,S0);

end structure;

Beginning of the body of the

architecture. There is an entry

for each gate: gate_identifier:

gate_name keywords port map

signal list: (input, output) or

(input1, input2, output)

End of architecture and

description

VHDL - Part 1 16

VHDL Operators

 Logical: and, or, nand, nor, xor, xnor, not

 Relational: =, /=, <, <=, >, >=

 Shift: sll, srl, sla, sra, rol, ror

• Form is sdt - s is for shift, d is direction (d = l is for left, d = r is for

right, and t is type (t = l is for logical, and t = r is for rotate).

 Adding +, -, &

• & is concatenation which permits one-dimensional operands to be place

end-to-end to form a combined operand.

• Example: For C_in and A(3:0), C_in & A is equivalent to a 5-bit

register with C_in as the MSB and A(0) as the LSB.

 Sign +, -

 Multiplying: * (multiply), /(divide), mod (modulus), rem

(remainder)

 Miscellaneous: abs (absolute value), ** (exponentiation)

VHDL - Part 1 17

Concurrent VHDL

 Signal assignment

• Uses signal assignment operator <=

• A signal is assigned its value after a delay, whether real
or a delta time, an infinitesimal interval required in
VHDL simulator implementations

 Examples:
•z <= a or b; --z assigned after an
--infinitesimal delta time

•z <= a nand b after 10 ns; -- z assigned

-- after inertial delay of 10 ns

•widget <= transport ("00" & a & b) after

10 ns;

-- assigned after transport delay of 10 ns;

-- & is the concatenation operator.

VHDL - Part 1 18

Concurrent VHDL Example Using Boolean

Equations

 The entity is the same as for the structural VHDL example

architecture dataflow_1 of IC7283 is

signal N1,N2: std_logic;

begin -- The assignment statements are

-- Boolean equations.

N1 <= not(A0 and B0);

N2 <= not(A0 or B0);

C1 <= not((N1 and (not C0)) or N2);

S0 <= ((not N2) and N1) xor (not(not C0));

end dataflow_1;

VHDL - Part 1 19

Concurrent VHDL Example Using "with

select"

library IEEE, lcdf_vhdl;

use IEEE.std_logic_1164.all;

entity IC7283_ws is

port (Z: in std_logic_vector(2 downto 0);

CS: out std_logic_vector(1 downto 0));

end IC7283_ws;

architecture dataflow_2 of IC7283_ws is

begin

VHDL - Part 1 20

Concurrent VHDL Example Using "with

select"

with Z select

CS <= "00" when "000",

"01" when "001",

"01" when "010",

"10" when "011",

"01" when "100",

"10" when "101",

"10" when "110",

"11" when "111",

"XX" when

others;

end dataflow_2;

Defines Z as the

conditioning signal.

Forms truth table

with inputs on the

right and outputs on

the left.

Assigns XX to CS for

the other std_logic

triples on Z

VHDL - Part 1 21

Second Example to Illustrate Entities,

Architectures and Constructs

 Priority Encoder

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V

0 0 0 0 0 X X X 0

0 0 0 0 1 0 0 0 1

0 0 0 1 X 0 0 1 1

0 0 1 X X 0 1 0 1

0 1 X X X 0 1 1 1

1 X X X X 1 0 0 1

VHDL - Part 1 22

library IEEE

use IEEE.std_logic_1164.all;

entity priority_encoder_we is

port (D: in std_logic_vector (4 downto 0);

A: out std_logic_vector (2 downto 0);

V: out std_logic);

end priority_encoder_we;

architecture dataflow_3 of priority_encoder_we is

begin

A <= "100" when D(4) = '1' -- Can customize condition

else "011" when D(4 downto 3) = "01" -- on each

else "010" when D(4 downto 2) = "001" -- line.

else "001" when D(4 downto 1) = "0001"

else "000" when D = "00001"

else "XXX";

V <= not(D = "00000");

end dataflow_3;

Concurrent VHDL Example Using

"when else"

VHDL - Part 1 23

Concurrent "when else" vs. "with select"

 with select

• Has simple form with

 condition signal stated only once

 only one word per line, otherwise

• Ideal for implementing binary (0,1) truth tables

 when else

• Has more complex form, but

• Able to implement much more complex decision
functions

 condensed truth tables with 0, 1, X entries in rows

 situations with limited cases of multiple condition
signals

VHDL - Part 1 24

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson

Education Legal Notice.

 Permission is given to incorporate these materials into classroom

presentations and handouts only to instructors adopting Logic and

Computer Design Fundamentals as the course text.

 Permission is granted to the instructors adopting the book to post these

materials on a protected website or protected ftp site in original or

modified form. All other website or ftp postings, including those

offering the materials for a fee, are prohibited.

 You may not remove or in any way alter this Terms of Use notice or

any trademark, copyright, or other proprietary notice, including the

copyright watermark on each slide.

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

