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Overview

= Part 1 - Basics and Constructs

« VHDL basics
= Notation
= Types & constructs
= Signals
= Entities and architectures
= Libraries and packages

 Structural VHDL Example
 VHDL Operators
« Concurrent VHDL Examples

= Part 2 - Behavioral and Hierarchical Description
= Part 3 - Finite State Machines
= Part 4 - Registers and Counters

= Part 5 - Algorithmic State Machine Example: Binary
Multiplier
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VHDL Notation - 1

= VHDL is:
- Case Insensitive
» Based on the programming language ADA
- Strongly-typed language

= Comments

-— [end of line]

= List separator: ,
= Statement terminator: ;
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VHDL Notation - 2

= Types and values

» Determined by use of packages (discussed later) that
define various types and type conversions
» |[EEE 1076 predefined types:
= type bit has two values 0 and 1
= type bit vector is an array of bits with integers as indices
= type integer has values over a specified range of integers
= type booleanis (TRUE, FALSE)

» |[EEE 1164 predefined types:
= type std ulogic hasninevaluesU, X,0,1,Z W, L, H, -

= type std ulogic_vector Isan array of bits with
natural (non-negative) numbers as the indices

= subtype std logicis std ulogic with definitions for
multiple signals applied to a single wire

= subtype X01Z is std_logic with the range X, 0,1, Z

VHDL -Partl 4



VHDL Notation - 3

= More on types
 Most frequently used type: std logic
= Provides values needed for simulation, notably X and z

* Frequently used type: integer

= Due to strong typing, essential for arithmetic operations

= Requires additional packages to be used to perform type
conversion between std logic and integer
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VHDL Notation - 4

= Constants

* Binary
= Single bit: 'O0', '1°
= Multiple bit: B"110001", B"11 0001"

(underline permitted for readability)

« Other bases
= Octal 0"61", O"6 1"
= Hex X"31", X"3 1"
= Decimal 49
= Real 49E+1
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VHDL Notation - 5

= |dentifiers
- Examples:A, B1, abc, run, stop, c_in
= Keywords

- Words reserved for special meanings

« Cannot be used as identifiers
- Examples: entity, architecture, and, if

« Shown here in color
- Shown In text in bold
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VHDL Constructs

= Structural:
 Describes interconnections of components (entities)
» Analogous to logic diagrams or netlists

= Concurrent VHDL or Dataflow:

» Consists of a collection of statements and processes
that execute concurrently

= Sequential VHDL.:

 Consists of the sequences of statements within
Processes

* Logic described may be combinational or sequential
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Signal Declaration

= Signals can be viewed as "'wires""

= Signals are concurrent and sequential objects

= Aport declarationis a signal declaration with in or out
added

= Examples: signal a, b: std logic;
signal widget: std logic vector (0 to 7);

-- 0 is MSB and 7 is LSB
signal c: std logic vector (2 downto 0);

-- 2 is MSB and 0 is LSB
port (DATA: in std logic_vector (15 downto 0));
signal product: std logic vector (0 to 31);
port (NA: out std logic);
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Entities and Architectures

"= entity

* The primary hardware abstraction in VHDL
* Provides: the entity name, the inputs and outputs
« Analogous to a symbol in a block diagram

" architecture

« Specifies the relationships between the inputs and outputs of a design
entity

« May be a mixture of structural, concurrent and sequential VHDL.
= Agiven entity may have multiple, different architectures.
= Examples of entities and architectures follow.
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Libraries and Packages

A library typically contains VHDL code or compiled VHDL code

A package consists of compiled VHDL code for multiple entities
and associated architectures

A package is stored in a library
Example: package func_prims is stored in library 1cdf vhdl

func_prims provides compiled code for the following delay-free
gates: and2, ..., and5, or2, ... or5, nand2, ..., nand5, nor2,
..., nor5, not, xor2, and xnor2 in which integers 2 through 5
specify the number of gate inputs.

Generation of the 1edf vhdl library and the func_prims
package:
- Generate a new library named 1cdf vhdl.

 Using the 1cdf vhdl library as the "work™ library, compile the file
func_prims.vhd (available from the VHDL web page) that contains
the component, entity and architecture descriptions for the package.
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First Example to lllustrate Entities,
Architectures and Constructs

= |[C7283 - a 1-bit adder from a commercial IC

Cy
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>
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Y Y
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A Structural VHDL Example

library IEEE, lcdf vhdl; Instantiation of two packages
use IEEE.std logic 1164.all, from two libraries. Applies

lcdf vhdl.func prims.all; only to the following entity.
entity IC7283 is Declaration of entity IC7283
port (A0,BO,CO: in std logic;/Declaration of 3 inputs and
Cl,S0: out std logic); |2 outputs of type std logic.

end IC7283; End of entity declaration

architecture structure of Declaration of architecture

IC7283 1is named structure for entity IC7283
component NOT1 Declarations of the gate com-
port(inl: in std logic; ponents to be used from package

outl: out std logic) |func_prims in library lcdf_vhdl
end component;
component NAND2
port(inl,in2: in std logic;
outl: out std logic);
end component;
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A Structural VHDL Example (continued)

component NOR2

port(inl,in2: in std logic;
outl: out std logic);

end component;

component AND2

port(inl,in2: in std logic;
outl: out std logic);

end component;

component XOR2

port(inl,in2: in std logic;
outl: out std logic);

end component;

signal N1,N2,N3,N4,N5,N6,6,N7:

std logic;

