
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 7 – Registers and
Register Transfers

Part 1 – Registers, Microoperations and
Implementations

Logic and Computer Design Fundamentals

Chapter 7 - Part 1 2

Overview

Part 1 - Registers, Microoperations and Implementations
• Registers and load enable
• Register transfer operations
• Microoperations - arithmetic, logic, and shift
• Microoperations on a single register

Multiplexer-based transfers
Shift registers

Part 2 - Counters, register cells, buses, & serial operations
• Microoperations on single register (continued)

Counters
• Register cell design
• Multiplexer and bus-based transfers for multiple registers
• Serial transfers and microoperations

2

Chapter 7 - Part 1 3

Registers

Register – a collection of binary storage
elements
In theory, a register is sequential logic
which can be defined by a state table
More often think of a register as storing a
vector of binary values
Frequently used to perform simple data
storage and data movement and
processing operations

Chapter 7 - Part 1 4

Current
State

A1 A0

Next State
A1(t+1) A0(t+1)

For I1 I0 =
00 01 10 11

Output
(=A1 A0)

Y1 Y0
0 0 00 01 10 11 0 0
0 1 00 01 10 11 0 1
1 0 00 01 10 11 1 0
1 1 00 01 10 11 1 1

State Table:

How many states are there?
How many input combinations?
Output combinations
What is the output function?
What is the next state function?
Moore or Mealy?

What are the the quantities above for an n-bit register?

Example: 2-bit Register

C

D Q

C

D Q

CP

In0

In1
A1

A0

Y1

Y0

3

Chapter 7 - Part 1 5

Register Design Models

Due to the large numbers of states and input
combinations as n becomes large, the state
diagram/state table model is not feasible!
What are methods we can use to design
registers?

• Add predefined combinational circuits to registers
Example: To count up, connect the register flip-flops to an
incrementer

• Design individual cells using the state diagram/state
table model and combine them into a register

A 1-bit cell has just two states
Output is usually the state variable

Chapter 7 - Part 1 6

Register Storage

Expectations:
• A register can store information for multiple clock cycles
• To “store” or “load” information should be controlled by a signal

Reality:
• A D flip-flop register loads information on every clock cycle

Realizing expectations:
• Use a signal to block the clock to the register,
• Use a signal to control feedback of the output of the register back to

its inputs, or
• Use other SR or JK flip-flops which for (0,0) applied store their state

Load is a frequent name for the signal that controls
register storage and loading

• Load = 1: Load the values on the data inputs
• Load = 0: Store the values in the register

4

Chapter 7 - Part 1 7

Registers with Clock Gating

Load signal is used to enable the clock signal to pass
through if 1 and prevent the clock signal from passing
through if 0.
Example: For Positive Edge-Triggered or Negative Pulse
Master-Slave Flip-flop:

What logic is needed for gating?
What is the problem?

Clock

Load

Gated Clock to FF

Clock Skew of gated clocks with
respect to clock or each other

Gated Clock = Clock + Load

Chapter 7 - Part 1 8

A more reliable way to selectively load a register:
• Run the clock continuously, and

• Selectively use a load control to change the register contents.
Example: 2-bit register
with Load Control:
For Load = 0,
loads register contents
(hold current values)
For Load = 1,
loads input values
(load new values)
Hardware more complex
than clock gating, but
free of timing problems

Registers with Load-Controlled Feedback

C
D Q

C

D Q

Clock
In0

In1

A1

A0

Y1

Y0

Load

2-to-1 Multiplexers

5

Chapter 7 - Part 1 9

Register Transfer Operations

Register Transfer Operations – The movement
and processing of data stored in registers
Three basic components:
• set of registers
• operations
• control of operations

Elementary Operations -- load, count, shift,
add, bitwise "OR", etc.
• Elementary operations called microoperations

Chapter 7 - Part 1 10

Register Notation

Letters and numbers – denotes a register (ex. R2, PC, IR)
Parentheses () – denotes a range of register bits (ex. R1(1),
PC(7:0), AR(L))
Arrow (←) – denotes data transfer (ex. R1 ← R2, PC(L) ←
R0)
Comma – separates parallel operations
Brackets [] – Specifies a memory address (ex. R0 ←
M[AR], R3 M[PC])

R 7 6 5 4 3 2 1 0

15 8 7 0 15 0
PC(H) PC(L) R2

6

Chapter 7 - Part 1 11

Conditional Transfer

If (K1 =1) then (R2 ← R1)
is shortened to

K1: (R2 ← R1)
where K1 is a control
variable specifying a
conditional execution
of the microoperation.

R1 R2

K1

Clock

Loadn

Clock

K1
Transfer Occurs Here

No Transfers Occur Here

Chapter 7 - Part 1 12

Microoperations

Logical Groupings:
• Transfer - move data from one set of registers to another
• Arithmetic - perform arithmetic on data in registers
• Logic - manipulate data or use bitwise logical operations
• Shift - shift data in registers

Arithmetic operations
+ Addition
– Subtraction
* Multiplication
/ Division

Logical operations
∨ Logical OR
∧ Logical AND
⊕ Logical Exclusive OR
 Not

7

Chapter 7 - Part 1 13

Example Microoperations

Add the content of R1 to the content of
R2 and place the result in R1.

R1← R1 + R2
Multiply the content of R1 by the content
of R6 and place the result in PC.

PC ← R1 * R6
Exclusive OR the content of R1 with the
content of R2 and place the result in R1.

