Logic and Computer Design Fundamentals

Chapter 7 — Registers and
Register Transfers

Part 2 — Counters, Register Cells, Buses, &
Serial Operations

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use
(Hyperlinks are active in View Show mode)

Overview

= Part 1 - Registers, Microoperations and Implementations
* Registers and load enable
* Register transfer operations
* Microoperations - arithmetic, logic, and shift
* Microoperations on a single register
* Multiplexer-based transfers
= Shift registers
= Part 2 - Counters, register cells, buses, & serial operations
* Microoperations on single register (continued)
= Counters
* Register cell design
* Multiplexer and bus-based transfers for multiple registers
* Serial transfers and microoperations

Chapter 7-Part2 2

Counters

= Counters are sequential circuits which "count" through
a specific state sequence. They can count up, count
down, or count through other fixed sequences. Two
distinct types are in common usage:

= Ripple Counters
* Clock is connected to the flip-flop clock input on the LSB bit
flip-flop
* For all other bits, a flip-flop output is connected to the clock
input, thus circuit is not truly synchronous
* Output change is delayed more for each bit toward the MSB.
* Resurgent because of low power consumption

= Synchronous Counters

* Clock is directly connected to the flip-flop clock inputs
* Logic is used to implement the desired state sequencing

Chapter 7-Part2 3

Ripple Counter

= How does it work? D A

* When there is a p?sitive Clock — >,
edge on the clock input 3_T

of A, A complements ,_7
* The clock input for flip- D B

flop B is the complemented >Cp P—

output of flip-flop A Reset -——

* When flip A changes

from 1to 0,thereisa CP [| [1 [[1 [|_

positive edge on the

clock input of B A | | | | |
causing B to B
complement I I

0 1 2 3 0 1
Chapter 7-Part2 4

Ripple Counter (continued)

" The arrows show the

cause-effect relation- ® FLFLELFLEL
ship from the prior
slide => A C b Cl—eb C.|_

* The corresponding B (>| >
sequence of states=> 0 1 2 3 0 1
(B,A) =(0,0), (0,1), (1,0), (1,1),(0,0), (0,1), ...

= Each additional bit, C, D, ...behaves like bit B,
changing half as frequently as the bit before it.

= For 3 bits: (C,B,A) = (0,0,0), (0,0,1), (0,1,0), (0,1,1),
(1,0,0), (1,0,1), (1,1,0), (1,1,1), (0,0,0), ...

Chapter 7-Part2 5

Ripple Counter (continued)

= These circuits are called ripple counters because
each edge sensitive transition (positive in the
example) causes a change in the next flip-flop’s
state.

* The changes “ripple” upward through the
chain of flip-flops, i. e., each transition occurs
after a clock-to-output delay from the stage
before.

= To see this effect in detail look at the waveforms
on the next slide.

Chapter 7-Part2 6

Ripple Counter (continued)

= Starting with C = B = A =1, equivalent to
(C,B,A) =7 base 10, the next clock increments
the count to (C,B,A) = 0 base 10. In fine timing

detail:
* The clock to output del =2 | ¢
1 pu e. ay CP_\ /_

to, causes an increasing
delay from clock edge for \ tonr
each stage transition. A \

* Thus, the count “ripples” =
from least to most B \
significant bit. \

* For n bits, total worst case \
delay is Nty .

- -

Chapter 7-Part2 7

Synchronous Counters

* To eliminate the "ripple" effects, use a common clock
for each flip-flop and a combinational circuit to
generate the next state.

* For an up-counter,
use an incrementer => L J
Incre-

A3menters3 D3 Q3

A2 S2 D2 Q2

Al s1 D1 Q1 }—~
A0 SO D0 QO p—

Clock >

Chapter 7-Part2 8

Synchronous Counters (continued)

Internal details => Incrementer —

Count enable EN

Internal Logic
* XOR complements each bit

Qo

* AND chain causes complement
of a bit if all bits toward LSB
from it equal 1

Count Enable

chain to 0 to “hold” the state

Q.

