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DISADVANTAGES OF PASSIVE
FILTER CIRCUITS

 Passive filter circuits consisting of resistors, inductors, 
and capacitors are incapable of amplification, 
because the output magnitude does not exceed the 
input magnitude.

 The cutoff frequency and the passband magnitude of 
passive filters are altered with the addition of a 
resistive load at the output of the filter.

 In this section, filters using op amps will be 
examined. These op amp circuits overcome the 
disadvantages of passive filter circuits.
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FIRST-ORDER LOW-PASS FILTER
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PROTOTYPE LOW-PASS FIRST-
ORDER OP AMP FILTER

Design a low-pass first-order filter with R1=1Ω, having a 
passband gain of 1 and a cutoff frequency of 1 rad/s.
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FIRST-ORDER HIGH-PASS FILTER
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Prototype high-pass 
filter with R1=R2=1Ω
and C=1F. The cutoff 
frequency is 1 rad/s. 
The magnitude at the 
passband is 1.
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EXAMPLE

Figure shows the Bode 
magnitude plot of a 
high-pass filter. Using 
the active high-pass 
filter circuit, determine 
values of R1 and R2. 
Use a 0.1μF capacitor.

If a 10 KΩ load resistor 
is added to the filter, 
how will the magnitude 
response change?
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Notice that the gain in the passband is 20dB, therefore, K=10. 
Also note the the 3 dB point is 500 Hz. Then, the transfer 
function for the high-pass filter is
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2 Because the op amp in the 
circuit is ideal, the addition of 
any load resistor has no effect 
on the behavior of the op amp. 
Thus, the magnitude response 
of the high-pass filter will 
remain the same when a load 
resistor is connected.
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SCALING

In the design of both passive and active filters, working with 
element values such as 1 Ω, 1 H, and 1 F is convenient. After 
making computations using convenient values of R, L, and C, 
the designer can transform the circuit to a realistic one using 
the process known as scaling. There are two types of scaling: 
magnitude and frequency.

A circuit is scaled in magnitude by multiplying the impedance 
at a given frequency by the scale factor km. Thus, the scaled 
values of resistor, inductor, and capacitor become

mmm kCCLkLRkR /   and       

where the primed values are the scaled ones.



Circuit Analysis II Spring 2005 Osman Parlaktuna

In frequency scaling, we change the circuit parameter so that 
at the new frequency, the impedance of each element is the 
same as it was at the original frequency. Let kf denote the 
frequency scale factor, then

ff kCCkLLRR /    and    /       

A circuit can be scaled simultaneously in both magnitude and 
frequency. The scaled values in terms of the original values are
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EXAMPLE

This circuit has a center frequency of 1 rad/s, a 
bandwidth of 1 rad/s, and a quality factor of 1. Use 
scaling to compute the values of R and L that yield 
a circuit with the same quality factor but with a 
center frequency of 500 rad/s. Use a 2 μF capacitor.

The frequency scaling factor is: 59.3141
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EXAMPLE

Use the prototype low-pass op amp filter and scaling to compute 
the resistor values for a low-pass filter with a gain of 5, a cutoff 
frequency of 1000 Hz, and a feedback capacitor of 0.01 μF.
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To meet the gain specification, we can adjust one of the 
resistor values. But, changing the value of R2 will change the 
cutoff frequency. Therefore, we can adjust the value of R1 as 
R1=R2/5=3183.1 Ω.
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OP AMP BANDPASS FILTERS

A bandpass filter consists of three separate components

1. A unity-gain low-pass filter whose cutoff frequency 
is wc2, the larger of the two cutoff frequencies

2. A unity-gain high-pass filter whose cutoff frequency 
is wc1, the smaller of the two cutoff frequencies

3. A gain component to provide the desired level of 
gain in the passband.

These three components are cascaded in series. The 
resulting filter is called a broadband bandpass 
filter, because the band of frequencies passed is 
wide. 
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Standard form for the transfer function of a bandpass filter is
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Compute the values of RL and CL to give us the desired 
cutoff frequency 
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Compute the values of RH and CH to give us the desired 
cutoff frequency 
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To compute the values of Ri and Rf, consider the magnitude 
of the transfer function at the center frequency wo
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EXAMPLE

Design a bandpass filter to provide an amplification of 2 
within the band of frequencies between 100 and 10000 Hz. 
Use 0.2 μF capacitors.
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Arbitrarily select Ri=1 kΩ, then Rf=2Ri=2 KΩ
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OP AMP BANDREJECT FILTERS

Like the bandpass filters, the bandreject filter consists 
of three separate components

• The unity-gain low-pass filter has a cutoff frequency of 
wc1, which is the smaller of the two cutoff frequencies.

• The unity-gain high-pass filter has a cutoff frequency of 
wc2, which is the larger of the two cutoff frequencies.

• The gain component provides the desired level of gain 
in the passbands.

The most important difference is that these components 
are connected in parallel and using a summing amplifier.
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HIGHER ORDER OP AMP FILTERS

All of the filters considered so far are nonideal and have a slow 
transition between the stopband and passband. To obtain a 
sharper transition, we may connect identical filters in cascade.

