
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

VHDL
Part 3 – Chapter 6 – Finite State Machines

Logic and Computer Design Fundamentals

VHDL - Part 3 2

Overview

 Part 1 - VHDL Basics and Types of Descriptions

 Part 2 - Behavioral and Hierarchical Description

 Part 3 - Finite State Machines

• Finite State Machine (FSM)

• Sequential VHDL - Process Description

• VHDL Keywords and Conditional Constructs

• Example: Process VHDL for a Positive Edge-Triggered D Flip-Flop

• Sequential VHDL for Figure 6-19(a)

 Part 4 - Registers and Counters

 Part 5 - Algorithmic State Machine Example: Binary

Multiplier

VHDL - Part 3 3

Finite State Machine

 Finite State Machine (FSM) – a more
theoretical term for sequential circuit,
usually, a sequential circuit described at a
level higher than structural.

 Consists of:

• Inputs

• Outputs

• State

• Next state function, and

• Output function

VHDL - Part 3 4

Process Description

 So far, have used structural and concurrent (dataflow)
descriptions

 The above are limited in complexity and capability of
description

 Process – can be viewed as a replacement for a
concurrent assignment statement that permits more
complex descriptions

 A process uses procedural assignment statements similar
to those in a typical sequential programming language

 Processes are a key element of VHDL for the
description of both combinational and sequential
circuits.

 Multiple processes can execute concurrently with each
other and with concurrent assignment statements

VHDL - Part 3 5

Process Basics

 Process header:

• Optional: process_label followed by :

• Keyword process followed by sensitivity list – (list of signals or

expressions that cause the process to execute if any one or more

change)

 Process body may include:

• One or more variable declarations

 variable – alternative to signal that is used in statements that execute

sequentially rather that concurrently in processes

 A variable is available only within the process where it is declared

 keyword variable

 Sequential assignment := used instead of concurrent assignment <=

• The actual process beginning with begin and ending with end; or

end process;

VHDL - Part 3 6

New Control Flow Constructs

 There are a number of new control flow constructs, two
of which are:

• if-then-else

• case

 if-then-else syntax:
if condition then

sequence of statements

{elsif condition then

sequence of statements}

else

sequence of statements

end if

in which the { } indicate that the enclosed statements
can appear from 0 to any number of times

VHDL - Part 3 7

New Control Flow Constructs (continued)

 if-then-else Example: (A is a variable and B is a signal)

if X = '1' then

B <= D;

elsif Y = '0' then

begin

A := C;

B <= A;

end

else

B <= E;

end if

 Considering case later!

VHDL - Part 3 8

Sequential VHDL Example: Positive Edge-

Triggered D Flip-Flop with Reset

library ieee;

use ieee.std_logic_1164.all;

entity dff is

port(CLK, RESET, D : in std_logic;

Q : out std_logic);

end dff;

architecture pet_pr of dff is

begin

if (RESET = '1') then

Q <= '0';

elsif (CLK'event and CLK = '1')then

Q <= D;

end if;

end process;

end pet_pr;

VHDL - Part 3 9

New Flow Control Constructs (continued)

 case syntax:

case expression is

{when choices =>

sequence of statements}

end case;

in which the { } indicate that the enclosed
statements can appear from 0 to any number of
times.

VHDL - Part 3 10

New Flow Control Constructs (continued)

 case Example: Z: std_logic_vector(1:0);

case Z is

when "00" => B <= D;

when "01" =>

A := C;

B <= A;

when "10" => B <= A;

when "11" => B <= E;

end case;

VHDL - Part 3 11

Declaration of Type state_type

 In VHDL, the user can declare new state types.

 It is useful in describing FSM to declare a type
for states.

 Example: FSM has three states with identifiers
IDLE, INIT and RUN

type state_type is (IDLE, INIT, RUN);

signal state, next_state : state_type;

 This permits VHDL descriptions to use states
that have no binary codes assigned and no
signal of type std_logic or
std_logic_vector declared for
representing the register to store them.

VHDL - Part 3 12

Describing Sequential Circuits

 There are many different ways to organize models for
sequential circuits. We will use a model that
corresponds to the following diagram:

 A process corresponds to each of the 3 blocks in the
diagram.

Next State

Function

Output

Function

CLK

Reset

FFs

State Register

VHDL - Part 3 13

Sequential VHDL Example: Figure 6-19(a)

 VHDL for the sequential circuit (FSM) in Fig. 6-19(a) follows

library ieee;

use ieee.std_logic_1164.all;

entity fig619a is

port (CLK, RESET, X: in std_logic;

Z: out std_logic);

end fig619a;

architecture sequential of fig619a is

type state_type is (S0, S1, S2, S3);

signal state, next_state: state_type;

begin

VHDL - Part 3 14

Sequential VHDL Example: Figure 6-19(a)

(continued)

state_register: process (CLK, RESET)

begin

if(RESET = '1') then

state <= S0;

elsif (CLK'event and CLK = '1') then

state <= next_state;

end if;

end process; next_state_function: process (X, state)is

begin

case state is

when S0 =>

if X = '1' then next_state <= S1;

else next_state <= S0;

end if;

VHDL - Part 3 15

Sequential VHDL Example: Figure 6-19(a)

(continued)

when S1 =>

if X = '1' then next_state <= S3;

else next_state <= S0;

end if;

when S2 =>

if X = '1' then next_state <= S2;

else next_state <= S0;

end if;

when S3 =>

if X = '1' then next_state <= S2;

else next_state <= S0;

end if;

when others => next_state <= S0; -- Returns to S0 for

-- non-binary combinations

-- containing one or more X,Z,U,etc.

end case;

end process;

VHDL - Part 3 16

Sequential VHDL Example: Figure 6-19(a)

(continued)

output_function: process (X, state) is

begin

case state is

when S0 => Z <= '0';

when S1 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when S2 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when S3 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when others => Z <= '0'; -- Changes Z to 0 for non-binary

-- combinations containing one or more X,Z,U,etc.

end case;

end process;

end architecture;

VHDL - Part 3 17

Terms of Use

 © 2004 by Pearson Education,Inc. All rights reserved.

 The following terms of use apply in addition to the standard Pearson

Education Legal Notice.

 Permission is given to incorporate these materials into classroom

presentations and handouts only to instructors adopting Logic and

Computer Design Fundamentals as the course text.

 Permission is granted to the instructors adopting the book to post these

materials on a protected website or protected ftp site in original or

modified form. All other website or ftp postings, including those

offering the materials for a fee, are prohibited.

 You may not remove or in any way alter this Terms of Use notice or

any trademark, copyright, or other proprietary notice, including the

copyright watermark on each slide.

 Return to Title Page

http://www.pearsoned.com/legal/index.htm