Carry Out
* Added as part of incrementer

e Connect to Count Enable of
additional 4-bit counters to

* Forces all outputs of AND ?

vilivilviliv]

]
> o

ul

ul

D Qs
— > C
Carry
output CO

form larger counters Clock |

(a) Loaic Diaaram-Serial Gatina

Chapter 7-Part2 9

Synchronous Counters (continued)

= Carry chain

* series of AND gates through which the
carry “ripples”

* Yields long path delays
 Called serial gating

* Replace AND carry chain with ANDs =>
in parallel
* Reduces path delays
* Called parallel gating
* Like carry lookahead

* Lookahead can be used on COs
and ENs to prevent long paths in
large counters

= Symbol for Synchronous Count

EN

Qo

Q

Y

Cy

Q;

e

Qs

e

Logic Diagram-Parallel Gating

Chapter 7 - Part2 10

Other Counters

= See text for:
e Down Counter - counts downward instead of upward

* Up-Down Counter - counts up or down depending on value
a control input such as Up/Down

* Parallel Load Counter - Has parallel load of values
available depending on control input such as Load

= Divide-by-n (Modulo n) Counter

* Count is remainder of division by n which n may not
be a power of 2 or

* Count is arbitrary sequence of n states specifically
designed state-by-state

e Includes modulo 10 which is the BCD counter

Chapter 7- Pat2 11

Counter with Parallel Load

= Add path for input data

* enabled for Load =1

= Add logic to:

* disable count logic for Load =1

* disable feedback from outputs
for Load =1

* enable count logic for Load =0
and Count=1

= The resulting function table:

Load | Count Action
0 0 Hold Stored Value
0 1 Count Up Stored Value
1 X Load D

Clock

Load
Count % o

Do

Qo

+#C

k7

Dy

+—>C

D, Q,

+—C

D

9 BY IS

+>C

il

T

| Carry
Output CO

Chapter 7 - Part2 12

Design Example: Synchronous BCD

= Use the sequential logic model to design a synchronous

BCD counter with D flip-flops

" State Table => Current State Next State
* Input combinations | Q8 Q40Q20Q1 | Q8 Q4 Q2 Q1
1010 through 1111 0000 0001
are don’t cares 0001 0010
0010 0011
0011 0100
0100 0101
0101 0110
0110 0111
0111 1000
1000 1001
1001 0000

Chapter 7- Pat2 13

Synchronous BCD (continued)

= Use K-Maps to two-level optimize the next state
equations and manipulate into forms containing XOR

gates:
D1=0Q1 .
D2 =Q2®Q1Q8
D4 = Q4@ Q1Q2
D8 = Q8@ (Q1Q8 + Q1Q2Q4)

" The logic diagram can be draw from these equations

* An asynchronous or synchronous reset should be added

® What happens if the counter is perturbed by a power
disturbance or other interference and it enters a state

other than 0000 through 1001?

Chapter 7 - Part2 14

Synchronous BCD (continued)

= Find the actual values of the six next states for the don’t
care combinations from the equations

* Find the overall state diagram to assess behavior for the
don’t care states (states in decimal)

Present State | Next State
Q8Q4Q2Q1 1 Q8Q4Q2Q1
1 01 01011
1 0110110
110 01101
11010100
11101111
11110010

Chapter 7- Pat2 15

Synchronous BCD (continued)

* For the BCD counter design, if an invalid state is
entered, return to a valid state occurs within two clock
cycles

= Is this adequate? If not:

 Is a signal needed that indicates that an invalid state has been
entered? What is the equation for such a signal?

* Does the design need to be modified to return from an invalid
state to a valid state in one clock cycle?

* Does the design need to be modified to return from a invalid
state to a specific state (such as 0)?
* The action to be taken depends on:
* the application of the circuit
* design group policy
= See pages 278 - 279 of the text.

Chapter 7 - Part2 16

Counting Modulo N

* The following techniques use an n-bit binary counter with
asynchronous or synchronous clear and/or parallel load:

« Detect a terminal count of N in a Modulo-N count sequence to
asynchronously Clear the count to 0 or asynchronously Load in
value 0 (These lead to counts which are present for only a very short
time and can fail to work for some timing conditions!)

* Detect a terminal count of N - 1 in a Modulo-N count sequence to
Clear the count synchronously to 0

* Detect a terminal count of N - 1 in a Modulo-N count sequence to
synchronously Load in value 0

* Detect a terminal count and use Load to preset a count of the
terminal count value minus (N - 1)

= Alternatively, custom design a modulo N counter as done for
BCD

Chapter 7- Pat2 17

Counting Modulo 7: Detect 7 and
Asynchronously Clear

= A synchronous 4-bit binary counter
with an asynchronous Clear is
used to make a Modulo
7 counter.

= Use the Clear feature to
detect the count 7 and
clear the count to 0. This
gives a count of 0, 1, 2, 3, 4,
5, 6, 7(short)0, 1, 2, 3, 4, 5,
6, 7(short)0, etc.

= DON’T DO THIS! Referred to as a “suicide” counter!
(Count “7” is “killed,” but the designer’s job may be
dead as well!)

