
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

VHDL
Part 1 – Chapter 4 – Basics and Constructs

Logic and Computer Design Fundamentals

VHDL - Part 1 2

Overview

 Part 1 - Basics and Constructs

• VHDL basics

 Notation

 Types & constructs

 Signals

 Entities and architectures

 Libraries and packages

• Structural VHDL Example

• VHDL Operators

• Concurrent VHDL Examples

 Part 2 - Behavioral and Hierarchical Description

 Part 3 - Finite State Machines

 Part 4 - Registers and Counters

 Part 5 - Algorithmic State Machine Example: Binary
Multiplier

VHDL - Part 1 3

VHDL Notation - 1

 VHDL is:

• Case insensitive

• Based on the programming language ADA

• Strongly-typed language

 Comments

-- [end of line]

 List separator: ,

 Statement terminator: ;

VHDL - Part 1 4

VHDL Notation - 2

 Types and values

• Determined by use of packages (discussed later) that
define various types and type conversions

• IEEE 1076 predefined types:
 type bit has two values 0 and 1

 type bit_vector is an array of bits with integers as indices

 type integer has values over a specified range of integers

 type boolean is (TRUE, FALSE)

• IEEE 1164 predefined types:
 type std_ulogic has nine values U, X, 0, 1, Z, W, L, H, -

 type std_ulogic_vector is an array of bits with
natural (non-negative) numbers as the indices

 subtype std_logic is std_ulogic with definitions for
multiple signals applied to a single wire

 subtype X01Z is std_logic with the range X, 0, 1, Z

VHDL - Part 1 5

VHDL Notation - 3

 More on types

• Most frequently used type: std_logic

 Provides values needed for simulation, notably X and Z

• Frequently used type: integer

 Due to strong typing, essential for arithmetic operations

 Requires additional packages to be used to perform type

conversion between std_logic and integer

VHDL - Part 1 6

VHDL Notation - 4

 Constants

• Binary

 Single bit: '0', '1'

 Multiple bit: B"110001", B"11_0001"

(underline permitted for readability)

• Other bases

 Octal O"61", O"6_1"

 Hex X"31", X"3_1"

 Decimal 49

 Real 49E+1

VHDL - Part 1 7

VHDL Notation - 5

 Identifiers

• Examples: A, B1, abc, run, stop, c_in

 Keywords

• Words reserved for special meanings

• Cannot be used as identifiers

• Examples: entity, architecture, and, if

• Shown here in color

• Shown in text in bold

VHDL - Part 1 8

VHDL Constructs

 Structural:

• Describes interconnections of components (entities)

• Analogous to logic diagrams or netlists

 Concurrent VHDL or Dataflow:

• Consists of a collection of statements and processes

that execute concurrently

 Sequential VHDL:

• Consists of the sequences of statements within

processes

• Logic described may be combinational or sequential

VHDL - Part 1 9

Signal Declaration

 Signals can be viewed as "wires"

 Signals are concurrent and sequential objects

 A port declaration is a signal declaration with in or out

added

 Examples: signal a, b: std_logic;

signal widget: std_logic_vector(0 to 7);

-- 0 is MSB and 7 is LSB

signal c: std_logic_vector(2 downto 0);

-- 2 is MSB and 0 is LSB

port (DATA: in std_logic_vector(15 downto 0));

signal product: std_logic_vector(0 to 31);

port (NA: out std_logic);

VHDL - Part 1 10

 entity

• The primary hardware abstraction in VHDL

• Provides: the entity name, the inputs and outputs

• Analogous to a symbol in a block diagram

 architecture

• Specifies the relationships between the inputs and outputs of a design

entity

• May be a mixture of structural, concurrent and sequential VHDL.

 A given entity may have multiple, different architectures.

 Examples of entities and architectures follow.

Entities and Architectures

VHDL - Part 1 11

Libraries and Packages

 A library typically contains VHDL code or compiled VHDL code

 A package consists of compiled VHDL code for multiple entities
and associated architectures

 A package is stored in a library

 Example: package func_prims is stored in library lcdf_vhdl

 func_prims provides compiled code for the following delay-free
gates: and2, …, and5, or2, … or5, nand2, …, nand5, nor2,
…, nor5, not, xor2, and xnor2 in which integers 2 through 5
specify the number of gate inputs.

 Generation of the lcdf_vhdl library and the func_prims
package:

• Generate a new library named lcdf_vhdl.

• Using the lcdf_vhdl library as the "work" library, compile the file
func_prims.vhd (available from the VHDL web page) that contains
the component, entity and architecture descriptions for the package.

VHDL - Part 1 12

First Example to Illustrate Entities,

Architectures and Constructs

 IC7283 - a 1-bit adder from a commercial IC

B0

•

•

••

•

•A0

C0

C1

S0

•

•

•

•

•

VHDL - Part 1 13

A Structural VHDL Example

Instantiation of two packages

from two libraries. Applies

only to the following entity.

Declaration of entity IC7283

Declaration of 3 inputs and

2 outputs of type std_logic.