R1 ← R1 ⊕ R2

Chapter 7 - Part 1 14

Example Microoperations (Continued)

Take the 1's Complement of the contents
of R2 and place it in the PC.
PC ← R2
On condition K1 OR K2, the content of
R1 is Logic bitwise Ored with the content
of R3 and the result placed in R1.
(K1 + K2): R1 ← R1 ∨ R3
NOTE: "+" (as in K1 + K2) and means
“OR.” In R1 ← R1 + R3, + means “plus.”

8

Chapter 7 - Part 1 15

Control Expressions

The control expression for
an operation appears to the
left of the operation and is
separated from it by a colon
Control expressions specify
the logical condition for the
operation to occur
Control expression values
of:
• Logic "1" -- the operation

occurs.
• Logic "0" -- the operation is

does not occur.

Example:
X K1 : R1 ← R1 + R2
X K1 : R1 ← R1 + R2 + 1
Variable K1 enables the
add or subtract operation.
If X =0, then X =1 so
X K1 = 1, activating the
addition of R1 and R2.
If X = 1, then X K1 = 1,
activating the addition of
R1 and the two's
complement of R2
(subtract).

Chapter 7 - Part 1 16

Arithmetic Microoperations

From
Table
7-3:

Note that any register may be specified for
source 1, source 2, or destination.
These simple microoperations operate on the
whole word

Symbolic Designation Description
R0 ← R1 + R2 Addition
R0 ← R1 Ones Complement
R0 ← R1 + 1 Two's Complement
R0 ← R2 + R1 + 1 R2 minus R1 (2's Comp)
R1 ← R1 + 1 Increment (count up)
R1 ← R1 – 1 Decrement (count down)

9

Chapter 7 - Part 1 17

Logical Microoperations

From Table 7-4:

Symbolic
Designation

Description

R0 ← R1 Bitwise NOT
R0 ← R1 ∨ R2 Bitwise OR (sets bits)
R0 ← R1 ∧ R2 Bitwise AND (clears bits)
R0 ← R1 ⊕ R2 Bitwise EXOR (complements bits)

Chapter 7 - Part 1 18

Logical Microoperations (continued)

Let R1 = 10101010,
and R2 = 11110000
Then after the operation, R0 becomes:

R0 Operation
01010101 R0 ← R1
11111010 R0 ← R1 ∨ R2
10100000 R0 ← R1 ∧ R2
01011010 R0 ← R1 ⊕ R2

10

Chapter 7 - Part 1 19

Shift Microoperations

From Table 7-5:
Let R2 = 11001001
Then after the
operation, R1
becomes:

Symbolic
Designation

Description

R1 ← sl R2 Shift Left
R1 ← sr R2 Shift Right

R1 Operation
10010010 R1 ← sl R2
01100100 R1 ← sr R2

Note: These shifts "zero fill". Sometimes a separate
flip-flop is used to provide the data shifted in, or to
“catch” the data shifted out.
Other shifts are possible (rotates, arithmetic) (see
Chapter 11).

Chapter 7 - Part 1 20

Register Transfer Structures

Multiplexer-Based Transfers - Multiple inputs are
selected by a multiplexer dedicated to the register
Bus-Based Transfers - Multiple inputs are selected by a
shared multiplexer driving a bus that feeds inputs to
multiple registers
Three-State Bus - Multiple inputs are selected by
3-state drivers with outputs connected to a bus that
feeds multiple registers
Other Transfer Structures - Use multiple multiplexers,
multiple buses, and combinations of all the above

11

Chapter 7 - Part 1 21

Multiplexer-Based Transfers

Multiplexers connected to register inputs produce
flexible transfer structures (Note: Clocks are omitted
for clarity)

The transfers are: K1: R0 ← R1
K2 K1: R0 ← R2

Load

R0
n

MUX

S

K2

0

1

Load

Load

n

n

K1
R2

R1

Chapter 7 - Part 1 22

Shift Registers

Shift Registers move data laterally within the register toward
its MSB or LSB position
In the simplest case, the shift register is simply a set of
D flip-flops connected in a row like this:

Data input, In, is called a serial input or the shift right input.
Data output, Out, is often called the serial output.
The vector (A, B, C, Out) is called the parallel output.

D QD QD QD Q
In

CP

A B C Out

12

Chapter 7 - Part 1 23

Shift Registers (continued)

The behavior of the
serial shift register
is given in the listing
on the lower right
T0 is the register
state just before
the first clock
pulse occurs
T1 is after the
first pulse and
before the second.
Initially unknown
states are denoted by “?”
Complete the last three
rows of the table

D QD QD QD Q
In

Clock CP

A B C Out

CP In A B C Out
T0 0 ? ? ? ?
T1 1 0 ? ? ?
T2 1 1 0 ? ?
T3 0 1 1 0 ?
T4 1
T5 1
T6 1

Chapter 7 - Part 1 24

Parallel Load Shift Registers

By adding a mux
between each shift register
stage, data can be
shifted or loaded
If SHIFT is low,
A and B are
replaced by the data on DA and DB lines, else data shifts
right on each clock.
By adding more bits, we can make n-bit parallel load shift
registers.
A parallel load shift register with an added “hold”
operation that stores data unchanged is given in Figure 7-
10 of the text.

D QD Q

A B

CP

SHIFT

IN

DA DB

13

Chapter 7 - Part 1 25

By placing a 4-input multiplexer in front of each D flip-
flop in a shift register, we can implement a circuit
with shifts right, shifts left, parallel load, hold.
Shift registers can also be designed to shift more than a
single bit position right or left
Shift register can be designed to shift a variable number
of bit positions specified by a variable called a shift
amount.

Shift Registers with Additional Functions

Chapter 7 - Part 1 26

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard Pearson
Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.
Return to Title Page

