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Overview

 Part 1 - VHDL Basics and Types of Descriptions

 Part 2 - Behavioral and Hierarchical Description

 Part 3 - Finite State Machines

• Finite State Machine (FSM)

• Sequential VHDL - Process Description

• VHDL Keywords and Conditional Constructs

• Example: Process VHDL for a Positive Edge-Triggered D Flip-Flop

• Sequential VHDL for Figure 6-19(a)

 Part 4 - Registers and Counters

 Part 5 - Algorithmic State Machine Example: Binary 

Multiplier
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Finite State Machine

 Finite State Machine (FSM) – a more 
theoretical term for sequential circuit, 
usually, a sequential circuit described at a 
level higher than structural.

 Consists of: 

• Inputs

• Outputs

• State

• Next state function, and

• Output function
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Process Description

 So far, have used structural and concurrent (dataflow) 
descriptions

 The above are limited in complexity and capability of 
description

 Process – can be viewed as a replacement for a 
concurrent assignment statement that permits more 
complex descriptions

 A process uses procedural assignment statements similar 
to those in a typical sequential programming language

 Processes are a key element of VHDL for the 
description of both combinational and sequential 
circuits.

 Multiple processes can execute concurrently with each 
other and with concurrent assignment statements
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Process Basics

 Process header:

• Optional: process_label followed by :

• Keyword process followed by sensitivity list – (list of signals or 

expressions that cause the process to execute if any one or more 

change)

 Process body may include:

• One or more variable declarations

 variable – alternative to signal that is used in statements that execute 

sequentially rather that concurrently in processes

 A variable is available only within the process where it is declared

 keyword variable 

 Sequential assignment := used instead of concurrent assignment <=

• The actual process beginning with begin and ending with end; or 

end process;
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New Control Flow Constructs

 There are a number of new control flow constructs, two 
of which are:

• if-then-else

• case

 if-then-else syntax:
if condition then

sequence of statements

{elsif condition then

sequence of statements}

else

sequence of statements

end if

in which the { } indicate that the enclosed statements 
can appear from  0 to any number of times
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New Control Flow Constructs (continued)

 if-then-else Example: (A is a variable and B is a signal)

if X = '1' then

B <= D; 

elsif Y = '0' then

begin

A := C;

B <= A;

end

else

B <= E;

end if

 Considering case later!
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Sequential VHDL Example: Positive Edge-

Triggered D Flip-Flop with Reset

library ieee;

use ieee.std_logic_1164.all;

entity dff is

port(CLK, RESET, D : in std_logic;

Q : out std_logic);

end dff;

architecture pet_pr of dff is

begin

if (RESET = '1') then

Q <= '0';

elsif (CLK'event and CLK = '1')then

Q <= D;

end if;

end process;

end pet_pr;
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New Flow Control Constructs (continued)

 case syntax:

case expression is

{when choices => 

sequence of statements}

end case;

in which the { } indicate that the enclosed 
statements can appear from  0 to any number of 
times.
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New Flow Control Constructs (continued)

 case Example: Z: std_logic_vector(1:0);

case Z is

when "00" => B <= D;

when "01" => 

A := C; 

B <= A;

when "10" => B <= A; 

when "11" => B <= E;

end case;
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Declaration of Type state_type

 In VHDL, the user can declare new state types.

 It is useful in describing FSM to declare a type 
for states.

 Example: FSM has three states with identifiers 
IDLE, INIT and RUN

type state_type is (IDLE, INIT, RUN);

signal state, next_state : state_type;

 This permits VHDL descriptions to use states 
that have no binary codes assigned and no 
signal of type std_logic or 
std_logic_vector declared for 
representing the register to store them.
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Describing Sequential Circuits

 There are many different ways to organize models for 
sequential circuits. We will use a model that 
corresponds to the following diagram:

 A process corresponds to each of the 3 blocks in the 
diagram.

Next State 

Function 

Output 

Function

CLK 

Reset

FFs

State Register
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Sequential VHDL Example: Figure 6-19(a)

 VHDL for the sequential circuit (FSM) in Fig. 6-19(a) follows

library ieee;

use ieee.std_logic_1164.all;

entity fig619a is

port (CLK, RESET, X: in std_logic;

Z: out std_logic);

end fig619a;

architecture sequential of fig619a is

type state_type is (S0, S1, S2, S3);

signal state, next_state: state_type;

begin
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Sequential VHDL Example: Figure 6-19(a) 

(continued)

state_register: process (CLK, RESET)

begin

if(RESET = '1') then

state <= S0;

elsif (CLK'event and CLK = '1') then

state <= next_state;

end if;

end process; next_state_function: process (X, state)is

begin

case state is

when S0 =>

if X = '1' then next_state <= S1;

else next_state <= S0;

end if;
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Sequential VHDL Example: Figure 6-19(a) 

(continued)

when S1 =>

if X = '1' then next_state <= S3;

else next_state <= S0;

end if;

when S2 => 

if X = '1' then next_state <= S2;

else next_state <= S0;

end if;

when S3 => 

if X = '1' then next_state <= S2;

else next_state <= S0;

end if;

when others => next_state <= S0; -- Returns to S0 for

-- non-binary combinations

-- containing one or more X,Z,U,etc.

end case;

end process;
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Sequential VHDL Example: Figure 6-19(a) 

(continued)

output_function: process (X, state) is

begin

case state is

when S0 => Z <= '0';

when S1 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when S2 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when S3 => if X = '1' then Z <= '0';

else Z <= '1'; end if;

when others => Z <= '0'; -- Changes Z to 0 for non-binary

-- combinations containing one or more X,Z,U,etc.

end case;

end process;

end architecture;    
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