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A Resistor in the s Domain

Rl In time domain v=Ri (Ohm’s Law).
\ | Because R is constant, the Laplace transform of the equation
is V(s)=RI(s). This is the voltage-current relation for a

resistor in s-domain.
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An Inductor in the s Domain

Consider that the inductor carries an initial current of

* l | fo °The v-i relation in the time-domain is V = L%
v i The Laplace transform is V(s)
U V(s)=LsI(s)-i(0°)]=sLI(s)-LI, ()=~ +7
+ ‘ l !
%sqI +
v Vv % sL Iy
S
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A Capacitor in the s Domain

+ li Assume that the capacitor is initially charged to V,, volts.
V—"C" The voltage-current relation is j — (:ﬂ
B Taking the Laplace transform of the eqL(lja;[tion
1(s)=C[sV(s)—V(07)]=sCV(s)-CV, +

I — 1/sC

1 V, I
Vis)= (SC)I(S)J“_ . @ CPVO/S
1/sC=——=

Circuit Analysis II Spring 2005 Osman Parlaktuna




W

i The Natural Response of an RC Circuit

1/sC I +

Vo slc 1(s) + RI(s)

CV, Yo%
RCs+1 s+ (Y%c)

1(s) =

VA . t
i = Eoe%‘cu(t) — v = Ri =V e *u(t)
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i The Step Response of a Parallel Circuit

Opening the switch results in a

5l | step change in the current applied
= | to the circuit
: . én iyt
i (1]
.24 mA EnF _.Gis i V V I dc

V4—t—=-2
SCV + . + 1= s
Id%
V = =
| T + <+ Cac)s+ (o)
—% /;% R v 3L¢’L I lgc c
= = - s[s® + (Fac)s + (He)]
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- 384 x 10°
“ 5(s® +64000s +16 x10°)

. 384 x 10°
L~ s(s+ 32000 — j24000)(s +32000+ j24000)
I K + K, + K,
L= s " 5+32000— j24000 ' s+32000+ j24000
384 x 10° .
K, = 16 < 10° =24 x10
384 x10°
K, = . . =20x107°/126.87°
2~ (232000 + j24000)( j48000) <~ /126

i (t) =[24+40e°**" cos(24000t +126.87°)Ju(t)mA
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Transient Response of a
i Parallel RLC Circuit

Replacing the dc current source with a sinusoidal current source

sl

I, =1,c0st A=1,(S)=—"-
S "+w
B (%)s
YO = s o)
V (s) = (7e)*
(s + @*)[S* + (%c)S+ (o)
|L(S) :V(S) _ (I%C)S

sL (8° +@*)[s® + (o) + (Ho)]
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|, =24mA, ®=40000rad /s

384x10°s
I (s) = 2 8/ 2 8
(s°+16x10%)(s“ +64000s +16x10%)
1.(s)= .Kl + .Kl + %, . + %, :
s— J40000 s+ jJ40000 s+32000-— j24000 s+32000+ jJ24000
384x10° (j40000)

K, =— _ : =7.5x107°/-90°
(j80000)(32000 + j16000)(32000 + j64000)

« _ 384 x10°(~32000 + j24000)

2~ (=32000 — j16000)(—32000+ j64000)( j48000)
i, (t) = (15sin 40000t — 25e°*" sin 24000t)u(t)mA
I,.. =15sin 40000t mA

Lss

=12.5x107% 90°
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Mesh Analysis

T = (42-|—8.48)|1 —42|2

0=-421,+(90+10s)l,
40(s +9) 15 14 1

481}
336V

1T g(s+2)(s+12) s s+2 s+12
18 7 84 14
> 5(s+2)(s+12) s s+2 s+12
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i, = (15-14e —e " )u(t) A,
i, =(7-84e " +14e ™ u(t) A

. 336(90)
i (0) = 2248 =15 A
i (o0) = —155?)2) ~7A
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Thevenin’s Theorem

Use the Thevenin’s theorem to find v (t).

