L ogic and Computer Design Fundamentals

Chapter 7 — Registers and
Register Transfers

Part 1 — Registers, Microoperations and
Implementations
CharlesKime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Overview

= Part 1- Registers, Microoperations and | mplementations
* Registersand load enable
* Register transfer operations
* Microoperations - arithmetic, logic, and shift
* Microoperationson a singleregister
= Multiplexer-based transfers
= Shift registers
= Part 2 - Counters, register cells, buses, & serial operations
« Microoperationson singleregister (continued)
= Counters
* Register cell design
e Multiplexer and bus-based transfersfor multipleregisters
» Serial transfersand microoperations

Chapter 7-Part1 2

Registers

= Register —a collection of binary storage
elements

= |[n theory, aregister issequential logic
which can be defined by a state table

= Moreoften think of aregister asstoring a
vector of binary values

= Frequently used to perform simple data
storage and data movement and
processing oper ations

Chapter 7-Part1 3

Example: 2-bit Register

How many states are ther e? Al 1
. . . lnl D
How many input combinations? e
Output combinations AO
What isthe output function? "0 D Y0
What isthe next state function? CP—*PC
Mooreor Mealy? Current Next State Output
Stat AL(t+1) AO(t+1 =A1AQ
State Table: ae (o) Ao)
A1A0 00 01 10 11 Y1 YO
00 00 01 10 11 00
01 00 01 10 11 01
10 00 01 10 11 10
11 00 01 10 11 11
2

What arethe the quantities above for an n-bit register~

Chapter 7-Part1 4

Register Design Models

= Dueto thelarge numbers of statesand input
combinations as n becomeslarge, the state
diagram/state table model is not feasiblel!

= What are methods we can useto design
registers?
* Add predefined combinational circuitstoregisters

= Example: To count up, connect the register flip-flopsto an
incrementer

» Design individual cellsusing the state diagram/state
table model and combinethem into a register
= A 1-bit cell hasjust two states
= Qutput isusually the state variable

Chapter 7-Part1 5

Register Storage

Expectations:

« Aregister can storeinformation for multiple clock cycles

e To“store” or “load” information should be controlled by a signal
Reality:

« A D flip-flop register loadsinformation on every clock cycle
Realizing expectations:

« Useasdignal to block the clock to theregister,

* Useasignal to control feedback of the output of the register back to

itsinputs, or

* Useother SR or JK flip-flopswhich for (0,0) applied store their state
Load isafrequent namefor thesignal that controls
register storage and loading

e Load = 1: Load thevalueson the data inputs

e Load = 0: Storethevaluesin theregister

Chapter 7-Part1 6

Registerswith Clock Gating

L oad signal isused to enable the clock signal to pass
through if 1 and prevent the clock signal from passing
through if O.

Example: For Positive Edge-Triggered or Negative Pulse
M aster-Slave Flip-flop:

Clock

L oad

Gated Clock to FF

What logic is needed for gating?Gated Clock = Clock + L oad
What isthe problem? Clock Skew of gated clockswith
respect to clock or each other

Chapter 7-Part1 7

Registerswith L oad-Controlled Feedback

A morereliable way to selectively load aregister:
e Runtheclock continuoudly, and

e Selectively use aload control to changetheregister contents.
Example: 2-bit register

with Load Control: 2to-1 Multiplexers
For Load =0,
loadsregister contents | /
(hold current values) e
Al
For Load =1 | D Y1
. ' D
loadsinput values L?ﬁ Q
(load new values) P C
Har dwar e mor e complex — y A0
than clock gating, but l_Do_ D YO
free of timing problems >C
In0 |

Clock” cpopter 7-Part1 8

Register Transfer Operations

= Reqgister Transfer Operations — The movement
and processing of data stored in registers
= Three basic components:
* set of registers
e operations
« control of operations
= Elementary Operations -- load, count, shift,
add, bitwise" OR", etc.
* Elementary operations called microoperations