End of entity declaration

Declaration of architecture

named structure for entity IC7283

Declarations of the gate com-

ponents to be used from package

func_prims in library lcdf_vhdl

library IEEE, lcdf_vhdl;

use IEEE.std_logic_1164.all,

lcdf_vhdl.func_prims.all;

entity IC7283 is

port (A0,B0,C0: in std_logic;

C1,S0: out std_logic);

end IC7283;

architecture structure of

IC7283 is

component NOT1

port(in1: in std_logic;

out1: out std_logic)

end component;

component NAND2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

VHDL - Part 1 14

A Structural VHDL Example (continued)

component NOR2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

component AND2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

component XOR2

port(in1,in2: in std_logic;

out1: out std_logic);

end component;

signal N1,N2,N3,N4,N5,N6,N7:

std_logic;

Declarations of 7 signals for

use in interconnecting the gates

VHDL - Part 1 15

A Structural VHDL Example (continued)

begin

g0: NOT1 port map (C0,N3);

g1: NOT1 port map (N2,N5);

g2: NOT1 port map (N3,N6);

g3: NAND2 port map (A0,B0,N1);

g4: NOR2 port map (A0,B0,N2);

g5: NOR2 port map (N2,N4,C1);

g6: AND2 port map (N1,N3,N4);

g7: AND2 port map (N1,N5,N7);

g8: XOR2 port map (N6,N7,S0);

end structure;

Beginning of the body of the

architecture. There is an entry

for each gate: gate_identifier:

gate_name keywords port map

signal list: (input, output) or

(input1, input2, output)

End of architecture and

description

VHDL - Part 1 16

VHDL Operators

 Logical: and, or, nand, nor, xor, xnor, not

 Relational: =, /=, <, <=, >, >=

 Shift: sll, srl, sla, sra, rol, ror

• Form is sdt - s is for shift, d is direction (d = l is for left, d = r is for

right, and t is type (t = l is for logical, and t = r is for rotate).

 Adding +, -, &

• & is concatenation which permits one-dimensional operands to be place

end-to-end to form a combined operand.

• Example: For C_in and A(3:0), C_in & A is equivalent to a 5-bit

register with C_in as the MSB and A(0) as the LSB.

 Sign +, -

 Multiplying: * (multiply), /(divide), mod (modulus), rem

(remainder)

 Miscellaneous: abs (absolute value), ** (exponentiation)

VHDL - Part 1 17

Concurrent VHDL

 Signal assignment

• Uses signal assignment operator <=

• A signal is assigned its value after a delay, whether real
or a delta time, an infinitesimal interval required in
VHDL simulator implementations

 Examples:
•z <= a or b; --z assigned after an
--infinitesimal delta time

•z <= a nand b after 10 ns; -- z assigned

-- after inertial delay of 10 ns

•widget <= transport ("00" & a & b) after

10 ns;

-- assigned after transport delay of 10 ns;

-- & is the concatenation operator.

VHDL - Part 1 18

Concurrent VHDL Example Using Boolean

Equations

 The entity is the same as for the structural VHDL example

architecture dataflow_1 of IC7283 is

signal N1,N2: std_logic;

begin -- The assignment statements are

-- Boolean equations.

N1 <= not(A0 and B0);

N2 <= not(A0 or B0);

C1 <= not((N1 and (not C0)) or N2);

S0 <= ((not N2) and N1) xor (not(not C0));

end dataflow_1;

VHDL - Part 1 19

Concurrent VHDL Example Using "with

select"

library IEEE, lcdf_vhdl;

use IEEE.std_logic_1164.all;

entity IC7283_ws is

port (Z: in std_logic_vector(2 downto 0);

CS: out std_logic_vector(1 downto 0));

end IC7283_ws;

architecture dataflow_2 of IC7283_ws is

begin

VHDL - Part 1 20

Concurrent VHDL Example Using "with

select"

with Z select

CS <= "00" when "000",

"01" when "001",

"01" when "010",

"10" when "011",

"01" when "100",

"10" when "101",

"10" when "110",

"11" when "111",

"XX" when

others;

end dataflow_2;

Defines Z as the

conditioning signal.

Forms truth table

with inputs on the

right and outputs on

the left.

Assigns XX to CS for

the other std_logic

triples on Z

VHDL - Part 1 21

Second Example to Illustrate Entities,

Architectures and Constructs

 Priority Encoder

Inputs Outputs

D4 D3 D2 D1 D0 A2 A1 A0 V

0 0 0 0 0 X X X 0

0 0 0 0 1 0 0 0 1

0 0 0 1 X 0 0 1 1

0 0 1 X X 0 1 0 1

0 1 X X X 0 1 1 1

1 X X X X 1 0 0 1

VHDL - Part 1 22

library IEEE

use IEEE.std_logic_1164.all;

entity priority_encoder_we is

port (D: in std_logic_vector (4 downto 0);

A: out std_logic_vector (2 downto 0);

V: out std_logic);

end priority_encoder_we;

architecture dataflow_3 of priority_encoder_we is

begin

A <= "100" when D(4) = '1' -- Can customize condition

else "011" when D(4 downto 3) = "01" -- on each

else "010" when D(4 downto 2) = "001" -- line.

else "001" when D(4 downto 1) = "0001"

else "000" when D = "00001"

else "XXX";

V <= not(D = "00000");

end dataflow_3;

Concurrent VHDL Example Using

"when else"

VHDL - Part 1 23

Concurrent "when else" vs. "with select"

 with select

• Has simple form with

 condition signal stated only once

 only one word per line, otherwise

• Ideal for implementing binary (0,1) truth tables

 when else

• Has more complex form, but

• Able to implement much more complex decision
functions

 condensed truth tables with 0, 1, X entries in rows

 situations with limited cases of multiple condition
signals

VHDL - Part 1 24

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson

Education Legal Notice.

 Permission is given to incorporate these materials into classroom

presentations and handouts only to instructors adopting Logic and

Computer Design Fundamentals as the course text.

 Permission is granted to the instructors adopting the book to post these

materials on a protected website or protected ftp site in original or

modified form. All other website or ftp postings, including those

offering the materials for a fee, are prohibited.

 You may not remove or in any way alter this Terms of Use notice or

any trademark, copyright, or other proprietary notice, including the

copyright watermark on each slide.

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

