Mühendislik Malzemeleri Seramikler #### Seramikler ## İçerik: - Deformasyon Mekanizması - Seramiklerin gevrek kırılması - Mukavemet - Üretim - Uygulamalar ## Deformasyon Mekanizması - Dislokasyon hareketi metallere göre kovalent ve iyonik bağa sahip kristalli yapılarda daha zordur - Güçlü bağlar nedeniyle Elastik modül yüksektir #### Metal #### **Covalent Ceramic** **Ionic Ceramic** ## Deformasyon Mekanizması - There are limited numbers of slip systems available in the complicated crystal structures of most ceramics. - Some slip systems only become active at high temperatures Alumina Crystal Structure ## Deformasyon Mekanizması - Dislocation glide is difficult in the disordered structure of glasses - Glasses may deform by viscous flow, but viscosity is very high at ambient temperatures ### Brittle Fracture of Ceramics - Defects in ceramics can develop due to internal stresses and porosity - Thermal stresses due to an-isotropic thermal expansion tend to crack weak grain boundaries 96% dense alumina ## Seramiklerin Gevrek Kırılması - Defects in ceramics can develop due to internal stresses and porosity - Thermal stresses due to an-isotropic thermal expansion tend to crack weak grain boundaries Pores in partially sintered Alumina #### Modulus of Rupture Measured in three or four point bending Fracture data is scattered Scatter described using statistics, such as Weibull Modulus Failure strains typically <0.1% ## Boşluk Etkisi • Elastik Modül Boşuklar elastik modülü düşürür Elastic modulus of Alumina ## Boşluk Etkisi Flexural Strength is variable and affected by porosity Flexural strength of Alumina # Deformasyon İstatistiği • En Zayıf bağlantı The strength of a component depends on the population of defects ### Kırılma Mekanizması Kırılma mukavemeti en büyük kusurun ebadına bağlıdır $$\sigma_f = \sqrt{\frac{EG_c}{\pi a}}$$ $$E\alpha\Delta T = \sigma_f$$ Work of fracture: G_c Çatlak boyu, a Elastik modül, E Termal genleşme sabiti, α Sıcaklık değişimi, ΔT Typical defects include porosity and cracked grain boundaries Thermal strains due to high processing temperatures and low ductility can give high internal stresses between grains, which may fracture grain boundaries #### Kırılma Mekanizması • Kırılma mekanizması malzemenin kırılması için gereken enerjiyi etkiler. Work is done in the **Fracture Process Zone** The strength of ceramics is increased by increasing the work of fracture ## Seramiklerin Gevrek Kırılması - Fracture may be intergranular, or transgranular - Cracks propagate along the easiest path - Intergranular fracture may increase toughness by increasing fracture surface area and grain bridging Intergranular fracture in alumina #### Tokluk Artırma Mekanizması - Crack Bridging increases work of fracture by frictional forces and interlocking of grains. - Encouraged by intergranular fracture - (high internal stress, large grains and weak interfaces) ### Silikon Nitrür • Silicon nitride microstructures have strong R-curve behaviour due to crack bridging and crack deflection by needle-shaped grains Silicon Nitride ## Kısmi Kararlı Zirconia (PSZ) - Additions (Ca,Mg etc) to zirconia give metastable tetragonal zirconia and cubic zirconia. - Stress-induced transformation of tetragonal to monoclinic causes microcracking and increases the work of fracture # Zirkon ile Takviyeli Alumüna (ZTA) - Zirconia may be added to alumina to give a ceramic composite - Stress induced transformation of the zirconia increases the toughness and wear resistance Zirconia toughened alumina # Zirconia Toughened Alumina (ZTA) Zirconia toughened alumina Zirconia toughened alumina # Tipik Özellikler | Material | Flexural
Strength
(MPa) | Elastic
Modulus
(GPa) | |-------------------------------|-------------------------------|-----------------------------| | Silicon Nitride | 800 | 300 | | Partially Stabilised Zirconia | 630 | 200 | | Alumina | 300-500 | 400 | | Silicon Carbide | 500-800 | 430 | | Glass | 70 | 70 | ## Geliştirilmiş Seramiklerin Üretimi - Sintering (hot pressing) bonds ceramic particles by diffusion - Glassy phases increase sintering rate and decrease porosity Pores in partially sintered Alumina #### Thermal Barrier Coatings Low thermal conductivity reduces metal temperatures #### **Electronics Packaging** Ceramics provide high temperature performance and thermal expansion coefficient match to Silicon High thermal conductivity desired (e.g. AlN) #### Ceramic Armour Absorption of projectile energy RANK Enterprises, Inc #### Seramik Armour Multi-Tabakalı Yapılar #### özet - The mechanical properties of ceramics differ considerably from metals due to their relative inability to deform plastically. - Strength of ceramics is strongly affected by internal defects. - Strength can be optimised by additions and control of microstructure.