
1

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 8 – Sequencing 
and Control

Logic and Computer Design Fundamentals

Chapter 8    2

Overview

Datapath and Control
Algorithmic State Machines (ASM)

• ASM chart
• Timing considerations

ASM chart examples
• Binary multiplier

Hardwired Control
• Control design methods
• Sequence register and decoder
• One flip-flop per state

Microprogrammed control



2

Chapter 8    3

Datapath and Control

Datapath - performs data transfer and processing 
operations
Control Unit - Determines the enabling and sequencing 
of the operations

The control unit receives:
• External control inputs
• Status signals

The control unit sends:
• Control signals
• Control outputs

Control
inputs

Data
inputs

Data
outputs

Datapath

Control
outputs

Control signals

Status signalsControl
unit

Describe properties of
the state of the datapath

Chapter 8    4

Control Unit Types

Two distinct classes: 
• Programmable 
• Non-programmable.

A programmable control unit has:
• A program counter (PC) or other sequencing register with 

contents that points to the next instruction to be executed
• An external ROM or RAM array for storing instructions and 

control information
• Decision logic for determining the sequence of operations and 

logic to interpret the instructions

A non-programmable control units does not fetch 
instructions from a memory and is not responsible for 
sequencing instructions

• This type of control unit is our focus in this chapter



3

Chapter 8    5

Algorithmic State Machines

The function of a state machine (or sequential circuit) 
can be represented by a state table or a state diagram.
A flowchart is a way of showing actions and control flow
in an algorithm.
An Algorithmic State Machine (ASM) is simply a 
flowchart-like way to specify state diagrams for 
sequential logic and, optionally, actions performed in a 
datapath.
While flowcharts typically do not specify “time”, an 
ASM explicitly specifies a sequence of actions and their 
timing relationships.

Chapter 8    6

ASM Primitives

1.State Box 
(a rectangle)

2.Scalar 
Decision Box  
(a diamond)

3.Vector 
Decision Box  
(a hexagon)

4.Conditional 
Output Box 
(oval).

The State Box is a rectangle, marked with the 
symbolic state name, containing register transfers 
and output signals activated when the control unit is 
in the state.
The Scalar Decision Box is a diamond that describes 
the effects of a specific input condition on the 
control.  It has one input path and two exit paths, 
one for TRUE (1) and one for FALSE (0).
The Vector Decision Box is a hexagon that describes 
the effects of a specific n-bit (n > 2) vector of input 
conditions on the control.  It has one input path and 
up to 2n exit paths, each corresponding to a binary 
vector value.
The Conditional Output Box is an oval with entry  
from a decision block and outputs activated for the 
decision conditions being satisfied.



4

Chapter 8    7

A rectangle with:
• The symbolic name for 

the state marked 
outside the upper left 
top

• Containing register 
transfer operations and 
outputs activated within 
or while leaving the 
state

• An optional state code, 
if assigned, outside the 
upper right top

(Symbolic Name)
IDLE

(Register transfers
or outputs)

R ← 0
RUN

(Optional state code)
0000

State Box

Chapter 8    8

A diamond with:
• One input path 

(entry point).
• One input condition, placed 

in the center of the box, that 
is tested.

• A TRUE exit path taken if 
the condition is true 
(logic 1).

• A FALSE exit path taken if 
the condition is false 
(logic 0).

(Input)
START

(True Condition)(False Condition)
0 1

Scalar Decision Box



5

Chapter 8    9

Vector Decision Box

A hexagon with:
• One Input Path (entry 

point).
• A vector of input

conditions, placed in the
center of the box, that is
tested.

• Up to 2n output paths. The 
path taken has a binary 
vector value that matches 
the vector input condition 

(Vector of Input
Conditions)

(Binary Vector Values)

00

01

(Binary Vector Values)

10

Z, Q0

Chapter 8    10

Conditional Output Box

An oval with:
• One input path from a decision box 

or decision boxes.
• One output path
• Register transfers or outputs that 

occur only if the conditional path to 
the box is taken.

Transfers and outputs in a state 
box are Moore type - dependent 
only on state
Transfers and outputs in a 
conditional output box are Mealy 
type - dependent on both state and 
inputs

(Register transfers
or outputs)

R ← 0
RUN

From Decision Box(es)



6

Chapter 8    11

By connecting boxes together, we begin to see 
the power of expression.
What are the:

• Inputs?
• Outputs?
• Conditional Outputs?
• Transfers?
• Conditional Transfers?