., (480/s)(0.002s) 480

f T T 90400025 s+10°
0.0025(20) ~ 80(s + 7500)

20+0.002s  s+10°

m =00+

&
-

\
0

Circuit Analysis II Spring 2005 Osman Parlaktuna



W
i 480/ (s+10")

e = [80(s + 7500) / (s +10")]+[(2 x10°)/ s]
- 6S B 6S

¢ s?+10000s+25x%10° (s+5000)°
o — 30000 N 6

¢ (s+5000)* s+5000

i_(t) = (-30000te " + 6" )u(t) A

y :il _ 2 x10° 6s  _ 12 x10°
° sC ¢ s (s+5000)° (s+5000)°
v_(t) =12 x10°te ™ *™u(t)V
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MUTUAL INDUCTANCE EXAMPLE

The switch has been in position

a for a long time. At t=0,

the switch moves instantaneously
to position b. Find i,(t)

,(0° ):_ =3A, 1,(0)=0
= 0 Wl e Using the T-equivalent of the
W= M inductors, and s-domain
S - § equivalent gives the following circuit
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(3+2s)l,+2sl, =10
§1on 2sl, +(12+8s)1, =10

Circuit Analysis II

25 125 125
2 (s+1D(s+3) s+1 s+3
i,(t)=125(e™" —e " )u(t) A
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THE TRANSFER FUNCTION

The transfer function is defined as the ratio of the Laplace
transform of the output to the Laplace transform of the input
when all the initial conditions are zero.

H(s) = Y(S) Where Y(s) is the Laplace transform of the output,
X(s) and X(s) is the Laplace transform of the input.

1(S) 1
H.(s)=¢ (s) R+sL+1/sC
R sL g
AVAVAVE TN -
> _ sC
v, V€ S VY SZ LC + RCs+1
- V(s) 1
s Hz(S) -

— 2
V,(s) sLC+RCs+1
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i EXAMPLE

1000 {1

250 ()
~1uF
50 mH
*

1000

250 }

-—
nlo
-

0.05s

Circuit Analysis II

Find the transfer function Vy/V,
and determine the poles and
zeros of H(s).

VO _Vg N VO V S
1000 250+ 0.05s 106
1000(s + 5000)

0~ 2460005+ 25%x10° ¢

sy - Vo __1000(s +5000)
V. s+ 6000s+25x10°

g

p, = —3000 + j4000, p, =-3000— j4000
z, = —5000

=0
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Assume that v,(t)=50tu(t). Find v,(t). Identify the transient and
steady-state components of vy(t).

1000(s +5000) 50

(s* + 6000s + 25 x 10°) s°

Kl K; KZ K3

= : + _ +—=+
s+3000—- j4000 s+3000+ j4000 s S

K, =5v5x10" /79.7°, K, =10, K,=-4x10"

V, = [10+/5 x 10773 cos(4000t + 79.7°)

+10t — 4 x10*Ju(t)V

Vo(8) = H(s)V,(s) =

Circuit Analysis II Spring 2005 Osman Parlaktuna



The transient component is generated by the poles of
the transfer function and it is

10+/5 x 1074 &3 cos(4000t + 79.7°)

The steady-state components are generated by the poles
of the driving function (input).

(10t — 4 x107*)u(t)
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Time Invariant Systems

If the input delayed by a seconds, then
L{x(t—a)u(t —a)} = e*X(s)

Y(s)=H(s)X(s)e™
y(t)= LY (s)} = y(t—a)u(t—a)

Therefore, delaying the input by a seconds simply delays the
response function by a seconds. A circuit that exhibits this
characteristic is said to be time invariant.
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Impulse Response

If a unit impulse source drives the circuit, the response of the
circuit equals the inverse transform of the transfer function.

X(t) = 5(t) = X(s) =1
Y(s)=H(s)
y(t) = L*{H(s)} = h(t)

Note that this is also the natural response of the circuit
because the application of an impulsive source is equivalent
to instantaneously storing energy in the circuit.
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CONVOLUTION INTEGRAL

/]X\(t) Ty(®)
OO N R .

>t
a | b N b

> t

Circuit N is linear with no initial stored energy. If we know the
form of x(t), then how is y(t) described? To answer this
question, we need to know something about N. Suppose we know
the impulse response of the system.

[

 y(t) =h(t)
x(t) = 5(t)

(1) x(t)
| >t -

Y
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Instead of applying the unit impulse at t=0, let us suppose that it is
applied at t=A. The only change in the output is a time delay.