Chapter 7 - Part2 18

Counting Modulo 7: Synchronously Load on
Terminal Count of 6

= A synchronous 4-bit binary 0—D3 Q3
counter with a synchronous 0—p2 o2
load and an asynchronous 0 3—

. —p1 Q1
clear is used to make a 0
Modulo 7 counter _>DO o
lock—pcp
= Use the Load feature to Cloc LOAD
"en

detec-t the count "6 - an-d Reset —O CLEAR
load in "zero". This gives

acountof0,1,2,3,4,5,6,
0,1,2,3,4,5,6,0,...
= Using don’t cares for states

above 0110, detection of 6 can be done
with Load = Q4 Q2

Chapter 7- Pat2 19

Counting Modulo 6: Synchronously Preset 9 on
Reset and Load 9 on Terminal Count 14

= A synchronous, 4-bit binary
counter with a synchronous 1—b3 Q3 _I_

Load is to be used to makea 0—{D2 Q2 —_}
Modulo 6 counter. 0—ip1 Q1

= Use the Load feature to 1—po Qo
preset the count to 9 on Clock—>Cp
Reset and detection of Reset:D_ LOAD
count 14. 1 -0 CLEAR

= This gives a count of 9, 10, 11, 12, 13, 14,9, 10, 11, 12,
13,14,9, ...

= If the terminal count is 15 detection is usually built in as
Carry Out (CO)

Chapter 7 - Part2 20

Register Cell Design

= Assume that a register consists of identical cells
* Then register design can be approached as
follows:
* Design representative cell for the register

* Connect copies of the cell together to form the
register
* Applying appropriate “boundary conditions” to
cells that need to be different and contract if
appropriate
= Register cell design is the first step of the above
process

Chapter 7- Pat2 21

Register Cell Specifications

= A register
= Data inputs to the register

= Control input combinations to the register

* Example 1: Not encoded
= Control inputs: Load, Shift, Add
= At most, one of Load, Shift, Add is 1 for any clock cycle
(0,0,0), (1,0,0), (0,1,0), (0,0,1)
* Example 2: Encoded
= Control inputs: S1, SO

= All possible binary combinations on S1, S0
(0,0, (0,1), (1,0, (1,1)

Chapter 7 - Part2 22

Register Cell Specifications

= A set of register functions (typically specified as
register transfers)

* Example:
Load: A — B
Shift: A < sr B
Add: A—A+B
= A hold state specification

* Example:
= Control inputs: Load, Shift, Add
= If all control inputs are 0, hold the current register state

Chapter 7- Pat2 23

Multiplexer Approach

= Uses an n-input multiplexer with a variety of transfer
sources and functions

Dedicated 4
logic 0 ﬁ4|- Encoder
: 0SS, So Load

. 4 .
De_dlcated | Mux
logic k—1 I
4 k—1 4

K RO [

— Registers or .
shared logic 4 .
_'> n—1

Chapter 7 - Part2 24

Multiplexer Approach

* Load enable by OR of control signals K, K, ... K
- assumes no load for 00...0

n-1

= Use:
* Encoder + Multiplexer (shown) or
° n X2 AND-OR
to select sources and/or
transfer functions

........ > Dedicated v
logic 0 j- Encoder
| 05 5, Load

i 4
Degwated | mux
logic k—1 e
4 k—1 4
k

—

RO |

Registers or .
shared logic 4 .
— n—-1

Chapter 7- Pat2 25

Example 1: Register Cell Design

= Register A (m-bits) Specification:
* Data input: B
* Control inputs (CX, CY)
* Control input combinations (0,0), (0,1) (1,0)
* Register transfers:
*CX:A—BVA
*CY:A—B@A
* Hold state: (0,0)

Chapter 7 - Part2 26

Example 1: Register Cell Design (continued)

* Load Control
Load =CX + CY

= Since all control combinations appear as if
encoded (0,0), (0,1), (1,0) can use multiplexer
without encoder:
S1=CX
S0=CY
D0 = A, Hold A
Dl=A,—B®A, CY=1
D2=A,—B;vA, CX=1
= Note that the decoder part of the 3-input

multiplexer can be shared between bits if
desired

Chapter 7- Pat2 27

Sequential Circuit Design Approach

* Find a state diagram or state table

* Note that there are only two states with the state
assignment equal to the register cell output value

= Use the design procedure in Chapter 6 to
complete the cell design

* For optimization:
* Use K-maps for up to 4 to 6 variables

* Otherwise, use computer-aided or manual
optimization

Chapter 7 - Part2 28

Example 1 Again

= State Table:

Hold Aiv Bi Ai®Bi
CX=0|CX=1[CX=1|CY=1|CY=1
A |CY=0| B,=0 | B.=1| B,=0 | B,=1
0 0 0 1
1 1 1 1 1 0

* Four variables give a total of 16 state table entries
* By using:

= Combinations of variable names and values

= Don’t care conditions (for CX=CY =1)

only 8 entries are required to represent the 16 entries

Chapter 7- Pat2 29

Example 1 Again (continued)

* K-map - Use variable ordering CX, CY, A, B;and
assume a D flip-flop

0 0[1 1
oll1] o1
———CY
X I(xX[x)x
CX _‘,
0\1 IJL
Bi

Chapter 7- Part2 30

Example 1 Again (continued)

* The resulting SOP equation:
D;,=CX B;+ CY A, B, + A; B, + CY A,
= Using factoring and DeMorgan’s law:
D,=CX B, + A, (CY B) + A(CY B;)
D,=CXB;+A,®(CYB)
The gate input cost per cell=2+8+2+2=14

* The gate input cost per cell for the previous
version is:
Per cell: 19
Shared decoder logic: 8

= Cost gain by sequential design > 5 per cell
= Also, no Enable on the flip-flop makes it cost less

Chapter 7- Pat2 31

Multiplexer and Bus-Based Transfers for
Multiple Registers

= Multiplexer dedicated to each register

= Shared transfer paths for registers

* A shared transfer object is a called a bus
(Plural: buses)

* Bus implementation using:
* multiplexers
* three-state nodes and drivers

= In most cases, the number of bits is the
length of the receiving register

Chapter 7 - Part2 32

Dedicated MUX-Based Transfers

* Multiplexer connected Sf &0
to each register input :ffm y LR":;"
produces a very -
flexible transfer
structure => S‘i 1

= Characterize the con OV S R
simultaneous transfers o - H
possible with this
structure. Sj 52

ns) S n, | Load
0 | MUX R2
—

Chapter 7- Pat2 33

Multiplexer Bus
Lo

= A single bus driven by . L‘oad
a multiplexer lowers RO
cost, but limits the o -~
available transfers => ,[') 1

= Characterize the gl }0 —
simultaneous transfers > ; w2 -
possible with this |_<-
structure.

* Characterize the cost ﬁz
savings compared to g_o| Load
dedicated multiplexers "

Chapter 7- Part2 34

Three-State Bus

* The 3-input MUX can be

50

replaced by a 3-state node

(bus) and 3-state buffers.

= Cost is further reduced, ' F

_ | Load

RO

but transfers are limited E0
= Characterize the

]11

simultaneous transfers

Load|
R1

possible with this m*“—?]—
structure.

= Characterize the cost

L2

savings and compare

= Other advantages? n g

Load,|
R2

Chapter 7- Pat2 35

Serial Transfers and Microoperations

= Serial Transfers
* Used for “narrow” transfer paths

* Example 1: Telephone or cable line
= Parallel-to-Serial conversion at source

= Serial-to-Parallel conversion at destination
* Example 2: Initialization and Capture of the contents of

many flip-flops for test purposes

= Add shift function to all flip-flops and form large shift register
= Use shifting for simultaneous Initialization and Capture

operations
= Serial microoperations
* Example 1: Addition

* Example 2: Error-Correction for CDs

Chapter 7 - Part2 36

Serial Microoperations

By using two shift registers for operands, a full adder, and a
flip flop (for the carry), we can add two numbers serially,
starting at the least significant bit.

Serial addition is a low cost way to add large numbers of
operands, since a “tree” of full adder cells can be made to
any depth, and each new level doubles the number of
operands.

Other operations can be performed serially as well, such as
parity generation/checking or more complex error-check
codes.

Shifting a binary number left is equivalent to multiplying by
2.

Shifting a binary number right is equivalent to dividing by 2.

Chapter 7- Pat2 37

Serial Adder

. . N Load/Right Shift Registers
The circuit shown uses two shift

registers for operands A(3:0) g,
and B(3:0). fn A
A full adder, and one more L IZ 11 IO B
flip flop (for the carry) is used

to compute the sum.

S;erial —> Cout
The result is stored in the n
Fret W
‘_
l«—CP

Parallel Load

A register and the final B3 B2 BI BO
carry in the flip-flop Parallel Load

(Clock and Load/Shift 4

With the operands and the Control not shown)

result in shift registers, a tree of full adders can be
used to add a large number of operands. Used as a common
digital signal processing technique.

Chapter 7 - Part2 38

Terms of Use

= © 2004 by Pearson Education,Inc. All rights reserved.

= Thefollowing terms of use apply in addition to the standard Pearson
Education Legal Notice.

= Permission isgivento incorporate these materialsinto classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamental's as the course text.

= Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp sitein original or
modified form. All other website or ftp postings, including those
offering the materials for afee, are prohibited.

= You may hot remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each dlide.

= Return to Title Page

Chapter 7- Pat2 39