Connecting Boxes Together

IDLE

R← 0

START
0 1

PC ← 0

AVAIL

INIT

Chapter 8    12

ASM Blocks

One state box along
with all decision and
conditional output
boxes connected
to it is called an ASM
Block.
The ASM Block
includes all items on the
path from the current
state to the same or other
states.

IDLE

AVAIL

START

R← R + 1 R ← 0

Q0
0 1

MUL0 MUL1

ASM BLOCK

Entry

Exit

Exit Exit



7

Chapter 8    13

ASM Timing

Outputs appear while in the state
Register transfers occur at the clock while exiting the 
state - New value occur in the next state!

Clock cycle 1 Clock cycle 2 Clock cycle 3

Clock

START

Q1

AVAIL

IDLE MUL 1

0034 0000

State

A

Q0

Chapter 8    14

Multiplier Example

Example: (101 x 011) Base 2
Note that the partial product
summation for n digits, base 
2 numbers requires adding 
up to n digits (with carries) in 
a column.
Note also n x m digit multiply
generates up to an m + n digit
result (same as decimal). 

   1 0 1 

  x 0 1 1 

   1 0 1 

  1 0 1  

 0 0 0   

0 0 1 1 1 1 
 

Partial products are:
101 x 0, 101 x 1, and 101 x 1



8

Chapter 8    15

Example (1 0 1) x (0 1 1) Again

Reorganizing example to follow hardware algorithm:

11 11000

11110
0

+

0
0
+

0
x

11110

101
1010

101
101
000
110
101

Clear C || A
Multipler0 = 1 => Add B
Addition
Shift Right (Zero-fill C)
Multipler1 = 1 => Add B
Addition
Shift Right
Multipler2 = 0 => No Add, 

Shift Right

Chapter 8    16

Multiplier Example: Block Diagram

Cout

n

n

n�1

Counter P

Zero detect

Control
unit

G (Go)

log2 n

Qo

Z

Parallel adder

Multiplicand

Register B

Shift register A0 C Shift register Q

Multiplier

Product
OUT

IN

Control signals

n

n n

4



9

Chapter 8    17

Multiplexer Example: Operation

1. The multiplicand (top operand) is loaded into register B.
2. The multiplier (bottom operand) is loaded into register Q.
3. Register C|| Q is initialized to 0 when G becomes 1.
4. The partial products are formed in register C||A||Q.
5. Each multiplier bit, beginning with the LSB, is processed (if bit is 

1, use adder to add B to partial product; if bit is 0, do nothing)
6. C||A||Q is shifted right using the shift register

• Partial product bits fill vacant locations in Q as multiplier is shifted 
out

• If overflow during addition, the outgoing carry is recovered from C 
during the right shift

7. Steps 5 and 6 are repeated until Counter P = 0 as detected by Zero 
detect.

• Counter P is initialized in step 4 to n – 1, n = number of bits in 
multiplier

Chapter 8    18

Multiplier Example: ASM Chart

0 1G

IDLE

MUL0

0 1Z

MUL1

0 1

0C ← 0, A ←
P ←n – 1

A ← A + B,
C ←Cout

P ← P – 1
C ← 0, C || A || Q ← sr C || A || Q,

Q0



10

Chapter 8    19

Multiplier Example: ASM Chart 
(continued)

Three states are employ using a combined Mealy -
Moore output model:

• IDLE - state in which:
the outputs of the prior multiply is held until Q is loaded with the 
new multiplicand
input G is used as the condition for starting the multiplication, 
and
C, A, and P are initialized

• MUL0 - state in which conditional addition is performed based 
on the value of Q0.

• MUL1 - state in which:
right shift is performed to capture the partial product and 

position the next bit of the multiplier in Q0

the terminal count of 0 for down counter P is used to sense 
completion  or continuation of the multiply.

Chapter 8    20

Multiplier Example: Control Signal Table

Control Signals for Binary Multiplier

Block Diagram
Module Microope ration

Control
Sign al Name

Control
Expression

Register A: A← 0 Initialize G
A ← A + B Load                   MUL0 · Q
C || A || Q sr C || A || Q Shift_dec MUL1

Register B: B ← IN Load_B LOADB

Flip-Flop C:               C ← 0  Clear_C IDLE · G + MUL1
C ← Cout Load —

Register Q:               Q ← IN Load_Q LOADQ
C || A || Q ← sr C || A || Q Shift_dec —

