EXPERIMENT 2 : Combinational Logic Design with Decoders and Multiplexers

OBJECTIVES

• To design a combinational circuit and implement it with decoders and multiplexers.

APPARATUS

- 7404 HEX inverter
- 7430 8 input NAND gate (x2)
- 74151 8x1 multiplexer
- 74154 4-to-16 line decoder

Connection wires or Jumper wires, Wire Stripper / Cutter

PRELIMINARY WORK

Q1.Design a combinational logic circuit to check whether the given number is a *"Fibonacci Number"* or not. If the 4 bit input is a Fibonacci number, the output will be 1, otherwise output will be 0. Use one 74154 decoder and <u>only</u> NAND gates.

Hint: Fibonacci numbers are the numbers in the following integer sequence;

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

Q2.Design the logic circuit defined in Q1 by using 74151 8 line-to-1 line multiplexer and external logic gates.

IC DESCRIPTION

74154 is a 4 line-to-16 line decoder. Figure.1 shows the pin-out for the 74154. This IC decodes four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The function table of IC 74154 is given Table 1.

Figure 1

Table 1

Inputs				Outputs																	
G1	G2	D	С	в	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	L	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	L	н	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	L	н	н	н	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н
L	L	L	н	L	L	н	н	н	Н	L	н	н	н	н	н	н	н	н	н	н	н
L	L	L	н	L	н	н	н	н	н	н	L	н	н	н	н	н	н	н	н	н	н
L	L	L	н	Н	L	н	н	н	Н	н	н	L	н	н	н	н	Н	н	н	н	н
L	L	L	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н	н	н	н	н
L	L	н	L	L	L	н	н	н	н	н	Н	н	н	L	Н	н	н	н	н	н	н
L	L	н	L	L	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н	н	н
L	L	н	L	н	L	н	н	н	н	н	н	Н	н	н	н	L	н	н	н	н	н
L	L	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	L	н	н	н	н
L	L	н	н	L	L	н	н	н	н	н	н	н	н	н	н	н	н	L	н	н	н
L	L	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L	н	н
L	L	н	н	н	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L	н
L	L	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	L
L	н	X	Х	Х	Х	н	н	н	н	н	н	Н	н	н	н	н	н	н	н	н	н
н	L	X	Х	Х	Х	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н
н	н	X	Х	Х	Х	н	н	н	н	н	н	н	н	н	Н	н	н	н	н	н	н
H = Hink evel I = I ow evel X = Don't Care																					

<u>74151</u> is a 8 line-to-1 line multiplexer. It has the schematic representation shown in Fig 2. Selection lines A, B and C select the particular input and this input is directed to the output. Strobe S acts as an enable signal. If S =1, the 74151 is disabled and output Y = 0. If S = 0 then the 74151 is enabled and it functions as a multiplexer. Table 2 shows the multiplex function of 74151 in terms of select lines.

	l.	Outputs					
	Select		Strobe	×	w		
С	в	Α	s				
x	×	х	н	L	н		
L	L	L	L	D0	DO		
L	L	н	L	D1	D1		
L	н	L	L	D2	D2		
L	н	н	L	D3	D3		
н	L	L	L	D4	D4		
н	L	н	L	D5	D5		
н	н	L	L	D6	D6		
н	н	н	L	D7	D7		

Table 2

H = High Level, L = Low Level, X = Don't Care

D0, D1 ... D7 = the level of the respective D input

PROCEDURE

- **1.** Connect the logic circuit that you designed in the prelab Q1 and test the circuit by applying all possible input combinations.
- **2.** Connect the logic circuit that you designed in the prelab Q2 and test the circuit by applying all possible input combinations.