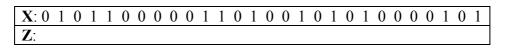
Name **Student ID:**

Digital Systems II (A-B), Midterm I

<u>90 minutes</u>

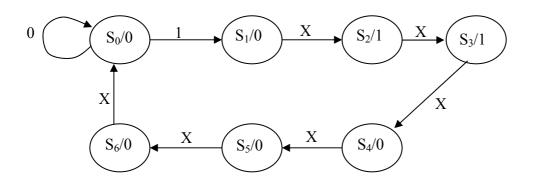
- 1. Consider the state table that represents a sequential circuit with one input X and one output Z.
 - Is this a Moore or Mealy machine? Explain briefly. (03 pts) a)
 - Sketch the waveform for the flip-flop outputs A and B b) referring to the state table. Assume that A=B=0 and the output Z=0 initially. The flip-flops are triggered at the positive edge. (12 pts)

	Present		Next State				Output	a)						
	State		X=0		X=1									
	Α	В	Α	В	Α	В	Z							
	0	0	0	0	0	1	0							
	0	1	0	1	1	0	1							
	1	0	1	1	1	0	1							
	1	1	0	0	1	0	0							
	b)												-	
CLI	ĸſ							[
NZ.														
X										 				
A									 					
B														
Ζ														

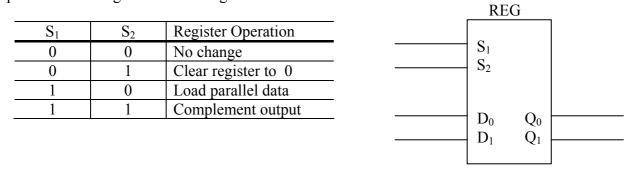

- 2. A JN flip-flop has two inputs J and N. Input J behaves like the J input of JK flip-flop. N behaves like the complement of the K input of JK flip-flop (that is N=K).
 - a) Obtain the characteristic table of JN flip-flop. (07 pts)
 - b) Derive the excitation table of the flip-flop.(08 pts)

1	,	

April 07, 2005


1	
2	
3	
4	
5	

- 3. Design a sequence detector with one input X and one output Z. Every time the input "1 0 1" is detected the output Z=1. However, the detector needs to be first activated with a key, i.e. it has to receive at least three consecutive 0's before it will start detecting the desired sequence "1 0 1". Once the key has been received, the sequence detector keeps looking for the desired sequence. Overlapping sequences are allowed.
 - a) For the following input sequence give the output sequence (05 pts)



b) Give the state diagram of the sequence detector including the key detection. Assume that the circuit is a <u>Mealy machine</u>. (20 pts)

4. Consider the following state diagram that represents a sequential circuit with one input X and one output Z. Design the circuit with <u>D flip-flops</u>. Give the state table, derive the logic equations for the inputs to the flip-flops and for the output function. Assume that the states are encoded as follows: <u>S₀(000), S₁(001), S₂(010), S₃(011)</u>, etc. X: don't care (25 pts)

5. Draw the logic diagram of a <u>2-bit register with mode selection inputs S_1 and S_2 . The register is to be operated according to the following function table:</u>

Use JK flip-flops in the register. Use only the inputs J and K to perform the listed operation. (20 pts)