Counter P: P ← n – 1 Initialize —
P ← P – 1 Shift_dec —

IDLE ·

←



11

Chapter 8    21

Signals are defined on a register basis
LOADQ and LOADB are external signals controlled 
from the system using the multiplier and will not be 
considered a part of this design
Note that many of the control signals are “reused” for 
different registers.
These control signals are the “outputs” of the control 
unit 
With the outputs represented by the table, they can be 
removed from the ASM giving an ASM that represents 
only the sequencing (next state) behavior

Multiplier Example: Control Table 
(continued)

Chapter 8    22

Multiplier Example - Sequencing Part of 
ASM

0 1

IDLE

MUL0

0 1

01

MUL1 10

00

G

Z



12

Chapter 8    23

Control Design Methods
• The procedure from Chapter 6
• Procedure specializations that use a single 

signal to represent each state
Sequence Register and Decoder

• Sequence register with encoded states, e.g., 00, 01, 10, 
11.

• Decoder outputs produce “state” signals, e.g., 0001, 
0010, 0100, 1000.

One Flip-flop per State 
• Flip-flop outputs as “state” signals, e. g., 0001, 0010, 

0100, 1000.

Hardwired Control

Chapter 8    24

Multiplier Example: Sequencer and 
Decoder Design

Initially, use sequential circuit design techniques from
Chapter 4.
First, define:

• States: IDLE, MUL0, MUL1
• Input Signals: G, Z, Q0 (Q0 affects outputs, not next state)
• Output Signals: Initialize, LOAD, Shift_Dec, Clear_C
• State Transition Diagram (Use Sequencing ASM on Slide 22)
• Output Function: Use Table on Slide 20 

Second, find
• State Assignments (two bits required)
• We will use two state bits to encode

the three state IDLE, MUL0, and MUL1. 

State M1 M0

IDLE 0 0

MUL0 0 1

MUL1 1 0

Unused 1 1



13

Chapter 8    25

Assuming that state variables M1 and M0 are decoded 
into states, the next state part of the state table is:

Current State Input 
G  Z 

Next State 
M1  M0 

IDLE 0  0 0    0 
IDLE 0  1 0    0 
IDLE 1  0 0    1 
IDLE 1  1 0    1 
MUL0 0  0 1    0 
MUL0 0  1 1    0 
MUL0 1  0 1    0 
MUL0 1  1 1    0 

 

Current State
M1  M0 

Input 
G  Z 

Next State 
M1  M0 

MUL1 0  0 0    1 
MUL1 0  1 0    0 
MUL1 1  0 0    1 
MUL1 1  1 0    0 
Unused 0  0 d    d 
Unused 0  1 d    d 
Unused 1  0 d    d 
Unused 1  1 d    d 

 

Multiplier Example: Sequencer and 
Decoder Design (continued)

Chapter 8    26

Multiplier Example: Sequencer and 
Decoder Design (continued)

Finding the equations for M1 and M0 is easier due to 
the decoded states:

M1 = MUL0
M0 = IDLE · G + MUL1 · Z

Note that since there are five variables, a K-map is 
harder to use, so we have directly written reduced 
equations.
The output equations using the decoded states:

Initialize = IDLE · G
Load = MUL0  · Q0
Clear_C = IDLE · G +  MUL1
Shift_dec = MUL1



14

Chapter 8    27

Multiplier Example: Sequencer and 
Decoder Design (continued)

Doing multiple level optimization, extract IDLE · G:
START  = IDLE · G
M1 = MUL0
M0 = START + MUL1 · Z
Initialize = START
Load = MUL0  · Q0
Clear_C = START +  MUL1
Shift_dec = MUL1    

The resulting circuit using flip-flops, a decoder, and the 
above equations is given on the next slide.

Chapter 8    28

Multiplier Example: Sequencer and 
Decoder Design (continued)

IDLE
MUL0
MUL1

Initialize

Clear_C

Shift_dec

M0

Load

M1

G

Z

Q0

DECODER
A0

A1

0

3
2
1

D

C

D

C

START



15

Chapter 8    29

This  method uses one flip-flop per state and a simple set 
of transformation rules to implement the circuit.
The design starts with the ASM chart, and replaces

1. State Boxes with flip-flops,
2. Scalar Decision Boxes with a demultiplexer with 2 outputs,
3. Vector Decision Boxes with a (partial) demultiplexer 
4. Junctions with an OR gate, and
5. Conditional Outputs with AND gates.

Each is discussed detail below.
• Figure 8-11 is the end result.

One Flip-Flop per State

Chapter 8    30

State Box Transformation Rules

Each state box transforms to a D Flip-Flop
Entry point is connected to the input.
Exit point is connected to the Q output.