For example connecting two first-order low-pass identical 
filters in cascade will result in -40 dB/decade slope in the 
transition region. Three filters will give -60 dB/decade slope, 
and four filters should have -80 db/decade slope. For a 
cascaded of n protoptype low-pass filters, the transfer 
function is

n
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But, there is a problem with this approach. As the order of 
the low-pass is increased, the cutoff frequency changes. As 
long as we are able to calculate the cutoff frequency of the 
higher-order filters, we can use frequency scaling to 
calculate the component values that move the cutoff 
frequency to its specified location. For an nth-order low-
pass filter with n prototype low-pass filters
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EXAMPLE

Design a fourth-order low-pass filter with a cutoff frequency of 
500 rad/s and a passband gain of 10. Use 1 μF capacitors. 

39.7222
435.0

)500(2
rad/s 435.0124

4 


 fc k

46.138
)101(39.7222

1
6





mk

Thus, R=138.46Ω and C=1 μF. To set the 
passband gain to 10, choose Rf/Ri=10. For 
example Rf=1384.6 Ω and Ri =138.46 Ω.



Circuit Analysis II Spring 2005 Osman Parlaktuna

+

+vi

138.46Ω

1μF

138.46Ω

+

138.46Ω

1μF

138.46Ω

+

138.46Ω

1μF

138.46Ω

+

138.46Ω

1μF

138.46Ω

+

138.46Ω

1384.6Ω

+

vo



Circuit Analysis II Spring 2005 Osman Parlaktuna

By cascading identical prototype filters, we can increase the 
asymptotic slope in the transition and control the location of 
the cutoff frequency. But the gain of the filter is not constant 
between zero and the cutoff frequency. Now, consider the 
magnitude of the transfer function for a unity-gain low-pass 
nth order cascade.
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BUTTERWORTH FILTERS

A unity-gain Butterworth low-pass filter has a transfer 
function whose magnitude is given by
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1. The cutoff frequency is wc for all values of n.

2. If n is large enough, the denominator is always close to 
unity when w<wc.

3. In the expression for |H(jw)|, the exponent of w/wc is 
always even.
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Given an equation for the magnitude of the transfer 
function, how do we find H(s)? To find H(s), note that if N 
is a complex quantity, the |N|2=NN*. Then,
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The procedure for finding H(s) for a given n is:

1. Find the roots of the polynomial 1+(-1)ns2n=0

2. Assign the left-half plane roots to H(s) and the 
right-half plane roots to H(-s)

3. Combine terms in the denominator of H(s) to 
form first- and second-order factors
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EXAMPLE

Find the Butterworth transfer function for n=2.

For n=2,   1+(-1)2s4=0, then s4=-1=1  1800
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Normalized Butterworth Polynomials
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BUTTERWORTH FILTER CIRCUITS

To construct a Butterworth filter circuit, we cascade first- and 
second-order op amp circuits using the polynomials given in 
the table. A fifth-order prototype Butterworth filter is shown in 
the following figure:
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EXAMPLE

Design a fourth-order low-pass filter with a cutoff frequency of 
500 Hz and a passband gain of 10. Use as many 1 KΩ resistor 
as possible. 

From table, the fourth-order Butterworth polynomial is

)1848.1)(1765.0( 22  ssss

For the first stage: C1=2/0.765=2.61 F, C2=1/2.61=0.38F

For the second stage: C3=2/1.848=1.08 F, C4=1/1.08=0.924F

These values along with 1-Ω resistors will yield a fourth-order 
Butterworth filter with a cutoff frequency of 1 rad/s.
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A frequency scale factor of kf=3141.6 will move the cutoff 
frequency to 500 Hz. A magnitude scale factor km=1000 will 
permit the use of 1 kΩ resistors. Then,

R=1 kΩ, C1=831 nF, C2=121 nF, C3= 344 nF, C4=294 nF, 
Rf= 10 kΩ.
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The Order of a Butterworth Filter

As the order of the Butterworth filter increases, the magnitude 
characteristic comes closer to that of an ideal low-pass filter. 
Therefore, it is important to determine the smallest value of n 
that will meet the filtering specifications.
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If wp is the cutoff frequency, then 
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EXAMPLE

Determine the order of a Butterworth filter that has a cutoff 
frequency of 1000 Hz and a gain of no more than -50 dB at 
6000 Hz. What is the actual gain in dB at 6000 Hz?

21.3
)1000/6000(log

)50(05.0

10




n

Because the cutoff frequency is given,           and 10-0.1(-50)>>11p

Therefore, we need a fourth-order Butterworth filter. The 
actual gain at 6000 Hz is

dB 25.62
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EXAMPLE

Determine the order of a Butterworth filter whose magnitude is 
10 dB less than the passband magnitude at 500 Hz and at least 
60 dB less than the passband magnitude at 5000 Hz.

52.2
)10(log

)31000(log

105005000

1000110      ,3110

10

10

)60(1.0)10(1.0





 

n

ff psps

sp




Thus we need 
a third-order 
filter.

Determine the cutoff frequency. 

rad/s  26.2178
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BUTTERWORTH HIGH-PASS FILTERS

To produce the second-order factors in the Butterworth 
polynomial, we need a circuit with a transfer function of 
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Setting C= 1F
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NARROWBAND BANDPASS AND 
BANDREJECT FILTERS

The cascade or parallel component designs from simpler 
low-pass and high-pass filters will result in low-Q filters. 
Consider the transfer function 
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Thus with discrete 
real poles, the 
highest quality 
factor bandpass 
filter we can 
achieve has Q=1/2