S(t—2)—s N ———ht-2)

Next, suppose that the unit impulse has some strength other than
unity. Let the strength be equal to the value of x(t) when t= A. Since
the circuit is linear, the response should be multiplied by the same

constant x(A)

X(A)S(t-2) —s] N — x(Dh(t-A2)
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Now let us sum this latest input over all possible values of A and
use the result as a forcing function for N. From the linearity, the
response is the sum of the responses resulting from the use of all

possible values of A

[xsa-adr ]

N

— f:x(/I)h(t —2)dA

From the sifting property of the unit impulse, we see that the input is

simply x(t)

X(t) —

- f:x(/l)h(t—i)d/l

Circuit Analysis II
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Our question is now answered. When x(t) is known, and h(t), the
unit impulse response of N is known, the response is expressed by

y(t)= [ x(Ah(t—A)dA
This important relation is known as the convolution integral. It
is often abbreviated by means of y(t) = X(t)*h(t)

Where the asterisk is read “convolved with”, If we let z=t-A,
then dA=-dz, and the expression for y(t) becomes

y(t)=[ - x(t-2)h(z)dz = jjx(t ~7)h(2)dz

y(t) = x() *h(t) = j“; x(2)h(t —2)dz = j i x(t — 2)h(z)dz
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Convolution and Realizable Systems

For a physically realizable system, the response of the system
cannot begin before the forcing function is applied. Since h(t)
is the response of the system when the unit impulse is applied at t=0,
h(t) cannot exist for t<0. It follows that, in the second integral, the
integrand is zero when z<0; in the first integral, the integrand is zero
when (t-z) is negative, or when z>t. Therefore, for realizable
systems the convolution integral becomes

y(t) = X(t) *h(t) = jtw x(2)h(t — 2)dz = j: x(t — 2)h(z)dz
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EXAMPLE

i 2+ X(t)

o hyy 9 h(t) = 2e'u(t)
1 t

X(t) =u(t)—u(t-1)
y(t) = x(t)*h(t) = j0°° x(t — z)h(z)dz
= jo‘”[u(t— 7)—u(t—z —1)][2e *u(z)]dz
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i Graphical Method of Convolution
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Since h(z) does not exist prior to t=0 and v,(t-z) does not exist
for z>t, product of these functions has nonzero values only in
the interval of 0<z<t for the case shown where t<1.

y(t) = .E 2e’dz=2(1-¢7") 0<t<1

When t>1, the nonzero values for the product are obtained in
the interval (t-1)<z<t.

y(t) = t_12e‘zdz —2(e-1et t>1
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EXAMPLE

Apply a unit-step function, x(t)=u(t), as the input to a system whose
impulse response is h(t)=u(t)-2u(t-1)+u(t-2), and determine the
corresponding output y(t)=x(t)*h(t).

(1)

~= [

0
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When t<0, there is no overlap and y(t)=0 for t<0

For 0<t<1, the curves overlap from z=0 to z=t and product is 1.
Thus,

y(t):jotldz=t O<t<1

When 1<t<2, h(t-z) has slid far enough to the right to bring under
the step function that part of the negative square extending from
0 to z=t-1. Thus,

-1 {
y(t) = jo —1dz+ | 1dz =- Z|

t-1 ‘t
0

=2-t, 1<t<?2

t-1
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Finally, when t>2, h(t-z) has slid far enough to the right so that it
lies entirely to the right of z=0

— [ —1dz+[1dz =0 2
y(t)_jt_z—l Z+] ldz= t>
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Convolution and the Laplace Transform

Let F,(s) and F,(s) be the Laplace transforms of f;(t) and f,(t),
respectively. Now, consider the laplace transform of f,(t)*f,(t),

O RO} =L" (), (t-2d2,

Since we are dealing with the time functions that do not exist
prior to t=0-, the lower limit can be changed to 0

L) * 0} =[] et () f,(t-A)dt]dA

Since et does not depend on A, we can move this inside the inner
integral. Reversing the order of integration

L{f (t)* f,(t)}= O°f | joof f,(1)f,(t—A)dA]dt
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f;(A) does not depend on t, and it can be moved outside the inner

integral eco 0 g
Lif,0)* £, = | (D[] e f,(t-2)dt]d2
= [ (I et £, (x)dx]dA

= [ (e[ e f,(x)dx]dA

= [ f.(A)e [F,(s)1dA

=F,(s)|_ fu(A)e*dA
= Fy()- F,(5)
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i STEADY-STATE SINUSOIDAL RESPONSE

If the input of a circuit is a sinusoidal function X(t) = Acos(at + 6)

X(t) = Acoswt cos @ — Asin wtsin @
(Acosd)s (AsinO)w

X(s) = $° + w° S+ w°
_ A(scos@—wsin0)
- S+ w°
A(scosf— wsinf)
Y(s)=H(s
()=HEO— 5
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The partial fraction expansion of Y(s) is