Chapter 7-Part1 9

Register Notation

[R] 76543210 |

15 8 7 0 15 0
| PCH) | PcL) | | R2 |

Lettersand numbers —denotesaregister (ex. R2, PC, IR)
Parentheses () —denotes arange of register bits (ex. R1(1),
PC(7:0), AR(L))

Arrow («) —denotesdata transfer (ex. R1« R2, PC(L) «
RO)

Comma — separ ates par allel operations

Brackets[] — Specifiesa memory address (ex. RO «
M[AR], R3M[PC])

Chapter 7- Part 1 10

Conditional Transfer

= If (K1=1) then (R2 ¢ R1) g,

isshortened to

K1 (R2« R1)
whereK1isacontrol
variable specifying a
conditional execution

of the microoper ation.

Microoperations

J
n Load
R1 > R2
A A
Clock T |
Clock—,_| I_I ’_|
(— 1 T L

TTrans‘er Occurs HereT
No Transfers Occur Here

Chapter 7- Part1 11

= Logical Groupings:

e Transfer - move data from one set of registersto another
e Arithmetic - perform arithmetic on datain registers

* Logic - manipulate data or use bitwise logical operations
o Shift - shift datain registers

Arithmetic operations
+ Addition
— Subtraction
* Multiplication
/ Division

L ogical operations
v Logical OR
A Logical AND

® Logical Exclusive OR
Not

Chapter 7 - Part 1 12

Example Microoper ations

= Add the content of R1 to the content of
R2 and placetheresult in R1.

R1<— R1+R2

= Multiply the content of R1 by the content
of R6 and placetheresult in PC.

PC < R1* R6

= Exclusive OR the content of R1 with the
content of R2 and placetheresult in R1.

Rl< RleR2

Chapter 7- Pat1 13

Example Microoper ations (Continued)

= Takethe 1's Complement of the contents
of R2 and placeit in the PC.

= PC « R2

= On condition K1 OR K2, the content of
R1isLogic bitwise Ored with the content
of R3 and theresult placed in R1.

= (K1+K2): R1«R1vR3

= NOTE: "+" (asin K, + K,) and means
“OR.” InR1« R1+R3, + means*“plus.”

Chapter 7- Part1 14

Control Expressions

= The control expression for
an oper ation appearsto the
left of the operation and is
separated from it by a colon

= Control expressions specify
thelogical condition for the
oper ation to occur

= Control expression values
of:
e Logic"1" -- the operation
occurs.
e Logic"0" --theoperation is
does not occur.

= Example:

XK1l: RIl&<R1+R2
XK1l: RI<R1+R2+1

= VariableK1enablesthe

add or subtract operation.

= |f X =0, then X =1 so

X K1 =1, activating the
addition of R1 and R2.

= [fX=1then XK1=1,

activating the addition of
R1 and thetwo's
complement of R2
(subtract).

Chapter 7- Pat1 15

Arithmetic Microoperations

= From| symbolic Designation

Description

TablelRO«< R1+R2

Addition

7-3: |RO«<R1

Ones Complement

RO<—R1+1 Two's Complement
RO« R2+ R1+1 |R2minusR1(2'sComp)
R1<R1+1 I ncrement (count up)
R1<R1-1 Decrement (count down)

= Notethat any register may be specified for
source 1, source 2, or destination.

= These ssmple microoper ations oper ate on the

whole word

Chapter 7- Part 1 16

L ogical Microoperations

= From Table 7-4:

Symboalic Description
Designation
RO « R1 Bitwise NOT

RO < R1 v R2 |Bitwise OR (setsbits)
RO < R1 AR2 |Bitwise AND (clearsbits)
RO < R1 @ R2 |Bitwise EXOR (complements bits)

Chapter 7- Pat1 17

L ogical Microoper ations (continued)

= Let R1 =10101010,
and R2 = 11110000

= Then after the operation, RO becomes:

RO Operation
01010101 |RO« R1
11111010 |RO« R1vR2
10100000 |RO« R1AR2
01011010 |RO « R1®R2

Chapter 7- Part 1 18

Shift Microoperations

= From Table 7-5: Symbolic |Description
= Let R2 = 11001001 Designation
= Then after the R1«< 9 R2 Shift L eft
operation, R1 Rl sr R2 Shift Right
becomes: R1 Operation
10010010 |R1¢«dR2
01100100 |R1¢ s R2

= Note: Theseshifts"” zerofill". Sometimes a separate
flip-flop isused to provide the data shifted in, or to
“catch” the data shifted out.

