L_ogic and Computer Design Fundamentals

VHDL

Part 3 — Chapter 6 — Finite State Machines

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)




Overview

= Part 1 - VHDL Basics and Types of Descriptions
= Part 2 - Behavioral and Hierarchical Description

= Part 3 - Finite State Machines
* Finite State Machine (FSM)
» Sequential VHDL - Process Description
- VHDL Keywords and Conditional Constructs
- Example: Process VHDL for a Positive Edge-Triggered D Flip-Flop
- Sequential VHDL for Figure 6-19(a)

= Part 4 - Registers and Counters

= Part 5 - Algorithmic State Machine Example: Binary
Multiplier

VHDL -Part3 2



Finite State Machine

* Finite State Machine (FSM) —a more
theoretical term for sequential circuit,
usually, a sequential circuit described at a
level higher than structural.

= Consists of:
* Inputs
» Outputs
 State
« Next state function, and
» Output function

VHDL - Part3 3



Process Description

= So far, have used structural and concurrent (dataflow)
descriptions

= The above are limited in complexity and capability of
description

= Process — can be viewed as a replacement for a
concurrent assignment statement that permits more
complex descriptions

= A process uses procedural assignment statements similar
to those in a typical sequential programming language

= Processes are a key element of VHDL for the
description of both combinational and sequential
circuits.

= Multiple processes can execute concurrently with each
other and with concurrent assignment statements

VHDL - Part3 4



Process Basics

= Process header:
« Optional: process label followed by

- Keyword process followed by sensitivity list — (list of signals or

expressions that cause the process to execute if any one or more
change)

= Process body may include:

« One or more variable declarations

= variable — alternative to signal that is used in statements that execute
sequentially rather that concurrently in processes

= Avariable is available only within the process where it is declared
= keyword variable

= Sequential assignment := used instead of concurrent assignment <=

» The actual process beginning with begin and ending with end; or
end process;

VHDL -Part3 5



New Control Flow Constructs

= There are a number of new control flow constructs, two
of which are:

« if-then-else
* case
= If-then-else syntax:

if condition then
sequence of statements

{elsif condition then
sequence of statements}

else

sequence of statements
end 1if

In which the { } indicate that the enclosed statements
can appear from 0 to any number of times

VHDL -Part3 6



New Control Flow Constructs (continued)

= |f-then-else Example: (A is a variable and B is a signal)

ifX = '1l"'" then
B <= D;
elsif Y = '0' then
begin
A :=C;
B <= A4;
end
else
B <= E;
end 1if

= Considering case later!

VHDL - Part3 7



Sequential VHDL Example: Positive Edge-
Triggered D Flip-Flop with Reset

library ieee;
use ieee.std logic 1164.all;
entity dff is
port(CLK, RESET, D : in std logic;
Q : out std logic);
end dff;

architecture pet pr of dff is
begin

if (RESET = 'l') then

Q<= "'0";
elsif (CLK'event and CLK = 'l')then
Q <= D;

end if;
end process;
end pet pr;

VHDL -Part3 8



New Flow Control Constructs (continued)

= case syntax:
case expression is
{when choices =>
sequence of statements}
end case;

In which the { } indicate that the enclosed
statements can appear from 0 to any number of
times.

VHDL -Part3 9



New Flow Control Constructs (continued)

= case Example: z: std logic vector (1:0);
case Z 1is
when "00" => B <= D;
when "01" =>
A :=C;
B <= A;
when "10" => B <=
when "11" => B <= E;
end case;

L

VHDL - Part3 10



Declaration of Type state type

= In VHDL, the user can declare new state types.

= |t is useful in describing FSM to declare a type
for states.

= Example: FSM has three states with identifiers
IDLE, INIT and RUN

type state type is (IDLE, INIT, RUN);
signal state, next state : state type;
= This permits VHDL descriptions to use states

that have no binary codes assigned and no
signal of type std logicor

std logic vector declared for
representing the register to store them.

VHDL - Part3 11



Describing Sequential Circuits

= There are many different ways to organize models for
seqguential circuits. We will use a model that
corresponds to the following diagram:

CLK

Next State
Function

Output IS
Function

Reset State Register

= A process corresponds to each of the 3 blocks in the
diagram.

VHDL - Part3 12



Sequential VHDL Example: Figure 6-19(a)

= VHDL for the sequential circuit (FSM) in Fig. 6-19(a) follows
library ieee;
use ieee.std logic 1164.all;
entity fig6l9a is
port (CLK, RESET, X: in std logic;
Z: out std logic);
end fig61l9a;

architecture sequential of fig6l9a is

type state type is (SO, S1, s2, S3);
signal state, next state: state type;
begin

VHDL - Part3 13



Sequential VHDL Example: Figure 6-19(a)
(continued)

state register: process (CLK, RESET)

begin
if (RESET = 'l') then
state <= SO;
elsif (CLK'event and CLK = 'l') then

state <= next state;
end if;
end process; next state function: process (X, state)is
begin
case state is
when S0 =>
if X = 'l' then next state <= S1;
else next state <= S0;
end if;

VHDL - Part3 14



Sequential VHDL Example: Figure 6-19(a)
(continued)

when S1 =>

if X = 'l' then next state <= S3;
else next state <= SO;
end if;

when S2 =>
if X = 'l' then next state <= S2;
else next state <= SO;
end if;

when S3 =>
if X = 'l' then next state <= S2;
else next state <= S0;
end if;

when others => next state <= S0; -- Returns to SO for

-- non-binary combinations

-- containing one or more X,Z,U,etc.

end case;
end process;

VHDL - Part3 15



Sequential VHDL Example: Figure 6-19(a)
(continued)

output function: process (X, state) is
begin
case state is
when SO0 => Z <= '0"';
when S1 => if X 'l' then Z2 <= '0';
else <= '1l'; end if;
when S2 => if X 'l' then Z2 <= '0"';

N

else Z <= 'l'; end if;
when S3 => if X = 'l' then Z <= '0';
else Z <= 'l'; end if;
when others => Z <= '0'; -- Changes Z to 0 for non-binary

-- combinations containing one or more X,Z,U,etc.
end case;
end process;

end architecture;

VHDL - Part 3 16



Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.

The following terms of use apply in addition to the standard Pearson
Education Legal Notice.

Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.

Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.

You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.

Return to Title Page

VHDL - Part3 17


http://www.pearsoned.com/legal/index.htm