STATE

Entry

Exit

D Q

Entry

Exit

STATE



16

Chapter 8    31

Scalar Decision Box Transformation 
Rules

Each Decision box transforms to a Demultiplexer
Entry points are "Enable" inputs.
The Condition is the "Select" input.
Decoded Outputs are the Exit points.

X0 1

Entry

Exit 0 Exit 1

XEntry

Exit 0 Exit 1

Chapter 8    32

Vector Decision Box Transformation 
Rules

Each Decision box transforms to a Demultiplexer
Entry point is Enable inputs.
The Conditions are the Select inputs.
Demultiplexer Outputs are the Exit points.

(Vector of Input
Conditions)

(Binary Vector Values)

00

01

(Binary Vector Values)

10

X1, X0

X1

Entry Exit 0
Exit 1

X0

DEMUX

EN

A1
A0

D0

D2

D1

D3

Exit2

Exit 3



17

Chapter 8    33

Junction Transformation Rules

Entry 1

Exit 

Entry 2 Entry 1

Exit 

Entry 2

Where two or more entry points join, connect 
the entry variables to an OR gate
The Exit is the output of the OR gate

Chapter 8    34

Conditional Output Box Rules

X 1

Entry

Exit 1

OUTPUT

X

Entry

Exit 1
OUTPUT

Entry point is Enable input.
The Condition is the "Select" input.
Demultiplexer Outputs are the Exit points.
The Control OUTPUT is the same signal as the exit 
value.



18

Chapter 8    35

Multiplier Example: Flip-flop per State 
Design Logic Diagram

D

C

IDLE

D

C

MUL0

D

C

MUL1

Initialize

Clear _C

Load

Shift_dec

Clock

Z

Q0

4

1

G

2

5

4
5

1

1 5

DEMUX
D0

D1A0

EN

2

DEMUX
D0

D1A0

EN

START

Chapter 8    36

Speeding Up the Multiplier

In processing each bit of the multiplier, 
the circuit visits states MUL0 and MUL1 
in sequence.
By redesigning the multiplier, is it 
possible to visit only a single state per bit 
processed?



19

Chapter 8    37

Speeding Up Multiply (continued)

Examining the operations in MUL0 and MUL1:
• In MUL0, a conditional add of B is performed, and
• In MUL1, a right shift of C || A || Q in a shift register, the 

decrementing of P, and a test for P = 0 (on the old value of P) 
are all performed in MUL1

Any solution that uses one state must combine all of the 
operations listed into one state
The operations involving P are already done in a single 
state, so are not a problem.
The right shift, however, depends on the result of the 
conditional addition. So these two operations must be 
combined!

Chapter 8    38

Speeding Up Multiply (continued)

By replacing the shift
register with a
combinational shifter
and combining the 
adder and shifter,
the states can be merged. 
The C-bit is no longer needed.
In this case, Z and Q0
have been made into
a vector. This is not
essential to the 
solution.
The ASM chart =>

G

IDLE

MUL

00
01

10
11

0 1

Z || Q0

A || Q     sr Cout || (A +0) || QA || Q     sr Cout || (A +0) || Q

A || Q     sr Cout || (A +B) || Q A || Q     sr Cout || (A+B) || Q

P P – 1

0A
P n –1



20

Chapter 8    39

Microprogrammed Control

Microprogrammed Control — a control unit with binary 
control values stored as words in memory.
Microinstructions — words in the control memory.
Microprogram — a sequence of microinstructions.
Control Memory — RAM or ROM memory holding the 
microinstructions.
Writeable Control Memory — RAM Memory into which 
microinstructions may be written

Chapter 8    40

Microprogrammed Control (continued)

Sequencer

Control address

Control•
inputs Status signals from datapath

Next-address•
generator

Control address•
register

Address

Control•
memory•
(ROM)

Data

Control data register•
(optional)

Next-address•
information

Control•
outputs

Control signals•
to datapath

Microinstruction



21

Chapter 8    41

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard Pearson 
Education Legal Notice.
Permission is given to  incorporate these materials into classroom 
presentations and handouts only to instructors adopting Logic and 
Computer Design Fundamentals as the course text. 
Permission is granted to the instructors adopting the book to post these 
materials on a protected website or protected ftp site in original or 
modified form. All other website or ftp postings, including those 
offering the materials for a fee, are prohibited. 
You may not remove or in any way alter this Terms of Use notice  or 
any trademark, copyright, or other proprietary notice, including the 
copyright watermark on each slide.
Return to Title Page