K K’
Y(S) = . L terms generated by the poles of H(s
(s) S_Jw+s+Jw+Z g y the p (s)

If the poles of H(s) lie in the left half of the s plane, the corresponding
time-domain terms approach zero as t increases and they do not
contribute to the steady-state response. Thus only the first two terms

determine the steady-state response.
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~ H(s)A(scos8— wsin 0)
N S+ Jo

Kl
S=jw
~ H(Jo)A(Jwcosd - wsin O)
- 2w

~ H(Jw)A(cosO+ jsing) 1

=~ H(jw)Ae'
> > H(jw)Ae

H(j) =[H(jo)e

K, = §|H ( jw)|ej[9+¢(w)]
Vo (1) = AH(jo)|cos[et + 6+ ¢()]

Circuit Analysis II Spring 2005
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i EXAMPLE

If the input is 120 cos(5000t+30°)V, find the steady-state expression for v,

1000(s + 5000
HE) =2, 600(03 +25 x)106
H(I000) = 5 000(6000) 25X 10
_ 1§ 6j1 _ \65 [ 40
Voo, = 1202 cos(5000t +30° — 45°)

= 20+/2 cos(5000t —15° )V
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THE IMPULSE FUNCTION
IN CIRCUIT ANALYSIS

) |

izl

Circuit Analysis II

The capacitor is charged to an initial voltage

V, at the time the switch is closed. Find the
expression for i(t) as R— 0
R S
R+(%c)+ ()  s+(Jre.)

C1C2 V
“=Cic, = (EO e‘”“ﬁj u(t)
As R decreases, the initial current (Vy/R)
increases and the time constant (RC,)

decreases. Apparently i is approaching an
impulse function as R approaches zero.
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The total area under the i versus t curve represents the total charge
transferred to C, after the switch is closed.

o \/
Area=(= j ] Eoe‘” "Cedt =V,C,

Thus, as R approaches zero, the current approaches an impulse
strength V,C.. | —V,C.5(t)
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Series Inductor Circuit

Find v,. Note that opening the switch forces
_, aninstantaneous change in the current L,.

i(01)=10A, i,(07)=0

Vo Vo-[(%)+30] _

2s+15 3s+10

~40(s+75) . 12(s+75)

" 5(s+5) 5+5
60 10

Vo=—+12+—
S S+5

V,(t) =125(t) + (60 +10e " u(t)V

100 3H

100V

0
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Does this solution make sense? To answer this question, first let
us determine the expression for the current.

(209¢)+30 _ﬂ+ 2

5s+25 S S+5
i(t)=(4+2eu(t)A

Before the switch is opened, current through L, is 10A and in L, is O A,
after the switch is opened both currents are 6A. Then the current in L,
changes instantaneously from 10 A to 6 A, while the current in L, changes
instantaneously from 0 to 6 A. How can we verify that these instantaneous
jumps in the inductor current make sense in terms of the physical behavior

of the circuit?

Circuit Analysis II
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Switching operation places two inductors in series. Any impulsive voltage
appearing across the 3H inductor must be balanced by an impulsive
voltage across the 2H inductor. Faraday’s law states that the induced
voltage is proportional to the change in flux linkage (v = 9%)

before switching

A=L1 + L1, =3(10)+2(0) =30 Wb - turns
After switching A=(L +L,)i(0")=5i(0")
30

1I(0")=—=06A
1 .

Thus the solution agrees with the principle of the conservation
of flux linkage.
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i Impulsive Sources

When the voltage source is applied, the initial
energy in the inductor is zero; therefore the initial
current is zero. There is no voltage drop across R,
so the impulsive source appears directly across L

Voa(t) L
Y LV,
= Ej V,o(x)dx = 1(07) = T A
Thus, in an infinitesimal Current in the circuit decays to
moment, the impulsive voltage zero in accordance with the
source has stored natural response of the circuit
2 2 _ V -
WzlL(ﬁj _ 1V i = 2o (Wiy(t)
2 \L/ 2L L
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i EXAMPLE

Circuit Analysis II

Find i(t) and v,(t) for t>0

I_50+(1°%)+30
25455
12 4
=4 —
S+5 s
i(t) = (1267 + 4)u(t) A
60 60
V,=(15+2s)] =32
o = (15+29) 515 s

v, (t) = 325(t) + (60~ + 60)u(t)V
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