= Other shiftsare possible (rotates, arithmetic) (see
Chapter 11).

Chapter 7- Pat1 19

Register Transfer Structures

= Multiplexer-Based Transfers- Multipleinputsare
selected by a multiplexer dedicated to theregister

= Bus-Based Transfers- Multipleinputsare selected by a
shared multiplexer driving a busthat feedsinputsto
multipleregisters

= Three-State Bus - Multipleinputs are selected by
3-state driverswith outputs connected to a busthat
feeds multiple registers

= Other Transfer Structures- Use multiple multiplexers,
multiple buses, and combinations of all the above

Chapter 7- Part1 20

Multiplexer-Based Transfers

= Multiplexersconnected to register inputs produce
flexibletransfer structures (Note: Clocks are omitted
for clarity)

= Thetransfersare: K1: RO« R1

L oad K2K1: RO« R2
R2 Ko ,
AN Kl

n S L oad

0 n

N MUx[—~—>1 RO
L oad r‘%l A
R1
JAN

Chapter 7-Part1 21
Shift Registers

Shift Registers move data laterally within theregister toward
itsM SB or L SB position

Inthe simplest case, the shift register issimply a set of

D flip-flops connected in arow likethis:

In A B C out
DQ DQ DQ DQ

CP
Datainput, In, iscalled a serial input or the shift right input.

Data output, Out, is often called the serial output.
Thevector (A, B, C, Out) iscalled the parallel output.

Chapter 7 - Part 1 22

Shift Register s (continued)

The behavior of the

serial shift register " oo oo—ooF oo
isgiven in thelisting

on thelower right T p p P
TOistheregister Clock CP—& l_ 1_

statejust before

thefirst clock CP In A B C Out
pulse occurs TO 0 ? ? ? ?
Tlisafter the T1 1 0 ? ? ?
first pulseand T2 1 1 0 ? ?
befor e the second. T3 0 1 1 0 ?
Initially unknown T4 1

statesaredenoted by “?"| T5 1

Completethelast three L_T6 1

rows of thetable

Chapter 7- Pat1 23

Parallel Load Shift Registers

= By adding a mux O De

between each shift register A B
stage, data can be IN D g D ob—
shifted or loaded L S

« IfSHIFTislow, swrr_] |_
A and B are cp

replaced by the data on D, and Dg lines, else data shifts
right on each clock.

= By adding more bits, we can make n-bit parallel load shift
registers.
= A parallel load shift register with an added “hold”

operation that storesdata unchanged isgiven in Figure 7-
10 of thetext.

Chapter 7- Part1 24

Shift Registerswith Additional Functions

= By placing a 4-input multiplexer in front of each D flip-
flop in a shift register, we can implement a cir cuit
with shiftsright, shiftsleft, parallel load, hold.

= Shift registers can also be designed to shift morethan a
single bit position right or left
= Shift register can be designed to shift a variable number

of bit positions specified by a variable called a shift
amount.

Chapter 7- Pat1 25

Termsof Use

= © 2004 by Pearson Education,Inc. All rights reserved.

= Thefollowing terms of use apply in addition to the standard Pearson
Education Legal Notice.

= Permissionisgivento incorporate these materialsinto classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamental's as the course text.

= Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp sitein original or
modified form. All other website or ftp postings, including those
offering the materials for afee, are prohibited.

= You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.

= Return to Title Page

Chapter 7- Part 1 26