Declarations of 7 signals for

use in interconnecting the gates
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A Structural VHDL Example (continued)

begin

g0: NOT1l port map (CO,N3);
gl: NOT1l port map (N2,N5);
g2: NOT1l port map (N3,N6) ;
g3: NAND2 port map (AO,BO,N1);
g4: NOR2 port map (AO,BO,N2);
g5: NOR2 port map (N2,N4,Cl);
g6: AND2 port map (N1,N3,N4);
g7: AND2 port map (N1,N5,N7);
g8: XOR2 port map (N6,N7,S0);
end structure;

Beginning of the body of the
architecture. There is an entry
for each gate: gate identifier:
gate name keywords port map
signal list: (input, output) or
(inputl, input2, output)

End of architecture and
description
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VHDL Operators

Logical: and, or, nand, nor, xor, xnor, not
Relational: =, /=, <, <=, >, >=
Shift: s11, srl, sla, sra, rol, ror

« Formissdt - sis for shift, dis direction (d = 1 is for left,d = r is for
right, and tis type (t = 1 is for logical, and t = r is for rotate).

Adding +, -, &

* & iIs concatenation which permits one-dimensional operands to be place
end-to-end to form a combined operand.

- Example: ForC_inandA(3:0),C_in & Aisequivalent to a 5-bit
register with C_in as the MSB and A (0) as the LSB.

Sign +, -

Multiplying: * (multiply), /(divide), mod (modulus), rem
(remainder)

Miscellaneous: abs (absolute value), ** (exponentiation)
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Concurrent VHDL

= Signal assignment
» Uses signal assignment operator <=

« Asignal is assigned its value after a delay, whether real
or a delta time, an infinitesimal interval required in
VHDL simulator implementations

= Examples:

*zZ <= a Oor b, --z assigned after an
--infinitesimal delta time

ez <= a nand b after 10 ns; -- z assigned
-—- after inertial delay of 10 ns

- widget <= transport ("00" & a & b) after
10 ns;
-- assigned after transport delay of 10 ns;
-- & Is the concatenation operator.
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Concurrent VHDL Example Using Boolean
Equations

= The entity Is the same as for the structural VHDL example
architecture dataflow 1 of IC7283 is

signal N1,N2: std logic;

begin -- The assignment statements are
-- Boolean equations.

N1l <= not (A0 and BO0);

N2 <= not (A0 or BO);

Cl <= not((N1l and (not CO0)) or N2);

SO0 <= ((not N2) and N1l) xor (not(not CO0));
end dataflow 1;
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Concurrent VHDL Example Using "with
select™

library IEEE, lcdf vhdl;

use IEEE.std logic 1164.all;

entity IC7283 ws is

port (Z: in std logic vector (2 downto 0);
CS: out std logic vector(l downto 0));

end IC7283 ws;

architecture dataflow 2 of IC7283 ws is
begin
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Concurrent VHDL Example Using "with

select™

with Z select

CS <=

HOOH
HOl"
"01"
" 10 "
"01"
1} 10 1}
" 10 "
1A} 11 1A}
HXXH

when "000",
when "001",
when "010",
when "O011",
when "100",
when "101",
when "110",
when "111",
when
others;

end dataflow_z;

Defines Z as the
conditioning signal.

Forms truth table
with inputs on the
right and outputs on
the left.

Assigns XX to CS for
the other std logic

triples on Z
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Second Example to Illustrate Entities,
Architectures and Constructs

= Priority Encoder

Inputs Outputs
D4 (D3 | D2 | D1 | DO| A2 | A1l | A0 | V
0 0 0 0 0 X X X 0
0 0 0 0 1 0 0 0 1
0 0 0 1 | X 0 0 1 1
0 0 1 | X | X 0 1 0 1
0 1 | X | X | X 0 1 1 1
1 | X | X | X | X 1 0 0 1
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Concurrent VHDL Example Using
"when else"

library IEEE
use IEEE.std logic 1164.all;
entity priority encoder we is
port (D: in std logic vector (4 downto 0);
A: out std logic vector (2 downto 0);
V. out std logic);
end priority encoder we;
architecture dataflow 3 of priority encoder we is

begin

A <= "100" when D(4) = 'l' -- Can customize condition
else "01l1l" when D(4 downto 3) = "0l1l" -- on each
else "010" when D(4 downto 2) = "001" -- 1line.
else "001" when D(4 downto 1) = "0001"
else "000" when D = "00001"

else "XXX";
V <= not(D = "00000") ;
end dataflow 3;

VHDL - Part1 22



Concurrent ""when else'" vs. ""with select"

= with select

» Has simple form with
= condition signal stated only once
= only one word per line, otherwise

» ldeal for implementing binary (0,1) truth tables

= when else
» Has more complex form, but
 Able to Implement much more complex decision
functions

= condensed truth tables with 0, 1, X entries in rows

= situations with limited cases of multiple condition
signals
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